Intense Pulsed Neutron Source (IPNS) Response to BESAC Subpanel Review

Bruce Brown Argonne National Laboratory BESAC Meeting Feb, 26, 2001

www.pns.anl.gov

The IPNS Proposal

IPNS is committed to broadening and increasing the user community in preparation for the SNS

We presented a 4-part plan (\$9M/yr) to the subpanel that is the first recommendation in their report

- Increase operation to 30 weeks/yr
- Initiate a maintenance and upgrade plan for the accelerator system that will guarantee at least 10 years of reliable operation
- Significantly upgrade all scattering instruments
- Greatly increase the ANL research program-coupled with instrument enhancements

Budget

l ,
\$3.1M/yr
\$1.0M/yr
\$2.5M/yr
<u>\$2.6M/yr</u> \$9.2M/yr

In addition, IPNS has submitted a proposal to DOE for \$2.5M/yr to enhance university research in the area of neutron scattering. This is our response to the subpanel's third recommendation and includes:

- Joint faculty appointments
- Faculty leaves
- Post docs
- Graduate students

Additional Operation

Increasing operation from 25 to 30 weeks/yr includes

- Additional accelerator staff
- Increases in scientific support for the user program
- Electricity, M&S, spare parts

It has the negative effect of decreasing the time available for maintenance, which requires additional staff increases

IPNS ACCELERATOR ISSUES NEED TO ENSURE AT LEAST 10 YEARS OF OPERATION

- Details in white paper in section 9 "Equipping the Accelerator for the Next Ten Years".
- The linac is 40 years old. The rapid cycling synchrotron (RCS), built in 1979, has delivered 6 billion pulses, more than any p+ synchrotron in the world except ISIS.
- Reliability has been 95%, but some systems must be replaced or upgraded to maintain this.
- Accelerator replacement value is ~\$80M, but for many years, only ~\$140K/yr of equipment funds have been available for all accelerator activities.
- The main operations issue is that there are no replacement parts available for many of the old systems and our spares won't last forever.
- ISIS has begun a similar project, ~\$18M + 29 staff-years over 7 years, including a shutdown of 6 months starting December 2001.
- Along with increased operating hours with high reliability, we plan to increase beam current by 30%, using the second harmonic on the RF.

(Assumes ~\$1M/yr increase in accelerator equipment funds relative to FY00)

(Assumes \$2.5M/yr increase in equipment budget relative to FY00)

Detectors, choppers and optics

- SCD and SAND area detectors
- LPSD's SEPD and GLAD
- LRMECS dets and SAD area detector
- HRMECS chopper
- Guides QENS, SEPD

New instruments, major upgrades

- Spin-Echo SANS
- Magnetism Diffractometer (MiDaS)
- Upgraded GPPD

DAS, process control upgrades

- HRMECS
- SCD, SAND, HIPD, POSYII
- LRMECS, SEPD, QENS, CHEX
- SAD, GPPD, GLAD, POSYI

Increased data rates

- Higher throughput
- Time resolved experiments, smaller samples

New scientific capabilities

- Magnetic and diffuse scattering
- Single crystal inelastic scattering
- Structure and dynamics of biological and polymeric systems
- Complex crystal structures

Anticipation of SNS needs

- Prototype instruments (magnetism diffractometer)
- New instrument concepts (resolution matched powder diffraction, multi-detector single crystal)
- Components choppers, guides, polarization
- New moderator concepts

Drivers: User needs, relevance to SNS, ANL research programs

Data noto gaing

Data rate gams		
Instrument	Present Plan	To-date
GPPD	5	1.4
SEPD	9	-
GLAD	2	-
HIPD/MiDaS	5 12	-
SCD	6	-
LRMECS	6	-
HRMECS	2	1.5
QENS	32	10.0
SAD	9	-
SAND	3	1.5

