

José A. Rodriguez

DOE Distinguished Scientist Project: New Tools for Mechanistic Transient Studies in Catalysis

Chemistry Division Brookhaven National Laboratory

Outline

- Fundamental studies on the conversion of CO₂ to methanol
- Development of techniques and strategies for the *in-situ* characterization of catalysts

Both topics are at the core of this DOE Distinguished Scientist project.

Negative impact of CO₂ on the environment

https://www.treehugger.com/co-why-is-carbon-dioxide-bad-4864246

Guidelines Department of Energy:

"...will develop innovative technologies to generate novel, marketable products using carbon dioxide (CO_2) or coal as a feedstock, potentially offering significant advantages over traditional products..

..test technologies that can use CO₂—from coal-based power systems or other industrial sources—as the primary feedstock to reduce emissions and create valuable products."

The Catalysis Group at Brookhaven is working on:

CO₂ to methanol

The synthesis of methanol through the hydrogenation of CO_2 is an attractive route for the production of clean fuels.

Cu/ZnO is a typical industrial catalysts

high pressure (40 atm) high temperature (250 C)

TEM Cu/ZnO

More efficient catalysts are needed

We need to characterize this system under high pressures and temperature

Major issues are the identification of the catalyst active phase, the activation of CO_2 , and the mechanism for methanol synthesis.

- J.J. Spivey and A. Egbebi, Chem. Soc. Rev. 2007, 36, 1514.

Scientists have been working on the conversion of CO_2 to methanol for more than a century

J.A. Rodriguez worked with Prof C. T. Campbell on fundamental studies on the adsorption of CO_2 on:

- Cu(111), Cu(100)
- Cs/Cu(100)

Indiana University PhD studies 1985-1988

- Rodriguez, Clendening and Campbell, J. Phys. Chem. 93 (1989) 5238
- Nakamura, Rodriguez and Campbell, J. Phys.: Condensed Matter, 1 (1989) SB149

Major findings of the studies for CO_2 adsorption on Cu(100), Cu(111) and Cs/Cu(100) in 1980's were:

- The dissociative sticking probability of CO₂ on pure copper is extremely low (< 10⁻⁶)
- Cs helps to bind and dissociate CO₂ and leads to a new surface chemistry

Challenges:

Materials gap

TEM Cu/ZnO

Cu(111)

 Pressure and characterization gap

Process takes place at high pressures (> 20 atm)

Catalysis Group at BNL : Clean Fuels and Green Chemistry

Reducing environmental pollution by:

(i) Synthesis of methanol by CO₂ hydrogenation

(ii) Conversion of CO_2 and CH_4 to high value chemicals

We work with powders and well-defined interfaces of metals with oxides, carbides, sulfides and phosphides.

TEM: Au-CeO₂ powder

STM: ZnO on Cu(111)

STM: RuS₂ on Au(111)

STM: Cu on TiO₂(110)

The phenomena responsible for the catalytic properties are studied using several techniques (STM, TPD, XPS, FT-IRAS, XRD, PDF, XAFS) and catalytic testing.

- active phase? role of structural and electronic effects?
- size effects? reaction mechanism?

Science, 2017, 355, 1296; J. Am. Chem. Soc. 2021, 143, 13130; Science, 2020, 368. 513

Synchrotron studies at NSLS-II: Catalysis Focused End-stations

Intense and tunable radiation enables

X-ray tools for catalyst characterization

Imaging, spectroscopy, scattering multimodal:

Structural, electronic and chemical properties of catalysts under reaction conditions

Multi-technique approach

In-situ AP-XPS, XAFS XRD, PDF The BNL Catalysis Group is a pioneer in the development of synchrotron-based techniques and methodologies for the in-situ characterization of catalysts

- In-situ Time-resolved X-ray Diffraction

Input gas Products Products Products Thermecouple

Diffraction pattern can be obtained in 15-30 seconds In a micro-reactor the catalyst can be exposed to different pressures and temperatures

Evolution of active phase as a function of pressure and temperature

2002-2012

J Hanson and J Rodriguez: In-situ characterization of C1 catalysts

1990s

P Norby and J Hanson: Studies on zeolite synthesis and inorganic materials Moving beyond in-situ Time-resolved X-ray Diffraction

- * Integration with other techniques
- XRD/PDF and XRD/EXAFS

crystalline and amorphous active phases

- XRD/XANES

structural and electronic properties (chemical state) of the active phase

- XRD/IR and XRD/Raman

structural properties of the catalyst and the surface chemistry of the process.

