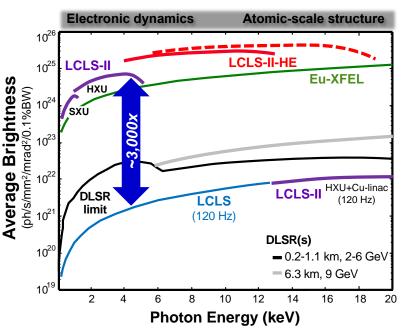


## **LCLS-II-HE Project**

**Greg Hays** 

**Project Director** 

BESAC, March 2019








## LCLS-II-HE will upgrade LCLS-II and deliver photon energies beyond 12 keV (< 1Å) in a continuous pulse train up to 1 MHz.





LCLS-II Currently 80% complete. Users online in 2021

LCLS-II-HE CD-1 approved Sept 2018. Targeting mid-decade users

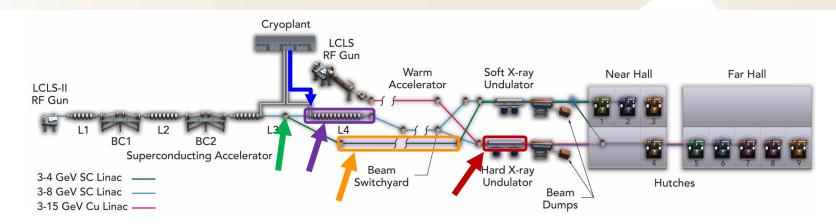
### LCLS-II-HE Scope



#### Double the electron energy of the accelerator (4 $\rightarrow$ 8 GeV)

Extends X-ray energy limit from 5 keV to 12.8 keV

#### Install a second bypass line to provide a dual source


Delivers simultaneous soft X-ray and hard X-ray beams at high rep-rate

#### Provide specialized instruments for unique new source

 Delivers optimized measurement capabilities and enables science immediately from the onset of commissioning

This provides a qualitatively new capability, unique in the world, delivering ultrafast, Ångström performance at high average power.

## LCLS-II-HE accelerator upgrades will enable hard X-rays at high rep-rate and increase the experimental capacity.



- 1. Add 20 additional cryomodules (L4 linac) to increase the LCLS-II accelerator energy to 8 GeV.
- 2. Install new cryogenic distribution box and transfer line between the cryoplant and the new L4 linac.
- 3. Add low-energy extraction point at 3.8 GeV to enable quasi-independent operation of the soft-X-ray and hard-X-ray programs.
- 4. Use existing transport line to bypass downstream linacs and install new dump in the beam switch yard
- 5. Install high rep-rate Hard X-ray Self Seeding capability in the hard X-ray undulator

4

## New and upgraded instruments will address the science needs and take advantage of the transformative nature of LCLS-II-HE.

| Instr. | Upgrade Plan                               | Science Opportunities                                                                                                                                                                                        |  |
|--------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| XPP    | New detector<br>Upgraded diagnostics       | <ul> <li>Understand coupled dynamics of molecular structure and charge &amp; their role in energy flow</li> <li>Characterize materials heterogeneity, fluctuations &amp; link to function</li> </ul>         |  |
| DXS    | Repetition rate enhancement IXS capability | <ul> <li>Map collective excitations &amp; understand their relation to emergent phenomena in complex materials</li> <li>Characterize materials heterogeneity, fluctuations &amp; link to function</li> </ul> |  |
| CXI    | New optics & detector<br>Enhanced DAQ      | <ul> <li>Reveal the role of structural dynamics in biological function</li> <li>Catalysis: Reveal the correlation between chemical reactivity &amp; structural dynamics</li> </ul>                           |  |

#### Key Performance Parameter

- 3 upgraded endstations

#### Objective KPP

5 upgraded endstations







## **LCLS-II-HE Project KPPs**

#### **Preliminary Threshold and Objective KPPs**

| Performance Measure                       | Threshold                  | Objective                                                                          |
|-------------------------------------------|----------------------------|------------------------------------------------------------------------------------|
| Superconducting linac electron energy     | 7 GeV                      | 8 GeV                                                                              |
| Electron bunch repetition rate in linac   | 93 kHz                     | 929 kHz                                                                            |
| Charge per bunch in SC- linac             | 0.02 nC                    | 0.1 nC                                                                             |
| Photon energy range                       | 200 – 8,000 eV             | 200 to ≥ 12,800 eV                                                                 |
| High rep-rate-capable HXR end stations    | ≥ 3                        | ≥ 5                                                                                |
| FEL photon quantity (10 <sup>-3</sup> BW) | 5×108 (50× spont. @ 8 keV) | > 10 <sup>11</sup> @ 8 keV (200 μJ)<br>or<br>> 10 <sup>10</sup> @ 12.8 keV (20 μJ) |

