

An EFRC funded by the U.S. Department of Energy Office of Basic Energy Sciences

FIRST YEAR'S HIGHLIGHTS

Presented by Dion Vlachos, Director Lead Institution: University of Delaware

CCEI's Partners

Consists of 22 faculty researchers from 9 academic institutions

UD team: 9 faculty Non-UD team: 13 faculty from 8 affiliated institutions

3 NAE members, 1 NAS member, 11 named professors, 4 junior faculty

Catalysis Center for Energy Innovation

An EFRC funded by the U.S. Department of Energy Office of Basic Energy Sciences

Dion Vlachos, Director Univ. of Delaware

Scott Auerbach Univ. of Massachusetts

Mark Barteau Univ. of Delaware

Paul Dauenhauer Univ. of Massachusetts

Bruce Koel Lehigh University

George Huber

Massachusetts

Univ. of

Stan Sandler Univ. of Delaware

Mark Snyder Lehigh University

Aditya Bhan Univ. of Minnesota

Douglas Buttrey Univ. of Delaware

Jingguang Chen Univ. of Delaware

Brookhaven National Lab

Anatoly Frenkel

Raymond Gorte Univ. of Pennsylvania

Kelvin Lee Univ. of Delaware

Raul Lobo Univ. of Delaware

Phillip Westmoreland

Mark Davis California Institute

Doug Doren Univ. of Delaware

Jochen Lauterbach Univ. of Delaware

John Vohs Univ. of Pennsylvania

Michael Tsapatsis

Univ. of Minnesota

Hai Wang Univ. of Southern California

CCEI's Mission

Develop the enabling science leading to improved or radically new <u>heterogeneous catalytic technologies</u> for viable and economic operation of biorefineries from various <u>lignocellulosic biomass feedstocks</u>

Educate the workforce needed to further develop and implement these new technologies

Pursue technology transfer strategically via multiinstitutional collaborations and joint ventures with industrial partners

Major Research Goals

Transform biomass and/or its derivatives into valuable chemicals, fuels and electricity through a fundamental understanding of the chemistry and catalyst performance

Design novel hierarchical multiscale materials with nanoscale resolution suitable for processing derivatives from complex, multiphase media of biomass to ensure efficient, highly selective and benign processes

Promote catalyst design and technology advancement through novel theoretical and multiscale simulation platforms and cutting-edge characterization tools

Grand Challenges

- Lignocellulosic biomass decomposition (e.g., pyrolysis) leads to coking and the process is slow
- Complex feedstock renders fundamental studies difficult
- Biomass and its derivatives are over-functionalized molecules
 - Selectivity is critical
 - Chemical transformations require fundamental understanding of chemistry and catalyst performance (currently lacking)
- Processing of biomass derivatives occurs in a complex environment
 - Low volatility and thermal stability require *solution chemistry* Typical supports (e.g., Al₂O₃, SiO₂) dissolve in water
 Acid-based chemistry (e.g., HCl) is environmentally harsh
 Models do not exist

Research Thrusts

CCEI First-Year Highlights

- Novel catalyst for the single pot conversion of glucose to HMF
- Computational engine for model-based bimetallic catalyst discovery applied to reforming technologies
- Defined surrogates of bio-oil
- Molten metal electrolyte-based fuel cells for the direct conversion of carbon to electricity

CCEI First-Year Highlights

- Novel catalyst for the single pot conversion of glucose to HMF
- Computational engine for model-based bimetallic catalyst discovery applied to reforming technologies
- Defined surrogates of bio-oil
- Molten metal electrolyte-based fuel cells for the direct conversion of carbon to electricity

Chemicals: Objectives

- Develop technologies for production of chemicals and hydrogen or syngas from biomass derivatives (e.g., sugars, glycerol, ethylene glycol, etc.)
- Understand the reaction mechanisms
- Design active, selective, stable, and inexpensive catalysts that will enable effective and selective transformation of oxygenates to desirable products

