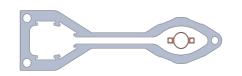

The APS Upgrade Project

Robert Hettel, APS Upgrade Project Director


BESAC Meeting Bethesda North Marriott Hotel and Conference Center, Rockville MD March 7, 2019

APS-U, a 4th generation storage ring light source, is underway

- 6 GeV, 200 mA, 1100 m circumference
- 42 pm-rad emittance
 - diffraction limit for 5.3 Å/2.3 keV
 - first hybrid 7BA lattice with reverse bends
 - on-axis swap-out injection
 - ~32 x 30 pm-rad round beam possible
- 9 superconducting and rebuilt PM planar undulators
- 100x 1000x increase in brightness and coherence of Ångstrom and sub-Ångstrom X-rays
- 9 new high performance beamlines, 15 enhanced beamlines
- Coherence preservation in beamlines (advanced optics simulation and characterization tools)
- Stability!
- High-performance computing and AI for experiment control and data analysis
- Utilizes ~1.5 B\$ of existing infrastructure

APS and APS-U chambers

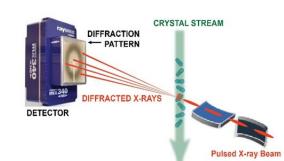
Vertical linear flexure stage

Multidimensional flexure stage for <50-nm hard X-ray focusing.

Horizontal linear flexure stag

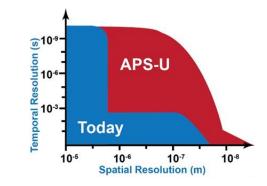
ertical axis tip-tilting stage

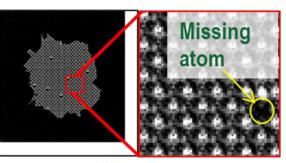
Horizontal axis tip-tilting stage


Mirror Bo

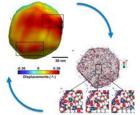
APS-U enables pivotal research across disciplines

Small-Beam Scattering & Spectroscopy

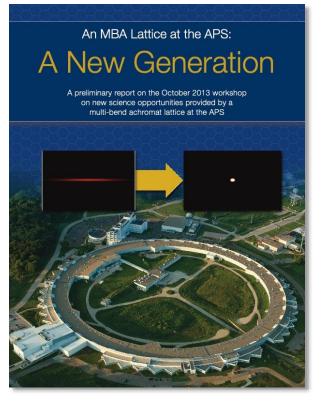

- Nanometer imaging with chemical and structural contrast; few-atom sensitivity
- Room-temperature, serial, single-pulse pink beam macromolecular crystallography

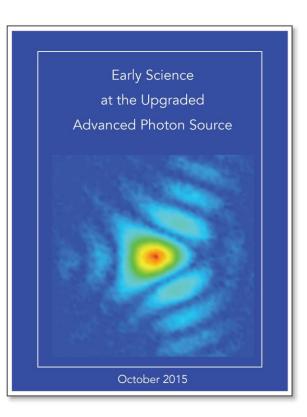

Resolution with Speed

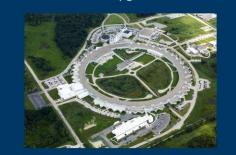
- Mapping all of the critical atoms in a cubic millimeter
- Detecting and following rare events
- Multiscale imaging: enormous fields of view with high resolution


Coherent Scattering & Imaging

- Highest possible spatial resolution: 3D visualization; imaging of defects, disordered heterogeneous materials
- XPCS to probe continuous processes from nsec onward, opening up 5 orders of magnitude in time inaccessible today,

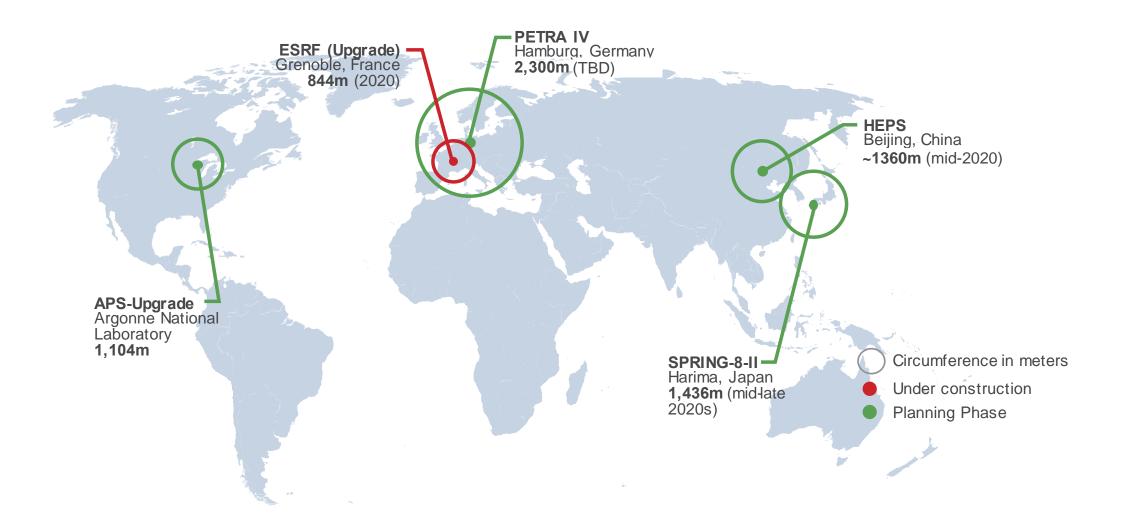

Exploit high performance computing, artificial intelligence

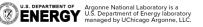

Automatic control of experiments, high volume data acquisition, analysis and reconstruction



