Center for Integrated Nanotechnologies (CINT)

We utilize modeling, synthesis, characterization, and nanofabrication to create advanced materials for integration into technologies impacting national priorities

leff Nelson Director

We have a vibrant and growing user community

Scientific Thrusts

- In-Situ Characterization and Nanomechanics
- Nanophotonics and Optical Nanomaterials
- Quantum Materials Systems
- Soft, Biological, and Composite Nanomaterials

Thrusts align with strengths of host laboratories, amplifying capabilities and expertise for our users

Scientific Impact Drives User Community Engagement – "Top Three"

Metamaterials / Metasurfaces Photonics@ CINT

.S. DEPARTMENT OF

Quantum metasurfaces

Metasurfaces, incoherent emission control

Science, 2022

Quantum Information Sciences @ CINT

Nanoimplantation of Quantum Defects

Nature, **2020**

APL, **2022**

Office of

Science

Nature Commun., **2021**

Precision Single Photon QDs

Melecular duranica

Molecular dynamics for soft materials properties

Neural network models for chemical processes Electronic structure for exotic states of quantum materials

Nature Materials, 2018

Computational Materials Science @ CINT

Nature Commun.. 2021

Nature Materials, 2023

NSRC Working Group on Microelectronics

Collective resource to accelerate CHIPS and Science Act innovation and economic impact

Science

- Metrology, Modeling and AI for 3D Heterogeneous Integration
- Materials Synthesis
- Integration of Non-Conventional Materials and Device Architectures
- Tools for Next-Generation Lithographic Patterning
- Advanced In-Situ / Operando Characterization

Combined Capabilities, Expertise, and Facilities

- 40,000 sq. ft. of flexible, fast-turn cleanrooms for nanofabrication and integration of early stage materials, devices and architectures
- More than 100 materials synthesis laboratories for inorganic, organics, and hybrid composites
- More than 30 unique measurement capabilities for metrology, property, performance, and in-situ / operando studies
- Atomic to microscale modeling tools, including AI/ML for Lab to Fab correlations
- Portal to other DOE Facilities and User Facilities

CINT serves a diverse, equitable, and inclusive user community

113 (38%) of the 301 US Academic projects are from MSIs

U.S. DEPARTMENT OF ENERGY Office of Science

Strengths of the user community

- Strong regional support of MSI users
- Sustained support for existing users
- Healthy growth of new users
- Balance of user projects from academia, government, and industry
- Regional small business well represented in user community

To strengthen our user community, we need to-

- Increase institutional growth
- Expand access for HBCUs
- Grow large-industry user base (contact sport)
- Improve remote access of data & research equipment

CINT Initiatives

- Investing operational funds and host laboratory funding opportunities to expand access to data & equipment
- Engaging broadly in host laboratory DEI efforts
- Outreach at technology-focused conferences and events
- Engaging with regional state and local economic development groups- Chips and Science Act is an excellent opportunity
- Sponsor undergraduate and graduate summer & year-round interns through internal host laboratory LDRD programs
- Increasing outreach and visibility through Linkedin and other social media platforms

CINT's NSRC recapitalization investments will position our user community to advance microelectronics, quantum, and clean energy S&T

Microelectronics, quantum devices, and clean energy science & technologies rely on the ability to -

- synthesize advanced and complex thin films,
- fabricate those films to demonstrate new science and innovative technologies

APL, **2023**

Diamond nanobeams

Science, 2016

Integration of detachable diamond-based quantum sensors

U.S. DEPARTMENT OF Office of Science

Courtesy Keshab Sapkota, CINT, **2023**

Next-Generation Capabilities for Nanoscience

- Expanding the Limits of Nanofabrication
- Accelerating Nanoscale Materials Discovery and Design
- Decoding Nanoscale Dynamics and Heterogeneity

Advanced III-V Heteroepitaxy

Advanced Etch and Lithography

Dual Ion Beam Sputter System

Value proposition to the user community

- Provides users access to difficult-to-synthesize materials and heterostructures
- Benefits users who work to develop new materials but cannot fabricate them at their home institutions