Recommendations

Ward Plummer

IPNS Instruments

Now -- useful research tools

World-Class Science

Recommendation \rightarrow **competitive**

BESAC Subpanel Review of IPNS and LANSCE/Lujan Center

Increase Research Programs

The purpose is to broaden and increase the user community for SNS via:

- Opening new areas of research
- Involving new people
- Create careers in neutron scattering

Mechanisms:

- New MSD research programs (+\$500K)
- Involve university researchers (+\$100K) Visiting professors Joint post docs Research students
- New areas of research will be closely coupled with the IPNS instrument upgrades

Evalution Procedure & User Community

BESAC Subpanel Review of IPNS and LANSCE/Lujan Center

Potential New Research Programs

- Understanding quantum critical phenomena as the fundamental physics underlying a broad range of novel physical behavior.
- Structure and dynamics of soft biological materials, including the extension of isotope substitution methods to carbon isotopes.
- Grazing-incidence small angle scattering from working single biological membranes using spin-echo small angle scattering.
- Structure-function relationships in large-cell structures.
- Magnetic structure of soft and hard magnetic composites, with the object of understanding and optimizing their performance by probing the behavior of nanoscopic hysteresis phenomena.
- Magnetism in complex bulk systems with dilute magnetic constituents.
- Short-length-scale self-organized charge, spin, or structural ordering that controls the macroscopic behavior in bulk systems (e.g., advanced ferroelectrics.)

ANL, and IPNS in particular, is responsible for the development of a "best-in-class" instrumentation suite for the Spallation Neutron Source (SNS).

This relationship is, and will continue to be, mutually advantageous, and offers many exciting new opportunities.

IPNS-SNS Synergy

Advantages to SNS:

- Access to neutron scattering scientific and technical expertise for providing instrumentation ideas and training SNS staff
- Access to pulsed spallation neutron source facility for testing of prototypes and for scientific research

Advantages to IPNS:

- Infusion of new ideas
- SNS development activities can lead to new IPNS capabilities

Advantages to both:

- Skilled people available to "jump-start" solutions to IPNS enhancement or troubleshooting needs. Such interactions also provide valuable hands-on experience for SNS staff.
- Shared staffing where appropriate

LWTS

- LWTS is proposed for funding by the NSF, but it is possible only because SNS is already being constructed
- ANL-IPNS/MSD is responsible for developing the concepts for the target station and the instruments for LWTS
 - Target station concept driven by science/instrument needs
 - Instrument concepts utilizing the unique properties of LWTS
 - Science case being prepared by the LWTS user community
- ANL resources for LWTS development
 - Scientific and technical expertise
 - Operating facility for development
 - SNS instrument development team

Cold Neutron Chopper Spectrometer

Penn State MIT

Berkley Michigan Missouri

University-National Lab Collaboration

NIST

IPNS

Two Phase Project

•Phase 1 - IPNS

Modified Incident Flight Path
Horizontal Final Flight Path
Operational in three years
Phase 2 – SNS

•Full Spectrometer

•True Day 1 instrument

Advantages •Commissioning and testing in advance of SNS •Development of analysis techniques •High Involvement of Academic Community •Development of new users in advance of SNS

Status

IPNS is ready to move on the \$9M/yr plan that will broaden and increase the user community in preparation for the SNS

MSD received an additional \$600K in Jan. and have begun their program

But, the present IPNS budget will permit no enhancements in FY2001

	Operations Budget	Equipment Budget
FY2000-		
FY2001	+3.9%	-2.0%
5yrs. since	+17.9%	-7.1%
SFI began	(+ 3.3%/yr.)	
IPNS		

Summary

Subpanel's findings are:

- "It is imperative ... to assure that a sufficiently large and well-trained user community exists when SNS is fully operational in ~2008"
- "It is essential to substantially increase the user community ...(which) will not occur without an active program"

IPNS has put forth a cost-effective program to meet these goals, which should be started immediately to maximize its impact.

