National QIS Research Centers: Mission and Activities

BESAC Meeting December 6, 2021

NQISRC Directors David Awschalom - Q-NEXT David Dean - QSC Anna Grassellino - SQMS Andrew Houck - C²QA Irfan Siddiqi - QSA

<u>Slide Coordinator</u>: Christopher Spitzer, Assoc. Dir. for Ops, QSA

QUANTUM[™] SCIENCE CENTER

Catalyzing the Quantum Ecosystem

NQISRC Overview

The first large-scale QIS effort that crosses the technical breadth of Office of Science.

- Effort established in 2020, under the National Quantum Initiative Act passed in 2018.
- Five Centers launched in Fall 2020, each led by a National Laboratory and representing a partnership of labs, universities, and industry.
 - ✤ Total funding: \$575 million over 5 years, subject to appropriations
- The Centers take distinct yet complementary approaches to tackle major cross-cutting challenges in areas of significant national impact.
- Significant leveraging of DOE investments in user facilities and other resources.
- The Centers play a central role in stewardship of the QIS ecosystem, including broad industry engagement and support for the development of a diverse and inclusive workforce.
- Coordination across the Centers is maintained by an Executive Council.
- 2 | National QIS Research Centers

Advanced materials for quantum technologies

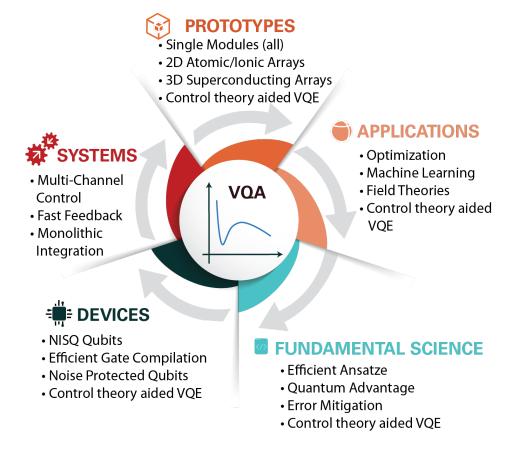
Entanglement distribution networks

High-performance instruments and sensors

Full-stack quantum computation

The NQISRC research portfolio tiles the space of emerging quantum technologies.

Integrating Across the QIS Innovation Chain


Fundamental Science is basic research that underpins discoveries and exploration to deliver long-term innovation.

Devices research applies science to build new paradigms and methods for next-gen quantum technologies.

Systems integrate solutions into practical settings that apply to US economic competitiveness and security.

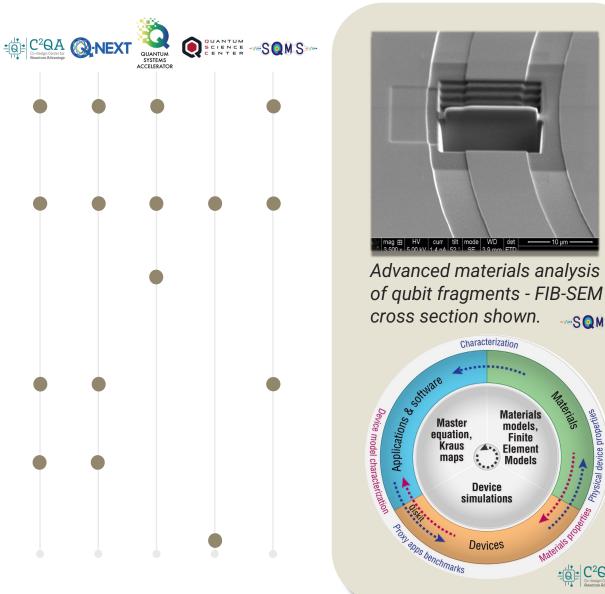
Prototypes offer a first look at use-driven development with feedback to improved solution development.

Applications represent solutions of best practice that accelerate the impact of quantum technology.