APS-U science workshops

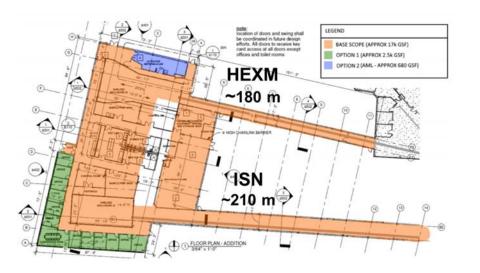
Argonne ANL-19/04 Workshop on Biological Science Opportunities Provided by the APS Upgrade

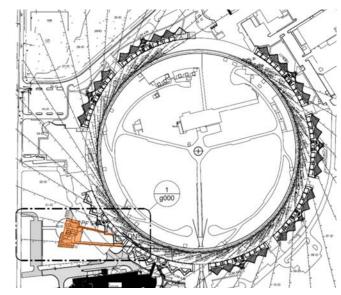



Argonne National Laboratory August 20-21, 2018

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

U.S. remains a leader in high energy X-ray science with the APS-U


APS-U new beamlines and capabilities

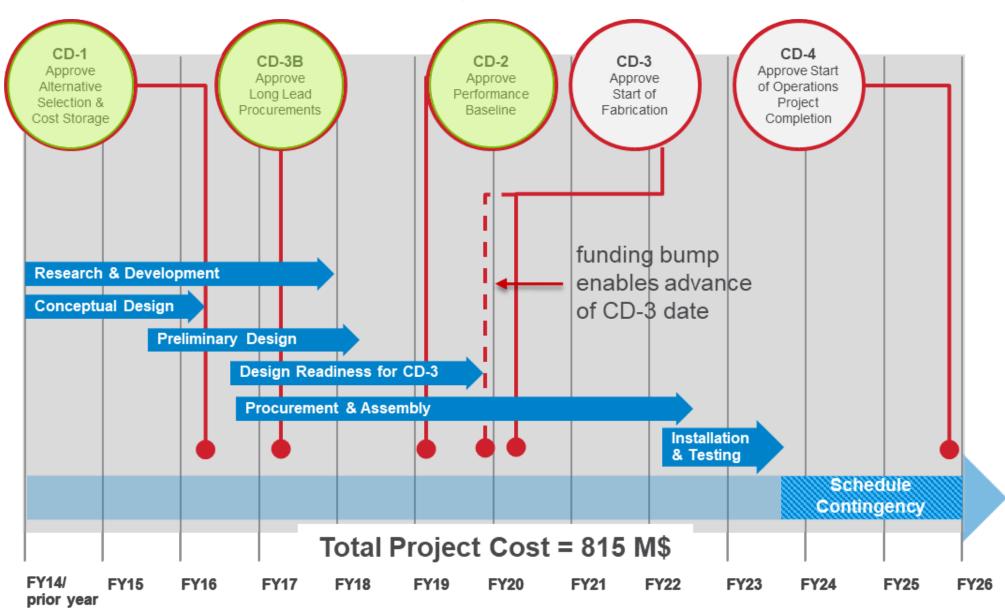

Loc.	Name	Title	Technique	Key Science Example
8-ID	XPCS	Small-Angle XPCS Beamline for Studying Dynamics in Soft Matter Wide-Angle XPCS and Time- Resolved Coherent X-Ray Scattering	Small angle XPCS Wide angle XPCS	Understanding soft matter assembly and dynamics, Glass hierarchical dynamics for super-strong materials, Fluid/solid interfaces,
28-ID	CHEX	Coherent High-Energy X-ray Sector for In Situ Science	In situ, high energy coherent scattering	Real-time imaging of film-growth for higher performance energy-to-light conversion, power transmission, and novel materials
33-ID	Ptycho	PtychoProbe	Sub-5 nm imaging with chemical contrast, extended further w/ lensless imaging to 1 nm and potentially below	Nano-architectured electrochemical structures & Defect engineering for devices, improved materials for infrastructure, buildings,
4-ID	Polar	Polarization modulation spectroscopy – Electronic Matter: Inhomogeneity, tunability, and discovery at extreme conditions	Magnetic Spectroscopy, combining nanofocusing w/ x-ray polarization,high pressure/low T/high field	Probe mesoscale electronic/magnetic ordering and excitations with resonant diffraction and inelastic scattering
34-ID	ATOMIC	Extremely high resolution coherent imaging of atomistic structures	Bragg coherent diffractive imaging, combining high spatial,	Image active catalytic materials approaching atomic resolution
	3DMN	3D Micro & Nano Diffraction	temporal and strain resolutions. 3D nano-diffraction with significantly improved sensitivity	Mapping single defects in nano-crystalline materials to improve thermoelectric devices, structural integrity of mechanical components

New beamlines and capabilities – cont.

