

Linac Coherent Light Source –II Status Update

Re-purpose Near Experiment Hall

Exploit Existing & Upgraded

LCLS-II BESAC Report: 7/25/2013 CD-0 9/27/2013 CD-1 8/26/2014 CD-2, CD-3 3/21/2016 81% complete 1/31/2019 100% complete 5/30/2021 CD-4 6/30/2022

TPC: \$1,045M

LCLS-II Project Key Performance Parameters

Performance Measure	Threshold	Objective
Variable Gap Undulators	2 (SXR & HXR)	2 (SXR & HXR)
Super Conducting Linac Based FEL System		
Super Conducting Linac Energy	3.5 GeV	\geq 4 GeV
Electron Bunch Repetition Rate	93 kHz	929 kHz
Super Conducting Linac Charge per Bunch	0.02 nC	0.1 nC
Photon Beam Energy Range	250-3,800 eV	200-5,000 eV
High Repetition Rate Capable End Stations	≥ 1	≥ 2
FEL Average Power (10 ⁻³ BW)	5x10 ⁸ (10x spontaneous @2,500 eV)	>10 ¹¹ @ 3,800 eV
Normal Conducting Linac Based FEL System		
Normal Conducting Linac Electron Beam Energy	13.6 GeV	15 GeV
Electron Bunch Repetition Rate	120 Hz	120 Hz
Normal Conducting Linac Charge per Bunch	0.1 nC	0.25 nC
Photon Beam Energy Range	1,000-15,000 eV	1,000-25,000 eV
Low Repetition Rate Capable End Stations	≥2	≥3
FEL Photon Energy (10 ⁻³ BW ^a)	10 ¹⁰ (lasing @ 15,000 eV)	$> 10^{12}$ @ 15,000 eV

LCLS-II Mission Need and Key Performance Parameters Based on Findings of the

Report of the BESAC Subcommittee on Future X-ray Light Sources

The Linac: 35 1.3 GHz cryomodules Required

Two bunch compression chicanes

Copper linac removed---Superconducting accelerator and supporting infrastructure being installed

Out with copper,

In with niobium

1.3 GHz Cryomodules: 7 of 35 (+5 Spares) Delivered

- A. 2.4 K subcooled supply
- B. Helium gas return pipe (HGRP)
- C. Low temperature intercept supply
- D. Low temperature intercept return
- E. High temperature shield supply
- F. High temperature shield return
- G. 2-phase pipe
- H. Warm-up/cool-down line

Circuit (Line)

"Nitrogen doping" increases Q(cavity "quality factor") and reduces heat load on helium refrigeration system

High Q Nitrogen Doped Cavities

- ~3X improvement in "quality factor" Q (hence 1/3 power required to create the desired gradient) with nitrogen-doped superconducting RF cavities (Martinello, et al) A. Grassellino group # Fermilab
- Cooling requirement for CW operation is reduced dramatically
- Average for cryomodules so far: <Q> nearly 3x10¹⁰

JLAB-Designed Cryoplants Subsystems Installation Underway

X-Ray Undulators

All Soft XR undulators now @ SLAC

TUDIO

BERKELEY LAB

Hard XR undulators being prepared for installation by ANL, LBNL, SLAC

- "First light" from these undulators will be demonstrated using the LCLS "copper" linac
- Reestablishment of FEL operation begins 1/2020

Equipment Removal is Complete from the Near Hall and FEE

LCLS-II Coming to Life

- Electron gun & its laser checkout completion now
- New Hard X-Ray Undulator online February 2020 with electrons from the LCLS copper linac
- Cryomodules installed April 2020
- Cryoplant #1 commissioning April 2020
- "First light" using SC linac March 2021

SLAC and DOE for the opportunity to work on LCLS-II

LCLS-II collaboration for dedication and resourcefulness

Experts from across the National Lab system for invaluable information and advice

DESY and XFEL for advice & help in all areas superconducting