Co-design cycle for variational quantum algorithms

Center-Scale Efforts to Tackle Key QIS Challenges

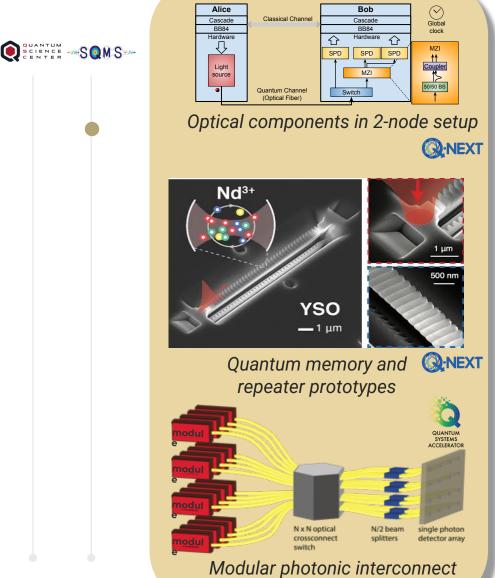
C ² QA Co-design Center for Quantum Advantage	Co-design Center for Quantum Advantage Lead Lab: BNL	C ² QA aims to overcome the limitations of NISQ computer systems to achieve quantum advantage for scientific applications using superconducting microwave circuits, and hybrid superconducting/optical devices for quantum communication.
	Next Generation Quantum Science and Engineering Lead Lab: ANL	Q-NEXT focuses on manipulating and distributing entangled states of matter. Its mission is to deliver quantum interconnects, communications links, networks of sensors, simulation testbeds, and a national resource for pristine materials for devices.
Quantum Systems Accelerator	Quantum Systems Accelerator Lead Lab: LBNL	QSA pairs advanced quantum prototypes — based on neutral atoms, trapped ions, and superconducting circuits — with algorithms specifically designed for imperfect hardware to demonstrate optimal applications computing, materials science, and fundamental physics.
QUANTUM SCIENCE CENTER	Quantum Science Center Lead Lab: ORNL	QSC designs materials that enable topological quantum computing; implementing new quantum sensors to characterize topological states and detect dark matter; and designing quantum algorithms and simulations of quantum materials, chemistry, and quantum field theories.
-vv-SQNSvv-	Superconducting Quantum Materials and Systems Center Lead Lab: FNAL	SQMS seeks transformational advances in the major cross-cutting challenge of understanding and eliminating the decoherence mechanisms in superconducting 2D and 3D devices, with the goal of enabling construction and deployment of superior systems for computing and sensing.


Advanced Materials for Quantum Tech

Characterization

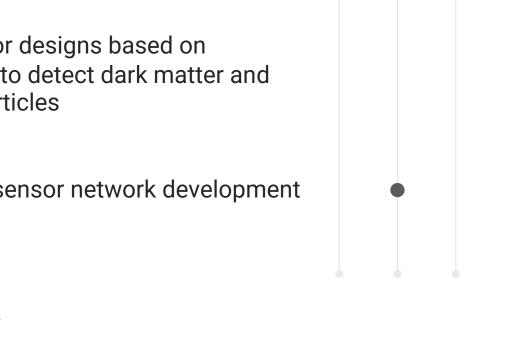
- Materials discovery programs to mitigate the key limiting mechanisms of coherence in semiconductor gubits, and superconducting radio-frequency cavities and qubits
- Device modeling, characterization, and simulation, targeting > 10x performance improvement
- Systems-level materials optimization for high-coherence devices

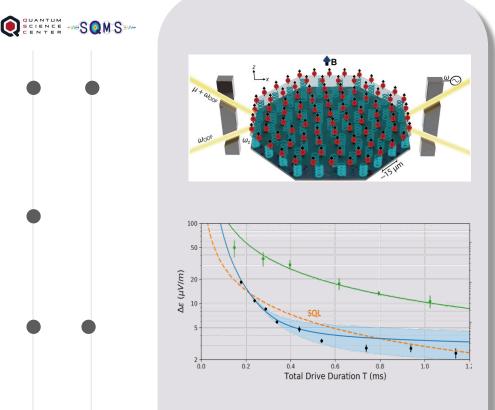
Synthesis


- Quantum facilities to provide a source of semiconductor and superconducting materials
- Guidelines for designing and screening new quantum defects and defect-host systems
- New topological materials to protect quantum information

