

# Roundtable on Chemical Upcycling of Polymers

**Briefing to BESAC** 

Phillip Britt Oak Ridge National Laboratory March 8, 2018

### **BES Roundtable on Chemical Upcycling of Polymers**

Workshop Chair: Phillip Britt (ORNL) Co-Chairs: Geoff Coates (Cornell Univ.) Karen Winey (Univ. of Penn.)

SC Technical Lead: Bruce Garrett



#### Charge:

- Assess the fundamental challenges that would enable transformation of discarded plastics to higher value fuels, chemicals, or materials
- Identify fundamental research opportunities in chemical, materials, and biological sciences that will provide foundational knowledge leading to efficient, low-temperature conversion of discarded plastics to highvalue chemicals, fuels, or materials
- Identify research opportunities for the design of new polymeric materials for efficient conversion, after end of life, to high-value chemicals or materials





### **Global Industrial Use of Plastics**

- Packaging is the largest use for plastics but single use:
  - Plastics used in packaging include: LDPE (30%), PET (23%), HDPE (21%), PP (18%), PS (5%), and PVC (2%)



 If current trends continue, by 2050, the ocean will contain more plastic than fish, by weight

U.S. DEPARTMENT OF

ENERG

Office of

Science



### Majority of Plastics (87%) Fall into Categories 1-6 Recovery Rates for Plastic Recycling in US are Low

| PETE                                                                           | HDPE                                                                                              | C<br>3<br>PVC                                                                                                            |                                                                                                                         |                                                                                                                            | €<br>PS                                                                                                                   | OTHER                                                                                                                              |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Polyethylene<br>Terephthalate                                                  | High-Density<br>Polyethylene                                                                      | Polyvinyl<br>Chloride                                                                                                    | Low-Density<br>Polyethylene                                                                                             | Polypropylene                                                                                                              | Polystyrene                                                                                                               | Other                                                                                                                              |
| Common products:<br>soda & water<br>bottles; cups, jars,<br>trays, clamshells  | Common products:<br>milk jugs,<br>detergent &<br>shampoo bottles,<br>flower pots,<br>grocery bags | Common products:<br>cleaning supply<br>jugs, pool liners,<br>twine, sheeting,<br>automotive product<br>bottles, sheeting | Common products:<br>bread bags, paper<br>towels & tissue<br>overwrap, squeeze<br>bottles, trash bags,<br>six-pack rings | Common products:<br>yogurt tubs, cups,<br>juice bottles,<br>straws, hangers,<br>sand & shipping<br>bags                    | Common products:<br>to-go containers &<br>flatware, hot cups,<br>razors, CD cases,<br>shipping cushion,<br>cartons, trays | Common types &<br>products:<br>polycarbonate,<br>nylon, ABS, acrylic,<br>PLA; bottles, safety<br>glasses, CDs,<br>headlight lenses |
| Recycled products:<br>clothing, carpet,<br>clamshells, soda &<br>water bottles | Recycled products:<br>detergent bottles,<br>flower pots, crates,<br>pipe, decking                 | Recycled products:<br>pipe, wall siding,<br>binders, carpet<br>backing, flooring                                         | Recycled products:<br>trash bags, plastic<br>lumber, furniture,<br>shipping envelopes,<br>compost bins                  | Recycled products:<br>paint cans, speed<br>bumps, auto parts,<br>food containers,<br>hangers, plant pots,<br>razor handles | Recycled products:<br>picture frames,<br>crown molding,<br>rulers, flower pots,<br>hangers, toys, tape<br>dispensers      | Recycled products:<br>electronic housings,<br>auto parts,                                                                          |
| J.                                                                             | Ê                                                                                                 |                                                                                                                          |                                                                                                                         |                                                                                                                            |                                                                                                                           | Ŷ                                                                                                                                  |
| 19.5 %                                                                         | 10%                                                                                               | 0 %                                                                                                                      | 5 %                                                                                                                     | 1 %                                                                                                                        | 1 %                                                                                                                       | varies                                                                                                                             |



https://www.bluelinelabels.com/glossary-of-resins-containers-decorating/

# **Motivation for Chemical Upcycling of Polymers**

**Upcycling:** the process of selectively converting waste materials into products with greater value as opposed to traditional recycling which typically converts waste into materials for reuse but with reduced properties (downcycling)

