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CCEI’ P tCCEI’s Partners

Consists ofConsists of
22 faculty 
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from 9 academic 
institutions
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’

the enabling science leading to improved or

CCEI’s Mission

the enabling science leading to improved or 
radically new heterogeneous catalytic technologies for 
viable and economic operation of biorefineries from 

i li ll l i bi f d kvarious lignocellulosic biomass feedstocks

the workforce needed to further develop andthe workforce needed to further develop and 
implement these new technologies

h l f i ll i l itechnology transfer strategically via multi-
institutional collaborations and joint ventures with 
industrial partners

www.efrc.udel.eduwww.efrc.udel.edu
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Major Research Goals

bi d/ it d i ti i t l blbiomass and/or its derivatives into valuable 
chemicals, fuels and electricity through a fundamental 
understanding of the chemistry and catalyst performanceg y y p

novel hierarchical multiscale materials with 
nanoscale resolution suitable for processing derivatives from 
complex, multiphase media of biomass to ensure efficient, 
highly selective and benign processes

l d i d h l dcatalyst design and technology advancement 
through novel theoretical and multiscale simulation 
platforms and cutting-edge characterization tools

www.efrc.udel.eduwww.efrc.udel.edu
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G d Ch llGrand Challenges
Lignocellulosic biomass decomposition (e.g., pyrolysis) leads to 

ki d th i lcoking and the process is slow
Complex feedstock renders fundamental studies difficult
Biomass and its derivatives are over-functionalized molecules

Selectivity is critical
Chemical transformations require fundamental understanding of 
chemistry and catalyst performance (currently lacking)chemistry and catalyst performance (currently lacking)

Processing of biomass derivatives occurs in a complex environment
Low volatility and thermal stability require solution chemistryy y q y

Typical supports (e.g., Al2O3, SiO2) dissolve in water
Acid-based chemistry (e.g., HCl) is environmentally harsh
M d l d i

www.efrc.udel.eduwww.efrc.udel.edu

Models do not exist
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Research Thrusts

Hierarchical 
Multiscale
Materials

Multiscale 
Modeling

Characterization 
Techniques

Crosscutting 
Research 

Thrust

Furans Biomass Degradation/ Direct Carbon FCs
Technological 

Platform

Reforming
HH22 g

Oil Upgrade
Platform

ChemicalsChemicals FuelsFuels ElectricityElectricity
CO+2H2/FT

Reaction Pathways, Kinetics, Structure-Property RelationshipsScience

Process Innovation  OptimizationProcessing
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Process Innovation, OptimizationProcessing
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CCEI First-Year Highlights

Novel catalyst for the single pot conversion ofNovel catalyst for the single pot conversion of 
glucose to HMF

Computational engine for model-based bimetallic 
catalyst discovery applied to reforming technologies

Defined surrogates of bio-oil

Molten metal electrolyte-based fuel cells for theMolten metal electrolyte based fuel cells for the 
direct conversion of carbon to electricity

www.efrc.udel.eduwww.efrc.udel.edu



Catalysis Center for Energy InnovationCatalysis Center for Energy InnovationCatalysis Center for Energy Innovation An EFRC funded by the U.S. Department of 
Energy Office of Basic Energy Sciences 

CCEI First-Year Highlights

Novel catalyst for the single pot conversion ofNovel catalyst for the single pot conversion of 
glucose to HMF

Computational engine for model-based bimetallic 
catalyst discovery applied to reforming technologies

Defined surrogates of bio-oil

Molten metal electrolyte-based fuel cells for theMolten metal electrolyte based fuel cells for the 
direct conversion of carbon to electricity

www.efrc.udel.eduwww.efrc.udel.edu



Catalysis Center for Energy InnovationCatalysis Center for Energy InnovationCatalysis Center for Energy Innovation An EFRC funded by the U.S. Department of 
Energy Office of Basic Energy Sciences 

Chemicals:  Objectives

Develop technologies for production of chemicals 
and hydrogen or syngas from biomass derivatives 
(e g  sugars  glycerol  ethylene glycol  etc )(e.g., sugars, glycerol, ethylene glycol, etc.)