¦¦ai C²Q/

Entanglement Distribution Networks

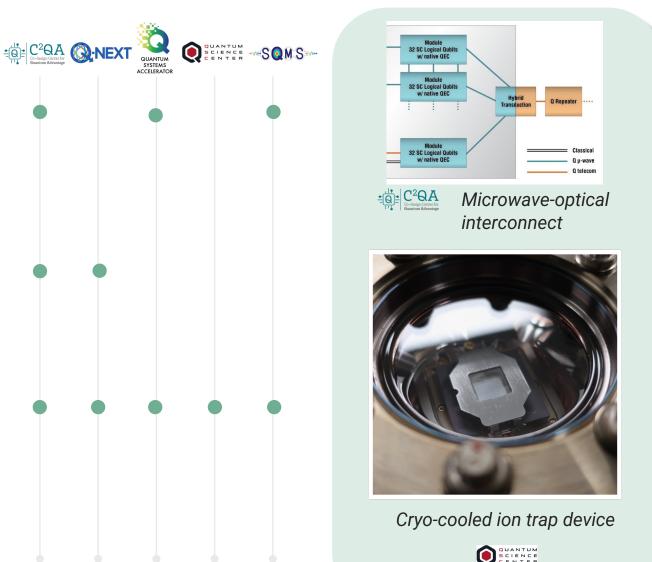

- Superconducting circuit QED memories and clusters linked by microwave-to-optical quantum communication
- Quantum interconnects development and communication links demonstration
- Comprehensive network simulator for longdistance quantum interconnects, memories, and repeater nodes.
- Modular photonics for ion trap computing interconnects



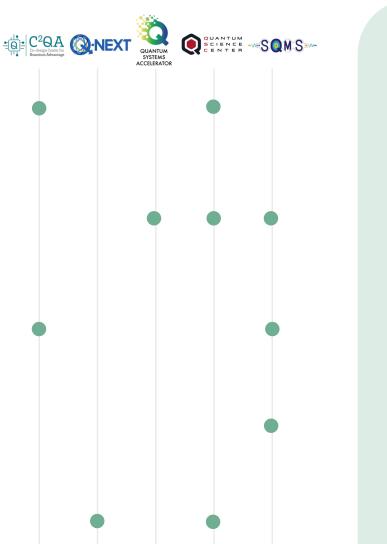
switch for ion trap

High-Performance Instruments and Sensors

- New quantum sensors based on superconducting technology
- New quantum sensors based on many-body entanglement in highly-correlated systems
- New quantum sensor designs based on advanced materials to detect dark matter and topological quasiparticles
- Precision quantum sensor network development and demonstration



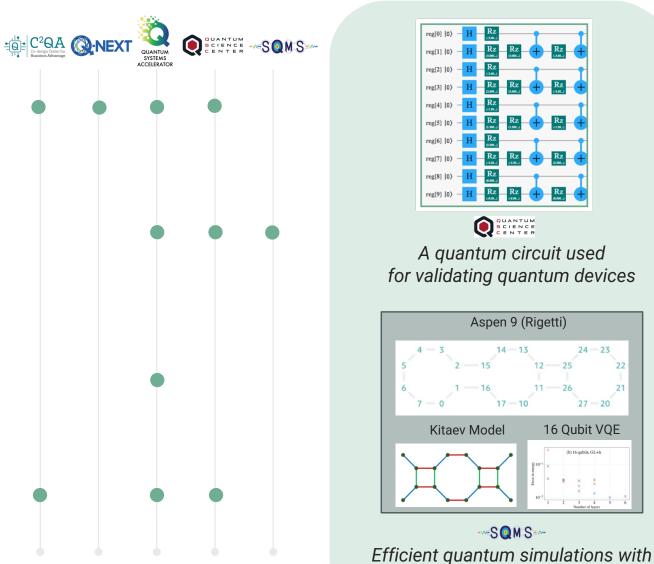
Sensor based on Beryllium ions and electric field sensitivity as function of sensor drive duration


Computing: Programmable Quantum Systems

- Novel hybrid discrete-variable superconducting qubits and continuous-variable microwave oscillator modular architectures.
- Superconducting circuit QED modules linked by microwave-to-optical interconnects
- Next-gen prototypes for semiconductor, superconducting, trapped ion, neutral atom, and photonic systems

