BESAC Meeting

July 27, 2023

CENTER for FYBRID APPROACHES in SOLAR ENERGY to LIQUID FUELS

CHASE

FIVE-YEAR RESEARCH GOAL

To develop a fundamental molecular level understanding of how *hybrid photoelectrodes, comprised of molecular catalysts with tailored microenvironments* integrated with semiconducting light absorbers, couple single photon absorptions to the multi-electron/multi-proton chemical transformations necessary to generate liquid solar fuels

semiconductors absorb light and separate charge

Yale

Liquid fuels can be generated using the small molecules found in air as the only chemical feedstocks and sunlight as the only energy source.

Liquid fuels can be generated using the small molecules found in air as the only chemical feedstocks and sunlight as the only energy source.

> The challenge of practical liquid solar fuel production can only be met through the cooperative interactions of molecules and materials.

Confidential Information

Confidential Information

Confidential

Information

Key, defining features

- Catalysis occurs remote to the light absorbing semiconducting hybrid photoelectrode.
- Hydride reagents mediate catalysis and are subsequently regenerated at an illuminated hybrid photoelectrode.

Cascade catalysis occurs on a secondary support, driven by renewable hydride donors that are regenerated at a semiconductor surface.

$CO_2 \rightarrow CO \rightarrow MeOH$ Cascade Mechanistic Studies

National Laboratory

of NORTH CAROLINA

at CHAPEL HILL

Science

Information

UNIVERSITY

UNIVERSITY

Mechanistic Studies

Step 1 : Formyl

- Quantitative reaction
- KIE = 72
- ET-HAT Mechanism

Cascade Reactions and Mechanistic Studies

Cascade reactions on a single hybrid photoelectrode using integrated catalysts to reduce CO_2 to a liquid fuel.

Key, defining features

- Each catalyst in the cascade is integrated into a single hybrid photoelectrode
- The illuminated semiconductor transfers electrons directly to the molecular catalysts.

CoPc Integration with p-Type Silicon

Solar to Methanol Performance

Yal

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

EMORY UNIVERSITY

Methanol FE = 8%

Silicon Pillar CoPc Photoelectrode

Manuscript in preparation

14

Silicon Pillar CoPc Photoelectrode

- FE: 8% → 20%
- j_{total} : 2.5 \rightarrow 16 mA/cm²
- Stable operation for 2 h

Acknowledgement to the Whole CHASE Team!

Thrust Co-Leaders

Jim Cahoon

Thrust Co-Leader

Mehmed Ertem Zahra Fakhraai

Paul Maggard PI, NCSU

Deputy Director

Calev Allen

R. Penn

Hailiang Wang

PI, Yale

Yale

Karen Goldberg Thrust Co-Leader & IC

Jim Maver Thrust Co-Leader

Jerry Manbeck

Brookhaven

National Laboratory

Joanna Atkin PI, UNC

Penn

Rene Lopez PI, UNC

Greg Parsons PI, NCSU

NC STATE

UNIVERSITY


```
Dmitry Polyansky
```

0 0

UNIVERSITY

Principal Investigators

Confidential Information

Alex Miller Thrust Co-Leader

Tom Mallouk

Thrust Co-Leader

TC: Theory/Modeling TC: Surface kinetics

Jessica Anna

Javier Concepcion

Yosuke Kanai

Jose Rodriguez

IC = Institution Coordinator

> Meyer – UNC Holland - Yale

Goldberg – Penn

Lian – Emory

Phil Castellano IC & PI, NCSU

Eric Stach

Tim Lian

TC: Catalysts & IC TC: SC Synth & Surf

Center for Hybrid Approaches in Solar Energy to Liquid Fuels

This work was supported as part of the Center for Hybrid Approaches in Solar Energy to Liquid Fuels (CHASE), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0021173

Yale