6

### LCLS-II-HE Project Collaboration (proposed)





- Accelerator and FEL Design
- Cryomodule and accelerator installation
- Cryoplant modifications & Helium distribution installation
- · High Power RF, low-level RF, and Controls
- X-ray instruments design & installation

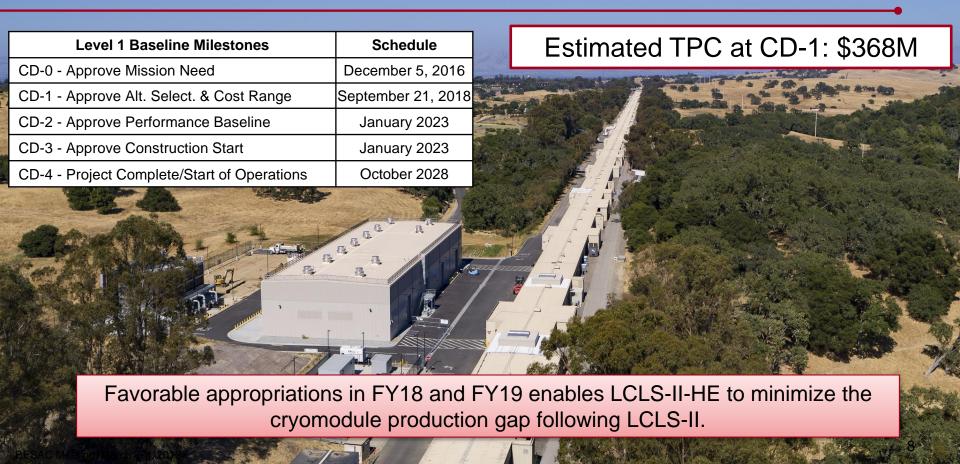


- High Q0 & High Gradient R&D
- Cryomodule design
- 50% of cryomodule production
- Processing for high Q
- Helium distribution system design and procurement



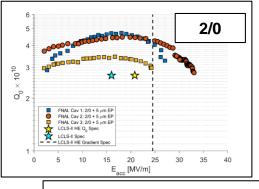
- High Q0 & High Gradient R&D
- 50% of cryomodule production
- Processing for high Q

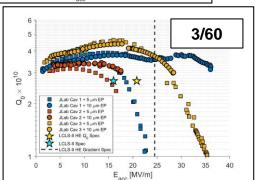


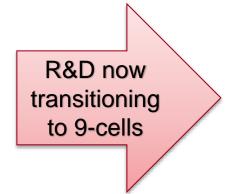

High Q0 & High Gradient R&D

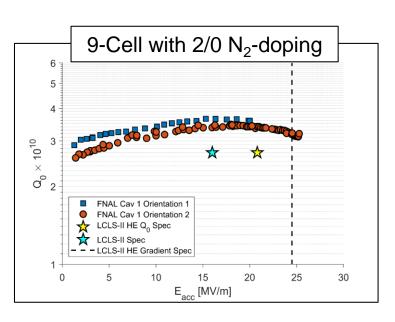


Accelerator Physics


BESAC Meeting, March 7-8, 2019


### LCLS-II-HE was awarded CD-1 in September 2018.





# Significant progress has been made on SRF High-Gradient/High-Q0 cavity R&D

2 cavity processing methods have demonstrated HE performance requirements on single cells.









2/0 cavity processing method can produce <u>9-cells</u> that meet LCLS-II HE spec!

#### 12-month Forecast

### Favorable appropriations have enabled a fast project launch!

- The Project collaboration is now being formed and will be codified under a new Memorandum of Agreement.
- Cavity R&D will culminate this year with 9-cells ready for prototype cryomodule demonstration.
- Construction of the HE Prototype cryomodule will begin after LCLS-II production ceases in late 2019.
- CD-3A review for cryomodule production is planned Q4FY19.
- Cryomodule supply chain procurements will commence following CD-3A ESAAB approval.

BESAC Meeting, March 7-8, 2019

10