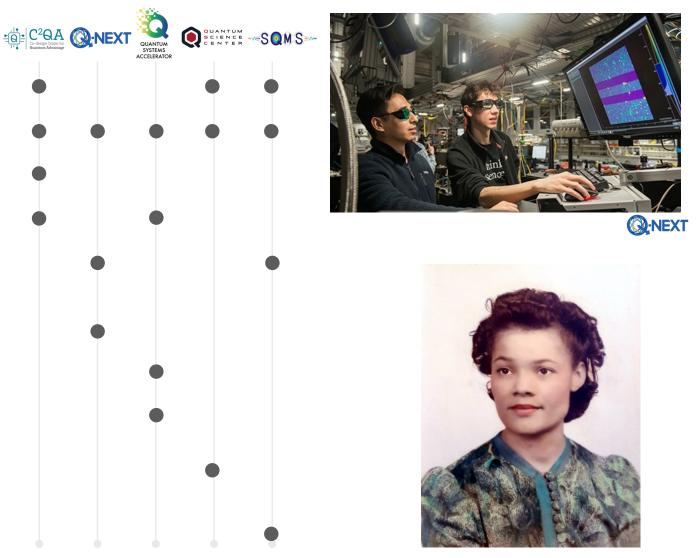
Computing: Integrated Quantum Engineering

- Hardware-efficient quantum error mitigation, communication, and remote entanglement
- Extensible cryo-electronic and integrated optical/microwave controls
- Integration of high-quality cavities with qubits
- Construction of record-size dilution fridge, capable of hosting thousands of qubits
- New solid state quantum computing platforms


QubiC system – modular FPGAbased controls

Integration of high-quality cavities with qubits ---SQMS---

Computing: Algorithms and Applications


- Platform-aware simulation, emulation, and optimization
- Hardware-optimized simulations for HEP, NP, quantum chemistry, strongly-correlated matter, and materials
- Extensible benchmarks and protocols for crossplatform validation and verification
- Noise mitigation and efficient fault resilience on near-term hardware

geometric compatible hardware

Next Generation of the Quantum Workforce

- QIS topical summer school program
- Internships through DOE SULI and other mechanisms
- Software and science applications journal club
- K-12 Teacher Training
- Partnering program for students and industry or national lab advisors
- Participation in the Open Quantum Initiative
- Pilot national lab apprenticeship program
- Lead annual Chief Diversity Officer meeting for DEI best practices in QIS training and recruitment
- Dedicated QIS GEM and HBCU programs
- Carolyn B. Parker fellowship for under-represented minorities

Carolyn B. Parker Fellowship

11 | National QIS Research Centers

Engagement with Industry Partners

The NQISRCs broadly engage with industry partners to accelerate the deployment of quantum-enabled technologies, bringing the benefits of Center research to the public.

- Technical exchange and alignment with industry needs facilities through QED-C TACs
- Creation of roadmaps and standard for quantum technology
- Expedited technology transfer, including novel mechanisms for practical commercialization such as patent pooling
- Development of national databases that incorporate processes, metrology, and testing data

OUR PARTNERS

Ames Laboratory **Applied Materials** Argonne National Laboratory Boeina Brookhaven National Laboratory California Institute of Technology City College of New York ColdQuanta Colorado School of Mines Columbia University **Cornell University Duke University** Fermilab General Atomics Goldman Sachs Harvard University Howard University HRL Laboratories IBM Illinois Institute of Technology INFN (Istituto Nazionale di Fisica Nucleare) Intel Janis Johns Hopkins University **Keysight Technologies** Lawrence Berkeley National Laboratory Lockheed Martin Los Alamos National Laboratory Massachusetts Institute ofTechnology Microsoft MIT Lincoln Laboratory Montana State University NASA-Ames Research Center National Institute of Standards and Technology

Northwestern University

Oak Ridge National Laboratory Pacific Northwest National Laboratory Pennsylvania State University Princeton University Purdue University Quantum Opus **Rigetti** Computing **Rutgers University** Sandia National Laboratories SLAC National Accelerator Laboratory Stanford University Stony Brook University SUNY Polytechnic Institute **Temple University** Thomas Jefferson National Accelerator Facility **Tufts University** Unitary Fund Università degli Studi di Padova Université de Sherbrooke University of Arizona University of California, Berkeley University of California, Santa Barbara University of Chicago University of Colorado Boulder University of Illinois at Urbana-Champaign University of Maryland University of Massachusetts at Amherst University of New Mexico University of Pittsburgh University of Southern California University of Tennessee, Knoxville University of Texas at Austin University of Washington University of Wisconsin–Madison Virginia Tech Yale University

Forging Connectivity Across the Ecosystem

The NQISRCs create new synergies between DOE programs by leveraging world-class facilities including light sources, high performance computing facilities, foundries, and nanoscience centers.