Understand the reaction mechanisms

Design active, selective, stable, and inexpensive 
catalysts that will enable effective and selective y
transformation of oxygenates to desirable 
products

www.efrc.udel.eduwww.efrc.udel.edu



Catalysis Center for Energy InnovationCatalysis Center for Energy InnovationCatalysis Center for Energy Innovation An EFRC funded by the U.S. Department of 
Energy Office of Basic Energy Sciences 

Ch i l   S b th tChemicals:  Sub-thrusts
Furans: Selective transformation of sugars to value-added 
chemicals  while retaining or increasing the number of chemicals, while retaining or increasing the number of 
carbon atoms

e.g., isomerization of glucose to fructose; conversion of g g
sugars to valuable chemicals, such as HMF, EMF, etc. 
Selective deoxygenation(mainly C-O bond scission; e.g., 
dehydration) and possibly hydrogenationdehydration) and possibly hydrogenation
Acid and base catalytic functional groups

Reforming: H2 and syngas productionReforming: H2 and syngas production
Selective C-C bond scission (followed by 
dehydrogenation)

www.efrc.udel.eduwww.efrc.udel.edu

Metal catalysis for hydrogenation and reforming
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Biomass Contains a lot of Glucose
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Tin-Containing Zeolite Beta for Sugar 
Isomerizations in Water

by

Manuel Moliner, Yuriy Roman-Leshkov, Eranda
Nikolla & Mark DavisNikolla & Mark Davis
Chemical Engineering

California Institute of Technologygy
Pasadena, CA 91125

M. Moliner, Y. Roman-Leshkov, M.E. Davis, Tin-containing 
zeolites are highly active catalysts for the isomerization of 
glucose in water. Proc. Natl. Acad. Sci.,  Vol. 107 (2010) 

www.efrc.udel.eduwww.efrc.udel.edu
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Isomerization of Glucose to Fructose:Isomerization of Glucose to Fructose:
Intermediate Step to Fuels and Chemicals

Glucose isomerization is a crucial step in the efficient production of p p
valuable chemical intermediates, such as 5-hydroxymethylfurfural (HMF)

HYDROLYSIS ISOMERIZATION DEHYDRATION 

Starch

HMF
Glucose Fructose

HMF

Combination of 
enzymes or acid Enzymes

Acid 
treatment

h i i i l h l

Juben N. Chheda, George W. Huber, & James A. Dumesic, AngewandteChemie Int. Ed., 46 2007

treatment
treatment 

www.efrc.udel.eduwww.efrc.udel.edu

A heterogeneous isomerization catalyst that can easily integrate 
glucose isomerization with the transformations of starting polymers of 
sugars and of fructose into fuels intermediates is lacking
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Isomerization of Glucose into Fructose byy
Immobilized Enzymes

Isomerizationof glucose into fructose is the largest immobilized 
biocatalytic process worldwide for the production of high fructosebiocatalytic process worldwide for the production of high-fructose 
corn syrup (HFCS, 8 × 106 tons/year)

Reaction slightly endothermic (ΔH=3 kJ/mol) and reversible (Keq ~ 1 
t 298 K)

Equilibrium mixture of 42% (wt/wt) fructose, 50% (wt/wt) 
glucose, and 8% (wt/wt) other saccharides using 

at 298 K)

xyloseisomerase.
O
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Glucose (α-pyranose form) Fructose (α-furanose form)

Starch-Starke. 2002.54, 75 
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Isomerization of Glucose into Fructose by

Drawbacks

so e at o o G ucose to uctose by
Immobilized Enzymes

1) Pre-reaction purification processes to remove
impurities that inhibit enzyme activity

2)  Use of buffered solutions to maintain pH~7-8
(Na2CO3) and to activate the enzyme (MgSO4), 
requires post-reaction ion-exchangerequires post-reaction ion-exchange

3) Optimal operating temperature of 60ºC to maximize 
enzyme lifetimeenzyme lifetime

4) Periodic replacement of the enzyme due to 
i ibl  d ti ti

www.efrc.udel.eduwww.efrc.udel.edu

irreversible deactivation
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Non bio Glucose IsomerizationNon-bio Glucose Isomerization
Current non-biological catalysts involve:

C  lt  i  i i  li id  (Zh  t l  S i  316 (2007) 1597) Cr salts in ionic liquids (Zhao et al. Science, 316 (2007) 1597) 
SnCl4 in ionic liquids (Hu et al., Green Chem., 11 (2009) 
1746)
Ionic liquids alone (Binder and Raines, Proc. Natl Acad. Sci, 
107 (2010) 4516 
Mixed base (glucose to fructose with hydrotalcite)Mixed base (glucose to fructose with hydrotalcite)-
acid(fructose to HMF with Amberlyst-15) (Takagaki et al., 
Chem Commun., 2009, 6276)

h l h f i iNo heterogeneous catalysts that can function in aqueous 
solutions and no catalysts that can function at acidic 
conditions that would allow for “one-pot” couplings to 

www.efrc.udel.eduwww.efrc.udel.edu

conditions that would allow for one pot  couplings to 
other reactions (like fructose to HMF)



Catalysis Center for Energy InnovationCatalysis Center for Energy InnovationCatalysis Center for Energy Innovation An EFRC funded by the U.S. Department of 
Energy Office of Basic Energy Sciences 

Can Lewis Acid Centers in Zeolites Perform Can Lewis Acid Centers in Zeolites Perform 
Sugar Isomerizations in Pure Water?

Corma et al. have shown that Sn-Beta zeolites are highly active in
h d f l ( ) h b h d d

We hypothesized Sn Beta would 

the Meerwein–Ponndorf–Verley (MPV) reaction, whereby a hydride
transfer occurs from the hydroxyl group of an alcohol to the
carbonyl group of a ketone.(1)

O

R R1

OH

CH
R2 R3

OH

CH
R R1

O

C
R2 R3

+ +

Lewis acid
catalyst

We hypothesized Sn-Beta would 
also have strong interactions 
with the hydroxyl/carbonyl 
moieties that are present in 1 2 3 2 3 moieties that are present in 
aldoses, such as glucose, and 
thus be active in the 
isomerization reaction. If the 

H
C

O
Me

O

C

R1 R2

R R3
zeolite structure could be 
sufficiently hydrophobic, the 
reaction may also be possible 
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Me
in aqueous solvent.

(1) Corma, A., Domine, M.E., Nemeth, L., Valencia, S. J. Am. Chem. Soc., 2002, 124, 319
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Screening Materials of Different Pore SizeScreening Materials of Different Pore Size
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Kinetic Studies at Different Temperatures with Sn-BetaKinetic Studies at Different Temperatures with Sn Beta

REACTION
CONDITIONSCONDITIONS:

10% (wt ⁄ wt) glucose in 
water, and 1/50 
metal:glucose molar ratio metal:glucose molar ratio 

RESULTS: 

46% (wt/wt) glucose46% (wt/wt) glucose

31% (wt/wt) fructose

9% (wt/wt) mannose 

after 30 min and 12 min after 30 min and 12 min 
at 383 K and 413 K

www.efrc.udel.eduwww.efrc.udel.edu Glucose Fructose Mannose
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Results for the Isomerization of Glucose in Water
Reaction conditions:

10% (wt ⁄ wt) glucose in water, and 1/50 metal : glucose molar 
ratio  

Results for the Isomerization of Glucose in Water

ratio. 

A) The active sites for the isomerization reaction in Sn-Beta are Sn
atoms incorporated into the framework of the zeolite. Neither 

www.efrc.udel.eduwww.efrc.udel.edu

SnCl4 nor SnO2 showed isomerization activity.
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Results for the Isomerization of Glucose in WaterResults for the Isomerization of Glucose in Water

*Reaction conditions:

45% (wt ⁄ wt) glucose in water, and 1/225 metal : glucose molar ratio. 

B) Sn-Beta catalyst can be used with more concentrated glucose 
solutions like those employed in large-scale conversion processes.  
A product distribution of 46% (wt⁄wt) glucose, 29% (wt⁄wt) 
f t d 8% ( t⁄ t) bt i d ft ti

www.efrc.udel.eduwww.efrc.udel.edu

fructose, and 8% (wt⁄wt) mannose was obtained after reacting 
a 45 wt% glucose solution.
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Results for the Isomerization of Glucose in Water
Reaction conditions:

10% (wt ⁄ wt) glucose in water, and 1/50 metal:glucose molar 
ratio  

Results for the Isomerization of Glucose in Water

ratio. 

