

Geo-processes in Mineral Carbon Storage (GMCS) Emmanuel Detournay (University of Minnesota); Class: 2022-2026

MISSION: To develop the fundamental science that will lead to realizing the full potential for the large-scale subsurface storage of CO₂ via mineralization

RESEARCH PLAN: A promising strategy to reduce anthropogenic CO₂ is to permanently mineralize carbon in the subsurface. To allow for the engineered enhancement of this process, GMCS is closing critical knowledge gaps by: (1) identifying the coupled chemo-hydro-mechanical processes leading to the formation of microcracking in the rock matrix; (2) delineating the transport mechanisms that deliver the CO₂ charge to reactive sites; (3) establishing computational and sensing technologies that integrate this knowledge into largescale characterization and prediction of the effectiveness of a host rock. We aim to evaluate, for a given CO₂ storage operation within a given rock mass, the evolution of the amount of carbon M(t) mineralized: $M(t) = \int_{\mathcal{X}} m(\mathbf{x}, t) \, dV(\mathbf{x})$

GMCS ... where geomechanics meets geochemistry in the subsurface

https://gmcs.umn.edu/