- * Multi-technique approach to obtain a full picture
- Palomino et al, J. of Synchrotron Radiation News, 30 (2017) 30.
- Frenkel, Rodriguez and Chen, ACS Catal. 2 (2012) 2269

11

Two approaches in the in-situ study of catalysts:

Steady-state methods

- measure overall performance
- give integrated picture of reaction system

Transient methods

- give information on individual steps and reaction mechanism
- operate in millisecond time regime

Two approaches in the in-situ study of catalysts:

Steady-state methods

- measure overall performance
- give integrated picture of reaction system

Transient methods

- give information on individual steps and reaction mechanism
- operate in millisecond time regime

Key: High intensity of the beam in NSLS II allows to perform fast $(10^{-3}-1 s)$ experiments with XRD, PDF and XAFS and match the response time of IR spectroscopy

DOE Distinguished Scientist Project:

New Tools for Mechanistic Transient Studies in Catalysis Science

Transient experiments

Transients are introduced into a system by varying one or more state variables (p, T, flow)

Transients produce changes in the chemical state of the catalyst and in the residence time of active spices

The response of the system tracks the periodicity of the transients

Key: High intensity of the beam in NSLS II allows to perform fast $(10^{-3}-1 s)$ experiments with XRD, PDF and XAFS and match the response time of IR spectroscopy

Objective is to develop instrumentation for transient or pulse studies at beamlines of the NSLS II:

- ISS & QAS (technique: IR/XAFS)
- XPD2 (technique: IR/XRD & IR/PDF)
- IOS (technique: AP-XPS)

Instrumentation will be available for the BNL Catalysis Program and outside users

In the last year, Jorge Moncada (postdoc) has built an

automatized transient /time resolved setup optimized for C1 Chemistry

This portable unit will be taken to the NSLS II in 2022 to be used in operando studies with XRD, PDF and XAFS

Recent research on CO₂ hydrogenation:

From model systems to powder catalysts and transient studies

Metal- Oxide interfaces: CO₂ hydrogenation to methanol

 $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

Pure Cu(111) is not a very good catalysts for CO_2 hydrogenation

Cu nanoparticles are more active than Cu(111) for the synthesis of methanol from CO_2 hydrogenation.

Kattel et al, Science 355 (2017) 1296

AP-XPS

On Cu(111)

 $P= 50 \text{ mTorr } CO_2, 200 \text{ mTorr } H_2$

Poor catalyst, only a small amount of adsorbed CO_2 on the surface.

Palomino et al, J Phys Chem B, 122 (2018) 794

Metal- Oxide interfaces: CO₂ hydrogenation to methanol

 $CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$

Cu nanoparticles are more active than Cu(111) for the synthesis of methanol from CO_2 hydrogenation.

Background studies show that the oxide used as a support for Cu nanoparticles matters, with the catalytic activity increasing in the sequence:

Cu < Cu/ZnO < Cu/TiO2

Nanocatalysis program at BNL: Preparation and characterization of highly active oxide/metal catalysts

Perspective article: Rodriguez, Liu, Hrbek, Senanayake, Stacchiola, Graciani, Sanz, J. Phys. Chem. Lett. 2016, 7, 2627-2639

150nm x 150nm

In an oxide/metal catalyst:

- The oxide can have special structural and electronic properties
- One can use the oxide-metal interface in fundamental studies or technical applications

STM: CeO_x/CuO_x/Cu(111)

TEM studies for Cu/ZnO powder catalysts indicate that the active phase of the system consists of copper particles decorated with ZnO_x clusters

Active phase of the catalyst has an inverse oxide/metal configuration

Figure 2. (A) HR-TEM image for a $Cu/ZnO/Al_2O_3$ catalyst after reduction in hydrogen. (B) Cartoon showing different components of a reduced $Cu/ZnO/Al_2O_3$ catalysts. Taken from ref 21. Copyright 2015 Wiley.

Methanol synthesis on CeOx/Cu(111)

Graciani et al, Science 345 (2014) 546

AP-XPS: 30 mTorr CO₂ and 270 mTorr H₂

Senanayake et al, J Phys Chem C 120 (2016) 1778

On Cu(111)

CO₂ hydrogenation catalyst engineered from model systems:

 $CeO_2/CuO_x/Cu(111) \rightarrow CeO_2/CuO$ powder

150nm x 150nm

Start of transient studies for CeO₂/CuO powder

Results – redox studies in progress

Cycles for reduction and oxidation of CeO₂/CuO: CO + $0.5O_2 \rightarrow CO_2$

Mass spectrometer (new instrument)

CO pulses:

- CO(gas) + O-oxide \rightarrow CO₂(gas) + Vacancies-oxide

O₂ pulses:

- $O_2(gas) + 2Vacancies-oxide \rightarrow O-oxide$

CO pulses:

 Reduce CuO and CeO₂, creation of O vacancies and Ce³⁺ expanding the lattice in the oxide

O₂ pulses:

Remove O vacancies and reduces oxide lattice

Future work

- Develop instrumentation for transient or pulse studies at beamlines of the NSLS II:
 - ISS & QAS (technique: IR/XAFS)
 - XPD2 (technique: IR/XRD & IR/PDF)
 - IOS (technique: AP-XPS)
- Systematic transient studies exploring the behavior of CeO₂/CuO powders. Identify
 - active sites
 - reaction mechanism
 - to optimize catalytic performance.

- Collaborators:

Transient studies: J Moncada, J Hanson

Development of in-situ techniques: J Hanson, J Hrbek, S Senanayake

CO2 Hydrogenation:

BNL: J Hrbek , S Senanayake, D Stacchiola, P Liu, J Hanson, M White, R Palomino, S Kattel, S Ma, X Wang, F Yang, D Grinter, M Mahapatra
Institute of Catalysis – Madrid: A Martinez-Arias
Universidad Central de Venezuela: M. Perez, J. Evans
University of Seville: J. Graciani, J. Fernandez-Sanz

- Financial support at BNL: \$ US-DOE (30 long years!... Thanks)