- In the US, plastic materials contribute 13% (34.5M tons) to municipal solid wastes in 2015 with less than 10% recycled, approximately 15% combusted for energy recovery, and the remained sent to the landfill (75%)<sup>1</sup>
- Most recycling of plastic wastes typically involves mechanical processes (primary or secondary recycling: sort, grind, wash, extrude) and is only applied to limited plastic types but the products are cheaper than new materials
- More energy is saved by recycling than recovered by burning plastic (heating value of plastics 36 MJ kg<sup>-1</sup> while mechanical recycling conserves 60 – 90 MJ kg<sup>-1</sup>)
- On average, each tonne of plastic recycled saves the energy equivalent in the combustion of 22 barrels of oil<sup>2</sup>
- Increased plastic recycling is an important pathway to reduce plastic waste and has clear energy, economic, and environmental impacts
- Opportunity exists for fundamental research to provide the foundational knowledge needed to design chemical reactions, processes, and materials that enable efficient, low-temperature conversion of discarded plastics to high-value chemicals or materials



6

## **Challenges for Chemical Upcycling of Polymers**

- Difficult to sorting plastics to get a clean stream (density, electrostatics, wettability, spectral signature)
- Plastics are not pure and contain additives, food residues, dirt, degradation products, etc. that could impact upcycling
- Polyolefins are often combined with other materials in multi-layer packaging which can not be recycled
- High chemical, thermal, and mechanical stability of polymers provide challenges to deconstruction (and thus, new chemistry is needed)
- Thermosets are crosslinked polymers that can not currently be recycled by mechanical, thermal, or solvent processing methods



| Additives in<br>Polymers | Percentage |  |  |
|--------------------------|------------|--|--|
| Plasticizers             | 34%        |  |  |
| Flame retardants         | 13%        |  |  |
| Heat stabilizers         | 5%         |  |  |
| Fillers                  | 28%        |  |  |
| Impact modifiers         | 5%         |  |  |
| Antioxidants             | 6%         |  |  |
| Colorants                | 2%         |  |  |
| Lubricants               | 2%         |  |  |
| Light stabilizers        | 1%         |  |  |
| Other                    | 4%         |  |  |

Geyer, R. et al., Sci. Adv. 2017, 3, e1700782

### The World is Reevaluating the Plastic Economy

- In 2016, two reports published by World Economic Forum, the Ellen MacArthur Foundation and McKinsey & Company which makes the case for rethinking the current plastics economy and identifies a number of significant knowledge gaps and open questions
  - The New Plastics Economy Rethinking the future of plastics
  - The New Plastics Economy Catalyzing Action
- In the second report, three distinct strategies were proposed to accelerate the shift towards the new plastics economy





#### Energy Efficient Chemical Upcycling of Polymers Aligns with DOE BES Mission

- Fundamental chemical and materials sciences required to enable upcycling of polymers fall directly within BES's and DOE's energy mission
- BES research has contributed significantly to the scientific foundations in catalysis, thermochemical kinetics, control of chemical transformations, materials synthesis (control of structure and properties) and characterization, biosciences (bio-inspired catalysts), and computational modeling required to advance a fundamental research agenda in polymer construction, deconstruction and reassembly
- Strength in understanding the link between atomic and molecular scale organization and bulk properties
- Unique strength in combining research in chemical and natural systems
- Unique tools (neutrons, x-rays, nanoscience, and computation) to support atomic scale and mesoscale research in upcycling







Jia, X. et al. Sci. Adv. 2016, 2, e1501591

# **Opportunities in Chemical Upcycling of Polymers**

- This Roundtable will focus on four challenges and research opportunities for chemical upcycling of polymers that build off the strengths in BES portfolio
  - Design chemical mechanisms to deconstruct polymers and create targeted molecular intermediates that provide building blocks for new products
  - Create integrated depolymerization-reassembly processes that target high-value end products from starting polymers
  - Design next-generation polymeric materials that enable efficient depolymerization-reassembly
  - Investigate crosscut opportunities for advancing experimental, computational and data science driven approaches for upcycling of polymers