C) R k bl S B t i bl t f th i i tiC) Remarkably, Sn-Beta is able to perform the isomerization
reaction in a highly acidic environment. No differences in 
activity or product distribution were observed for reactions using 
Sn Beta in an acidic 10% (wt⁄wt) glucose solution (pH=2 HCl)

www.efrc.udel.eduwww.efrc.udel.edu

Sn-Beta in an acidic 10% (wt⁄wt) glucose solution (pH=2, HCl), 
when compared to the reaction performed without HCl.
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Catalyst Stability Studies:Catalyst Stability Studies:
Catalyst is Stable for Reuse Without Regeneration

Reaction conditions:Reaction conditions:

10% (wt ⁄ wt) glucose in water, 383 K, and 1/50 metal:glucose molar ratio. 

www.efrc.udel.eduwww.efrc.udel.edu
Filtration of solid performed at reaction temperature
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Schematics of the Glucose Isomerization Mechanisms
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Proposed Lewis acid mechanism

Davis and co-workers, in preparation
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Reaction Mechanism:  An Intramolecular Hydride Reaction Mechanism:  An Intramolecular Hydride 
Shift True Lewis Acid Catalysis in Water!
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Reaction Mechanism:  An Intramolecular Hydride
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hydride shift mechanism. 
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Proof-of-Concept Experiments Using

Working at low pH values opens up exciting opportunities to couple 

oo o Co cept pe e ts Us g
Sn-Beta in an Acidic Environment

g p p p g pp p
upstream and downstream acid-catalyzed reactions, e.g., hydrolysis or 
dehydration, with the glucose isomerization reaction without the need to 
use additional unit operations.

Hydrolysis Isomerization Dehydration 

Starch

Glucose Fructose HMF

www.efrc.udel.eduwww.efrc.udel.edu Davis and co-workers, in preparation
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Conversion of Glucose to HMF in “One Pot”
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Computations Complement Experimental WorkComputations Complement Experimental Work
Rational materials design requires a fundamental understanding of the 
reaction mechanism, the effect of solvent, and the catalysty
Computations can play an indispensable role in design
Multiscale modeling-methodology

Pick a reaction coordinate for each step in the mechanismPick a reaction coordinate for each step in the mechanism
Scan the reaction coordinate while averaging over configurations of the 
system
Configurations generated by QM/MM Molecular Dynamics

- Fructose is treated quantum mechanically (QM)
- For solvent, we use Molecular Mechanics force field (MM), ( )

Umbrella sampling to account for rare events (i.e., high barriers and 
infrequent transitions)
Calculate free energy change along the reaction coordinate

www.efrc.udel.eduwww.efrc.udel.edu

Calculate free energy change along the reaction coordinate

Caratzoulas and Vlachos, in preparation
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Dehydration MechanismDehydration Mechanism

Initialization by O2 protonation y p

O3 or O4 protonation for 1st

step are likely, but subsequent 
dehydration either improbabledehydration  either improbable 
(O3 case) or lead to by-
products (O4 case)

www.efrc.udel.eduwww.efrc.udel.edu

Rate limiting step is hydride 
transfer (7     8)
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C l i  Conclusions 
A large-pore zeolite that contains tin (Sn-Beta) is able to isomerize
glucose to fructose in aqueous media with high activity and selectivity

The same reactivity is achieved also when a high-concentrated glucose 
solution is used (45 wt% glucose)

Sn-Beta can be used for multiple cycles without regeneration

Sn-Beta is able to perform the isomerization reaction in highly acidic, 
h l d d d baqueous environments with equivalent activity and product distribution 

as in media without added acid

Sn-Beta is able to perform Lewis Acid mediated isomerization of p
glucose in pure water solvent or saturated NaCl solutions –
unprecedented for zeolite catalysis

“One-pot” synthesis of HMF from glucose with high yield is possible

www.efrc.udel.eduwww.efrc.udel.edu

One pot  synthesis of HMF from glucose with high yield is possible 
using Sn-Beta at low pH in a two phase system (second phase – THF)