- Cross-Center workshops and other activities introduce QIS-relevant capabilities of the facilities to the researcher community
- The Centers share anticipated needs of the QIS community with facility experts to guide the development of new capabilities

Capabilities available for QIS include:

- Hard and soft X-ray light sources to probe atomic and electronic structure – significant benefit from upcoming light source upgrades at APS and ALS.
- Class-10, 100, and 1000 cleanrooms for device fabrication
- Advanced lithographic, etching, and deposition tools
- Optical, electron, and scanning probe microscopy technologies
- Nanostructure characterization tools
- Theory and simulation resources •

Joint Center Accomplishments – Year 1

Technical Coordination

- Held a workshop to identify technical areas for coordination, and synergies between the centers
- Developed plans for cross-Center topical workshops exchange of technical information

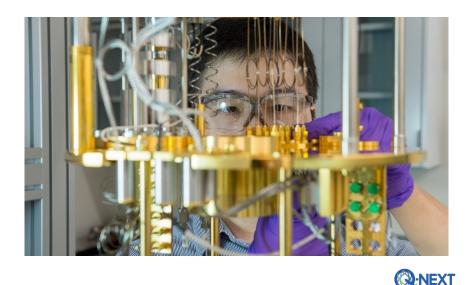
Instrumentation and Facilities

 Coordination for a workshop to include virtual tours of the light sources and other user facilities, a discussion of access procedures, and introductions to facility experts

Workforce

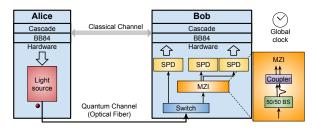
- All Centers participated in a QIS Career Fair organized by C²QA
- Cross-promotion of Center workforce and student programs

Management

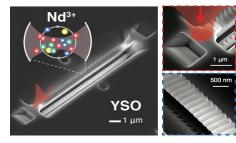

- Created a cross-Center operations group to share best practices in Center management and risk mitigation
- Developed plans for communities of practice in security and EH&S

Communications / Outreach

- Formed a coordinating group across Centers and development of joint materials
- NQISRC Panel accepted in the 2022 AAAS Annual Meeting



NQISRC Panel at QIS Career Fair hosted by



Development of a comprehensive quantum network simulator

Optical components in a simple 2-node setup.

Q-NEXT quantum memory and repeater prototypes will be evaluated.

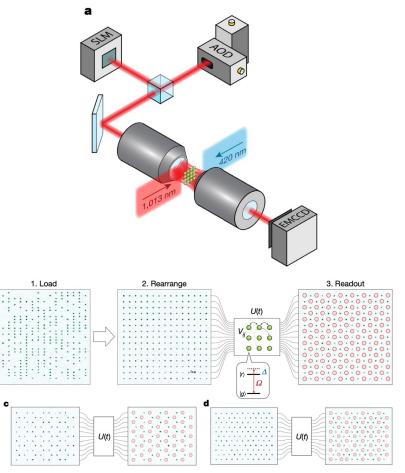
Simulations complement real-world experiments.

Scientific Achievement

Q-NEXT is building a comprehensive network simulator ("SeQUeNCe") that allows simulation of long-distance quantum interconnects at the photon-level with high accuracy, including modeling the behavior of quantum memories and repeater nodes. Q-NEXT research takes a co-design approach by linking system performance of repeater-enabled links with device-level properties.

Significance and Impact

The simulator will allow performance evaluations of a broad range of Q-NEXT science and technology, and will provide a testbed for development of new protocols.