Chemicals: Sub-thrusts

- Furans: Selective transformation of sugars to value-added chemicals, while retaining or increasing the number of carbon atoms
 - e.g., isomerization of glucose to fructose; conversion of sugars to valuable chemicals, such as HMF, EMF, etc.
 - Selective deoxygenation(mainly C-O bond scission; e.g., dehydration) and possibly hydrogenation
 - Acid and base catalytic functional groups
- **Reforming:** H₂ and syngas production
 - Selective C-C bond scission (followed by dehydrogenation)
 - Metal catalysis for hydrogenation and reforming

Biomass Contains a lot of Glucose

Tin-Containing Zeolite Beta for Sugar Isomerizations in Water

by Manuel Moliner, Yuriy Roman-Leshkov, Eranda Nikolla & Mark Davis Chemical Engineering California Institute of Technology Pasadena, CA 91125

M. Moliner, Y. Roman-Leshkov, M.E. Davis, Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc. Natl. Acad. Sci., Vol. 107 (2010) 6164-6168.

Isomerization of Glucose to Fructose: Intermediate Step to Fuels and Chemicals

Glucose isomerization is a crucial step in the efficient **production** of valuable **chemical intermediates**, such as 5-hydroxymethylfurfural (HMF)

A heterogeneous isomerization catalyst that can easily integrate glucose isomerization with the transformations of starting polymers of sugars and of fructose into fuels intermediates is lacking

Isomerization of Glucose into Fructose by Immobilized Enzymes

- Isomerization of glucose into fructose is the largest immobilized biocatalytic process worldwide for the production of high-fructose corn syrup (HFCS, 8 × 10⁶ tons/year)
- Reaction slightly endothermic (ΔH=3 kJ/mol) and reversible (Keq ~ 1 at 298 K)
- Equilibrium mixture of 42% (wt/wt) fructose, 50% (wt/wt) glucose, and 8% (wt/wt) other saccharides using xyloseisomerase.

Isomerization of Glucose into Fructose by Immobilized Enzymes Drawbacks

- 1) Pre-reaction purification processes to remove impurities that inhibit enzyme activity
- Use of buffered solutions to maintain pH~7-8 (Na₂CO₃) and to activate the enzyme (MgSO₄), requires post-reaction ion-exchange
- 3) Optimal operating temperature of 60°C to maximize enzyme lifetime
- 4) Periodic replacement of the enzyme due to irreversible deactivation

Non-bio Glucose Isomerization Current non-biological catalysts involve:

- Cr salts in ionic liquids (Zhao et al. Science, 316 (2007) 1597)
- SnCl₄ in ionic liquids (Hu et al., Green Chem., 11 (2009) 1746)
- Ionic liquids alone (Binder and Raines, Proc. Natl Acad. Sci, 107 (2010) 4516
- Mixed base (glucose to fructose with hydrotalcite)acid(fructose to HMF with Amberlyst-15) (Takagaki et al., Chem Commun., 2009, 6276)

No heterogeneous catalysts that can function in aqueous solutions and no catalysts that can function at acidic conditions that would allow for "one-pot" couplings to other reactions (like fructose to HMF)

Can Lewis Acid Centers in Zeolites Perform Sugar Isomerizations in Pure Water?

Corma et al. have shown that Sn-Beta zeolites are highly active in the Meerwein–Ponndorf–Verley (MPV) reaction, whereby a hydride transfer occurs from the hydroxyl group of an alcohol to the carbonyl group of a ketone.⁽¹⁾

We hypothesized Sn-Beta would also have strong interactions with the hydroxyl/carbonyl moieties that are present in aldoses, such as glucose, and thus be active in the isomerization reaction. If the zeolite structure could be sufficiently hydrophobic, the reaction may also be possible in aqueous solvent.

