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The 20th century view of materials synthesis 
was shaped by the theories of Gibbs and Frank
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Complex pathways can arise for 

thermodynamic or kinetic 

reasons, but in what systems do 

they occur and why?

Discoveries since the start of the millennium have revealed 
the importance of complex, hierarchical assembly pathways
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Dynamic processes leading to self-organization at liquid-
solid interfaces underlie synthesis of of many materials
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Oriented attachment is driven by direction-specific 
forces that must overcome significant hydration barriers
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Oriented attachment of ZnO
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at= 220s, and then 4°at t=228.5s. As the two particles aligned to a perfect lattice match, OA was 

accomplished via a jump-to-contact across a gap of 0.96±0.2 nm (~ 5nm center-to-center spacing). 

Attachment thus occurred along the [001] direction. Subsequently, the connecting neck between 

the particles vanished through rapid diffusion of surface atoms into the concave regions, leading 

to the formation of larger particles with the (002) axis perpendicular to the beam, as shown in 

Figure 3(F). Moreover, the monocrystalline nature of the resulting particle was verified by the 

corresponding FFT in Figure 3(F).  

To confirm that the particles undergo oriented attachment, we used a Fourier transform analysis 

technique to track their orientation during diffusion, contact and attachment. The intensities from 

the power spectrum are summed along the angle (Δ) and the corresponding intensity profiles are 

plotted versus time (Figure 3G, H, I). Figures 3G and 3H represent particles I and II, respectively, 

and Figure I represents the new particle after attachment. We observed that the two particles rotate 

and align their crystallographic axes within 20 seconds. After attachment, the resulting particle 

maintained the similar orientation and its rotational dynamics were slower.   

Fig. 3 (A-F) Sequence of LP-TEM images extracted from Movie S2 showing OA of ZnO nanoparticles in 
MeOH. (G-I) 1D intensity profiles vs time created from FFT analysis of images from Movie S2 showing 

relative orientation of [002] direction for (G and H) particles I and II, respectively in (A), and (I) the 

coalesced particle. Scale bar is 5nm. 

Observation of ZnO chain-like structure formation 

The above in situ results provide a rationale for ex-situ TEM observations showing individual ZnO 

nanoparticles maintained at room temperature in the presence of extra Zn2+ form long, rod-shaped 

single-crystals extended along the [001] direction (Fig. 4A-C and Fig. S1). Indeed, we also direct 
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Dipole-dipole interactions can provide face 
selectivity and long-range forces and torques
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We designed a helical repeat protein to interface 
with mica through carboxyl binding to cation sites
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Effects of surface, salt, and inter-rod interactions 
reflect entropic drivers of colloid crystallization
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High-speed, atomically-resolved AFM reveals 
three stages of gibbsite film formation on mica
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Results reveal impact of surface 
charge on mechanism of nucleation
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We are using using AFM-based fast force mapping 
(FFM) to investigate interfacial solvent structure
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The outcome is a 3D atomic-level map of interfacial 
solvent that is correlated with specific lattice sites 
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Essential challenge is to understand collective outcome of 
three-way interaction between solvent, substrate and solutes
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1) How do we deconvolve entropic terms associated with 

solvent from specific interactions between chemical 

moieties, electrostatics, and van der Waals forces?

2) How are surface chemistry 

and symmetry elements of 

underlying substrate 

imprinted on overlying 

solvent?

3) What is impact of surface charge and 

external E-fields in promoting, suppressing or 

altering organization
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Electrostatic



My SC Distinguished Scientists Fellow project will address 
these challenges for three interfacially controlled systems
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Outcome: Quantitative, mechanistic picture of relationships between substrate, water 

structure, solute distribution and resulting interfacial dynamics and organization
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