#### Challenge 1: Design Chemical Mechanisms for Deconstruction

- Design chemical mechanisms to deconstruct polymers and create targeted molecular intermediates that provide building blocks for new products
  - For example, IBM has developed a process that separates contaminants (e.g., food residue, glue, dirt, dyes, and pigments) from PET and produces pure monomer in an energy-efficient cycle





https://www.research.ibm.com/5-in-5/trash/



#### **Challenge 2:**

#### **Create Integrated Deconstruction-Reassembly Processes**

- Create integrated depolymerizationreassembly processes that target highvalue end products from starting polymers
  - For example, most processes today take polymers back to monomers and then repolymerize to products with similar performance
  - Another approach is to process immiscible polymers, such as polyethylene and isotactic polypropylene, by stitching together with a block copolymer



Fortman, D. J. et al. ACS Sustainable Chem. Eng. 2018, 6, 11145





Eagan, J. M. et al. Science 2017, 355, 814

### Challenge 3: Design Next Generation Recyclable Polymers

- Design next-generation polymeric materials that enable efficient depolymerization-reassembly
  - Significant interest in recycling thermosets (cross-linked polymers) which are 15-20% of the market but currently are not recyclable or reprocessable
  - Examples of approaches to depolymerization and reprocessing thermosets include:
    - Dynamic covalent networks and covalent adaptive networks (CAN)
    - Vitrimers a strategy for direct mechanical reprocessing where polymers rearrange their topology by exchange reactions without depolymerization











## **Goal: Chemical Upcycling of Polymers Roundtable**

- Convene a small group (ca. 20) of experts from industry, academia, and national labs to address fundamental challenges to enable transformation of discarded plastics to high-value fuels, chemicals, and materials
- Prepare a factual document to provide the workshop participants with a high-level assessment of the current status of polymer upcycling
- Identify priority research opportunities in which fundamental research over the next 5-10 years could result in a significant impact on chemical upcycling of polymers
- Prepare a report which captures these possible priority research opportunities for chemical upcycling of polymers
- Status:
  - Chairs confirmed; Panel Leads selected/contacting; Participants almost final
  - Date, Location selected: April 30 May 1; Bethesda North Marriott
  - Factual Document being written (completed draft delivered mid-April)
  - Webinar in advance of the workshop (tentatively mid-late April)



# **Polymer Upcycling Roundtable - Format**

- Introductory remarks by DOE-SC leadership
- Goals and logistics
- Presentations: Three short presentations on polymer upcycling
- Panel discussion on each focus area (with cross-cut integrated):
  - Each participant will come prepared to discuss roadblocks, knowledge gaps, research needs, and research opportunities
    - Mechanisms for deconstructing to molecular intermediates
    - Create integrated deconstruction-reassembly processes
    - Design next generation recyclable polymers
- Report out
- Refine Priority Research Opportunities (PRO)
- Final report out of Priority Research Opportunities
- Report writing writers and panel leads stay extra half day to capture input and pull together a rough draft



#### **BES Roundtable on Chemical Upcycling of Polymers**

Workshop Chair: Phillip Britt (ORNL) Co-Chairs: Geoff Coates (Cornell Univ.) Karen Winey (Univ. of Penn.)

SC Technical Lead: Bruce Garrett



#### Charge and focus areas:

- Assess the fundamental challenges and identify the research opportunities that would enable transformation of discarded plastics to higher value fuels, chemicals, or materials
  - Design chemical mechanisms to deconstruct polymers and create targeted molecular intermediates that provide building blocks for new products
  - Create integrated depolymerization-reassembly processes that target highvalue end products from starting polymers
  - Design next-generation polymeric materials that enable efficient depolymerization-reassembly
  - Investigate crosscut opportunities for advancing experimental, computational and data science approaches for chemical upcycling of polymers