(1) Corma, A., Domine, M.E., Nemeth, L., Valencia, S. J. Am. Chem. Soc., 2002, 124, 319

Screening Materials of Different Pore Size

ENERGY

The

Kinetic Studies at Different Temperatures with Sn-Beta

REACTION **CONDITIONS:**

10% (wt/wt) glucose in water, and 1/50 metal:glucose molar ratio

RESULTS:

46% (wt/wt) glucose 31% (wt/wt) fructose 9% (wt/wt) mannose after 30 min and 12 min at 383 K and 413 K

Fructose

Mannose

Results for the Isomerization of Glucose in Water

	Reaction conditions: 10% (wt/wt) glucose in water, and 1/50 metal : glucose molar ratio.									
	L				Yield (wt/wt%)					
Entry	Catalyst	Temperature (K)	Time (min)	Glucose	Fructose	Mannose	Total saccharides			
1	None	383	90	97	0	0	97			
2	None	413	90	95	1	0	95			
3	HCl (pH = 2)	383	90	98	0	0	98			
4	Sn-Beta	383	30	45	32	9	86			
5	Sn-Beta	413	12	46	30	9	85			
6	Sn-Beta/HCl (pH = 2)	383	30	44	33	9	86			
7	Ti-Beta	383	90	74	14	5†	93			
8	SnO ₂	383	60	96	0	0	96			
9	SnCl₄ · 5H₂O	383	60	90	0	0	90			
10*	Sn-Beta	383	60	46	29	8	83			

A) The active sites for the isomerization reaction in Sn-Beta are Sn atoms incorporated into the framework of the zeolite. Neither SnCl₄ nor SnO₂ showed isomerization activity.

Results for the Isomerization of Glucose in Water

*Reaction conditions:

45% (wt/wt) glucose in water, and 1/225 metal : glucose molar ratio.

				Yield (wt/wt%)					
Entry	Catalyst	Temperature (K)	Time (min)	Glucose	Fructose	Mannose	Total saccharides		
1	None	383	90	97	0	0	97		
2	None	413	90	95	1	0	95		
3	HCl (pH = 2)	383	90	98	0	0	98		
4	Sn-Beta	383	30	45	32	9	86		
5	Sn-Beta	413	12	46	30	9	85		
6	Sn-Beta/HCl (pH = 2)	383	30	44	33	9	86		
7	Ti-Beta	383	90	74	14	5†	93		
8	SnO ₂	383	60	96	0	0	96		
9	SnCl ₄ · 5H ₂ O	383	60	90	0	0	90		
10*	Sn-Beta	383	60	46	29	8	83		

B) Sn-Beta catalyst can be used with more concentrated glucose solutions like those employed in large-scale conversion processes. A product distribution of 46% (wt/wt) glucose, 29% (wt/wt) fructose, and 8% (wt/wt) mannose was obtained after reacting a 45 wt% glucose solution.

Results for the Isomerization of Glucose in Water

					Yield (wt/wt%)				
Entry	Catalyst	Temperature (K)	Time (min)	Glucose	Fructose	Mannose	Total saccharides		
1	None	383	90	97	0	0	97		
2	None	413	90	95	1	0	95		
3	HCI (pH = 2)	383	90	98	0	0	98		
4	Sn-Beta	383	30	45	32	9	86		
5	Sn-Beta	413	12	46	30	9	85		
6	Sn-Beta/HCl ($pH = 2$)	383	30	44	33	9	86		
7	Ti-Beta	383	90	74	14	5 ⁺	93		
8	SnO ₂	383	60	96	0	0	96		
9	SnCl ₄ · 5H ₂ O	383	60	90	0	0	90		
10*	Sn-Beta	383	60	46	29	8	83		

C) Remarkably, Sn-Beta is able to perform the isomerization reaction in a highly acidic environment. No differences in activity or product distribution were observed for reactions using Sn-Beta in an acidic 10% (wt/wt) glucose solution (pH=2, HCl), when compared to the reaction performed without HCl.

Catalyst Stability Studies: Catalyst is Stable for Reuse Without Regeneration

Reaction conditions:

10% (wt/wt) glucose in water, 383 K, and 1/50 metal:glucose molar ratio.