Details

- We constructed models of elementary optical components (light sources, SPDCs, detectors, atomic memories) and implemented simple quantum network protocols (entanglement management, resource reservation, QKD).
- We built a prototype of the modularized discrete event simulator that includes a scheduler and an entanglement manager. We validated our models by simulating existing QKD and teleportation experiments and the behavior of a metropolitan network.
- SeQUeNCe is available for download at GitHub: <u>https://github.com/sequence-toolbox</u>
- X. Wu, A. Kolar, J. Chung, D. Jin, T. Zhong, R. Kettimuthu and M. Suchara. 2021. "SeQUeNCe: a customizable discrete-event simulator of quantum networks." Quantum Science and Technology, 2021. <u>https://doi.org/10.1088/2058-9565/ac22f6</u>.
- M.K. Singh, L. Jiang, D.D. Awschalom, S. Guha, IEEE Trans. on Quant. Eng. V2, 4102909 (2021).

Quantum phases of matter on a 256-atom programmable quantum simulator

a) The experimental platform with a 2D array of optical tweezer traps. b-d) The sequence of loading and rearranging atoms to simulate a two-dimensional spin model.

S. Ebadi, et. al., Nature 595, 227-232 (2021)

Accomplishment

Studied quantum phases of a spin system using a programmable quantum simulator based on a two-dimensional array of neutral atoms in Rydberg states.

Significance and Impact

Demonstrates a new tool for investigations of complex matter, including exotic quantum phases and non-equilibrium dynamics.

Details

- Simulated quantum phases and phase transitions which had not been previously observed in a (2 + 1)-dimensional Ising spin model.
- Implemented the simulation on arrays of 64 to 256 neutral atoms with tunable interactions, using optical tweezer traps.
- Created a platform also suitable for quantum information processing and implementation of hardware-efficient quantum algorithms.

Work was performed at Harvard University, the University of Innsbruck, UC Berkeley, and MIT

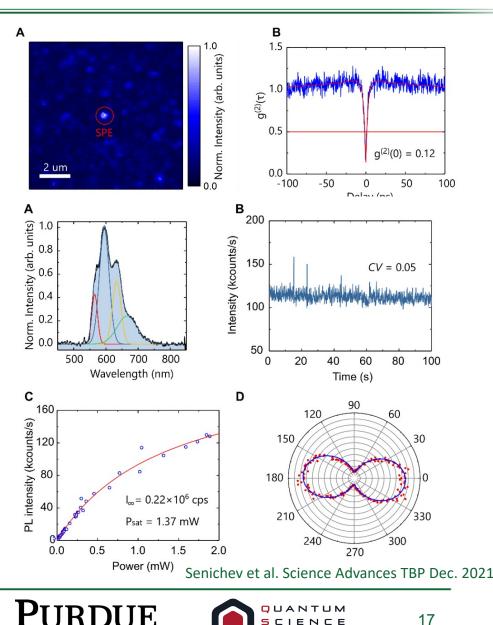
Discovery of Room-Temperature, Single-Photon Emitters in SiN

Scientific Achievement

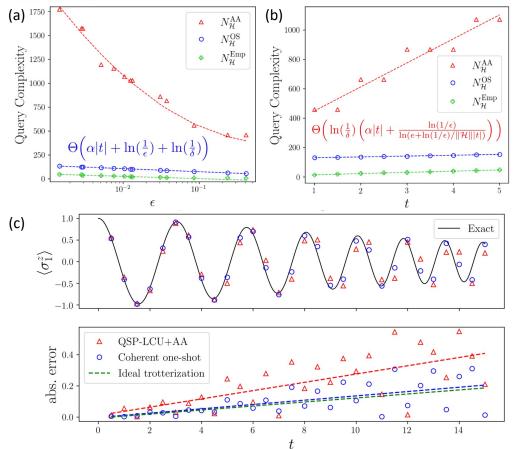
Purdue researchers report on the first-time observation of roomtemperature, single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates obtained by careful selection of the growth conditions for low auto-fluorescing SiN.

Significance and Impact

Single-photon emitters in SiN have the potential to enable direct, scalable, and low-loss integration of quantum light sources with the well-established photonic, on-chip platform.