			Yield (wt/wt%)							
Fata	Catalyst	Time	Chucoso	Fructoro	Mannasa					
Entry	Catalyst	(min)	Glucose	Fructose	wannose					
	Study 1: Catalyst reusability									
1	Sn-Beta Cycle 1	30	41	32	9					
2	Sn-Beta Cycle 2	30	45	30	8					
3	Sn-Beta Cycle 3	30	47	29	7					
4	Sn-Beta Cycle 4 (calcination)	30	46	30	8					
	Study 2: Testing for leached species									
5a	Sn-Beta	12	57	27	6					
5b	None (catalyst removed by filtration)	30	57	27	6					

Filtration of solid performed at reaction temperature

ENERG

Schematics of the Glucose Isomerization Mechanisms

Proposed Lewis acid mechanism

www.efrc.udel.edu Davis and co-workers, in preparation

ENERGY

Tit

Reaction Mechanism: An Intramolecular Hydride Shift True Lewis Acid Catalysis in Water!

Catalysis Center for Energy Innovation

Reaction Mechanism: An Intramolecular Hydride True Lewis Acid Catalysis in Water!

Proof-of-Concept Experiments Using Sn-Beta in an Acidic Environment

Working at **low pH values** opens up exciting opportunities to **couple upstream and downstream acid-catalyzed reactions**, e.g., hydrolysis or dehydration, with the glucose isomerization reaction **without the need to use additional unit operations**.

				Yield (wt/wt%)				
Entry	Feed solution	Catalyst	Time (min)	Starch	Glucose	Fructose	Mannose	HMF
1a	10 wt% Starch	HCI (pH = 1)	90	13	87	0	0	0
1b	Postreaction mixture of entry 1a	Sn-Beta+HCl (pH = 1)	12	13	39	23	7	0
2	10 wt% Glucose	HCI (pH = 1)	120	-	91	0	0	1
3	10 wt% Fructose	HCI (pH = 1)	120	-	0	15	0	24
4	10 wt% Glucose	Sn-Beta+HCl (pH = 1)	120	-	28	18	2	11

Davis and co-workers, in preparation

Conversion of Glucose to HMF in "One-Pot"

Computations Complement Experimental Work

- Rational materials design requires a fundamental understanding of the reaction mechanism, the effect of solvent, and the catalyst
- Computations can play an indispensable role in design
- Multiscale modeling-methodology
 - Pick a reaction coordinate for each step in the mechanism
 - Scan the reaction coordinate while averaging over configurations of the system
 - Configurations generated by QM/MM Molecular Dynamics
 - Fructose is treated quantum mechanically (QM)
 - For solvent, we use Molecular Mechanics force field (MM)
 - Umbrella sampling to account for rare events (i.e., high barriers and infrequent transitions)
 - Calculate free energy change along the reaction coordinate

An EFRC funded by the U.S. Department of Energy Office of Basic Energy Sciences

Dehydration Mechanism

- Initialization by O2 protonation
- O3 or O4 protonation for 1st step are likely, but subsequent dehydration either improbable (O3 case) or lead to byproducts (O4 case)
- ➤ Rate limiting step is hydride transfer (7→ 8)

Conclusions

- A large-pore zeolite that contains tin (Sn-Beta) is able to isomerize glucose to fructose in aqueous media with high activity and selectivity
- The same reactivity is achieved also when a high-concentrated glucose solution is used (45 wt% glucose)
- > Sn-Beta can be used for multiple cycles without regeneration
- Sn-Beta is able to perform the isomerization reaction in highly acidic, aqueous environments with equivalent activity and product distribution as in media without added acid
- Sn-Beta is able to perform Lewis Acid mediated isomerization of glucose in pure water solvent or saturated NaCl solutions – unprecedented for zeolite catalysis
- "One-pot" synthesis of HMF from glucose with high yield is possible using Sn-Beta at low pH in a two phase system (second phase – THF)