Research Details

- Fabricated by HDPCVD and subsequent rapid thermal annealing
- SPEs are bright (>10⁵ counts/s), stable, linearly polarized
- High-purity single-photon emission with g⁽²⁾(0)<0.2 without background correction or spectral filtering
- SPEs exhibit PL peaks at virtually the same wavelengths emission comes from a particular type of defect center
- On-chip sources of single photon emission, such quantum emitters in SiN, have the potential to enable broad applications in quantum communication, computing, and simulations


To be published in Science Advances (abj0627) in Dec. 2021; invention disclosure: 2001-SHAV-69443 (Purdue)

Work was performed at Birck Nanotechnology Center, Purdue University

C²QA Highlight - Efficient Fully-Coherent Hamiltonian Simulation

Comparison of the theoretical query complexity of LCU+amplitude amplification (AA, red), our algorithm (OS, blue), and empirical bound (Emp, green) a) vs. error ϵ and b) vs. simulation time t; c) Hamiltonian simulation of a time-dependent Heisenberg model.

J. M. Martyn, Y. Liu, Z. E. Chin, I. L. Chuang. arXiv:2110.11327 (2021)

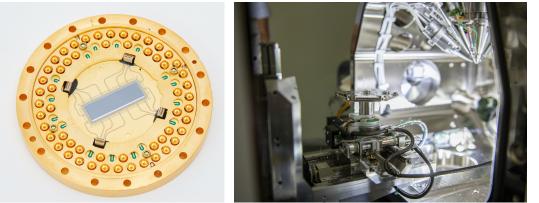
Work performed at Massachusetts Institute of Technology.

Scientific Achievement

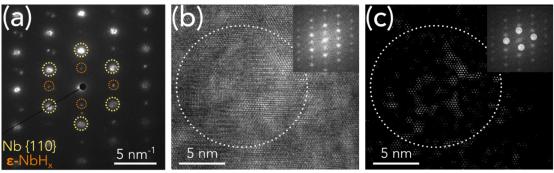
We develop an efficient and fully-coherent Hamiltonian simulation quantum algorithm that succeeds with an arbitrarily high success probability with near optimal query complexity.

Significance and Impact

Significant query complexity improvement compared to previous algorithms; the ability to be fully-coherent allows concatenation into larger and more powerful quantum algorithms.


Details

- Design polynomial approximation to the complex exponential function and apply an affine transformation to the Hamiltonian.
- Query complexity being a sum of linear in time, logarithmic in inverse error, logarithmic in inverse failure probability.



Discovery of niobium nano-hydride precipitates in superconducting transmon qubits

Lamellas of superconducting qubits from real Rigetti Computing processors are dissected via FIB-SEM at FNAL and studied for the first time via cryo-TEM

Cryogenic TEM, electron diffraction images of Rigetti 2D qubits , revealing the presence of hydrides precipitates in the niobium film at T=100K

Scientific achievement

First ever performed cryogenic microscopy studies of superconducting qubits lead to the discovery of the presence of hydride precipitates in the Rigetti Computing and other transmon qubit devices

Significance and Impact

Niobium nano-hydrides are poorly superconducting phases that can cause qubit device performance limitations and degradation over time and with subsequent cooldowns

Details

- Cryogenic AFM, electron diffraction and high-resolution transmission electron microscopy (TEM) analyses are performed on the Nb films at room temperature and cryogenic temperature (106 K)
- The results suggest the existence of two possible types of Nb hydride domains in Nb grains: (i) ~5 nm-sized Nb hydride domain with irregular shapes; (ii) 10s~100 of nm-sized distinct Nb hydride domains
- Pathways to mitigate the formation of the Nb hydrides are under study

J. Lee, Z. Sung, A. Murthy, M. Reagor, A. Grassellino, and A. Romanenko; <u>https://arxiv.org/pdf/2108.10385.pdf</u> Work was performed at Fermi National Accelerator Laboratory material science lab and NUANCE user facility

Fermilab

Joint Center Plans: Next Steps

Coordination in Technical Areas

- Develop database of quantum materials characteristics, including standards development
- Cross-Center workshop on algorithms and co-design approaches

Instrumentation and Facilities

- Workshops for existing researchers on the application of user facilities to QIS
- Identification and promotion of additional resources, including testbeds and characterization tools

Ecosystem Stewardship

- Second annual career fair, hosted by C²QA, to provide pathways into QIS
- Second meeting of Chief Diversity Officers for continued exchange of best practices and resources for QIS DEI
- Coordinated QIS summer school