Loc.	Name	Title	Technique	Key Science Example
9-ID	CSSI	Coherent Surface Scattering Imaging for Unraveling Mesoscopic Spatial- Temporal Correlations	Coherent GISAXS, XPCS	Visualizing nano-structured metamaterials in 3D for development of novel photonic materials and improved control of light-matter interaction
20-ID	HEXM	A High-Energy X-ray Microscope	High energy, high resolution diffraction microscopy and high energy CDI	Mesoscale grain dynamics under real conditions to develop new, more durable materials
19-ID	ISN	In Situ Nanoprobe	In-situ trace element, chemical state and structural imaging at 20 nm spatial resolution	Operando studies of element dependence of transport phenomena in new energy harvesting materials, catalytic processes,

Provision for future SC arbitrary polarizing emitter (SCAPE)

APS-U Key Performance Parameters


Key Performance Parameter	Thresholds (Performance Deliverable)	Objectives	
Storage Ring Energy> 5.7 GeV, with systems installed for 6 GeV operation		6 GeV	
Beam Current	\geq 25 mA in top-up injection mode with systems installed for 200 mA operation	200 mA in top-up injection mode	
Horizontal Emittance	< 130 pm-rad at 25mA	\leq 42 pm-rad at 200mA	
Brightness @ 20 keV1	$> 1 \text{ x } 10^{20}$	$> 1 \ge 10^{22}$	
Brightness @ 60 keV1	$> 1 \ge 10^{19}$	$> 1 \ge 10^{21}$	
New APS-U Beamlines Transitioned to Operations	7	≥ 9	

¹photons/sec/mm²/mrad²/0.1%BW

+ "Transition to Operations Parameters" for 9 new beamlines (brightness measurements)

APS-U project is on schedule

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

APS-U project is on schedule

Funding bump in FY18 and FY19:

- Enabled long lead procurement spending and early production of magnets, plinths, vacuum chambers, beamline components, power supplies, bunch lengthening system, etc.
- Enabled the project to really take off.

Look ahead over next 12 months:

- Long beamline building civil construction under way
- Magnet measurement lab complete
- 1321 storage magnets on order
- All large power supplies on order
- Plinths and supports on order
- First experimental hutch built
- Most beamline beam delivery systems and hutches on order
- And much more

Shielded enclosure panels

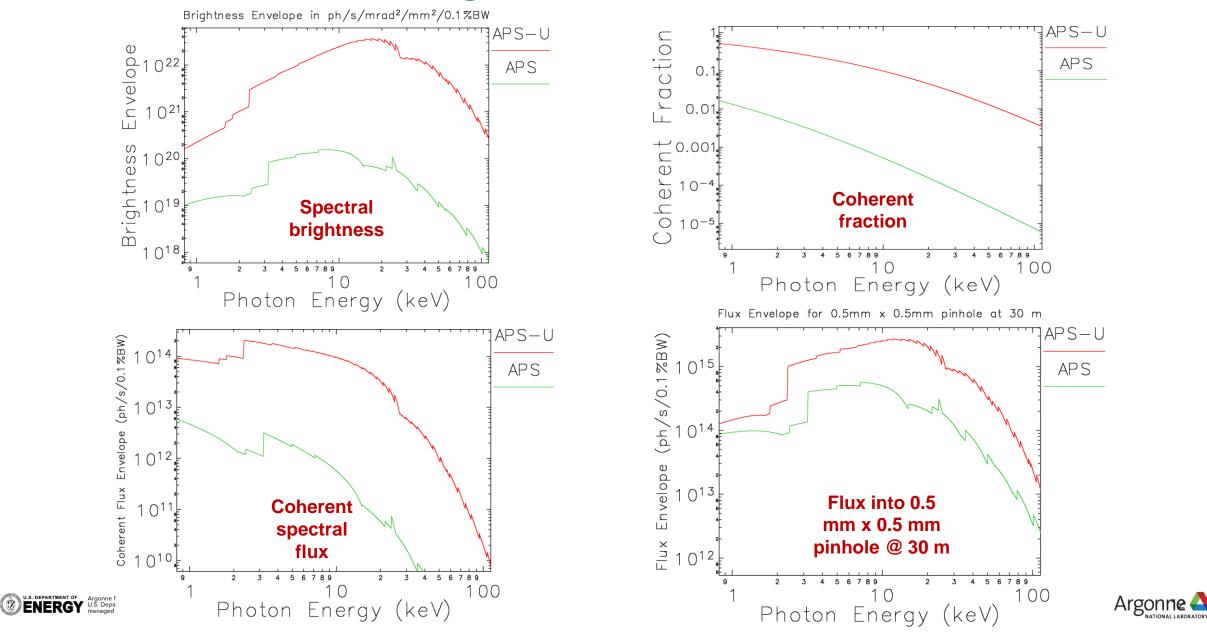
Production Q1 guadrupoles

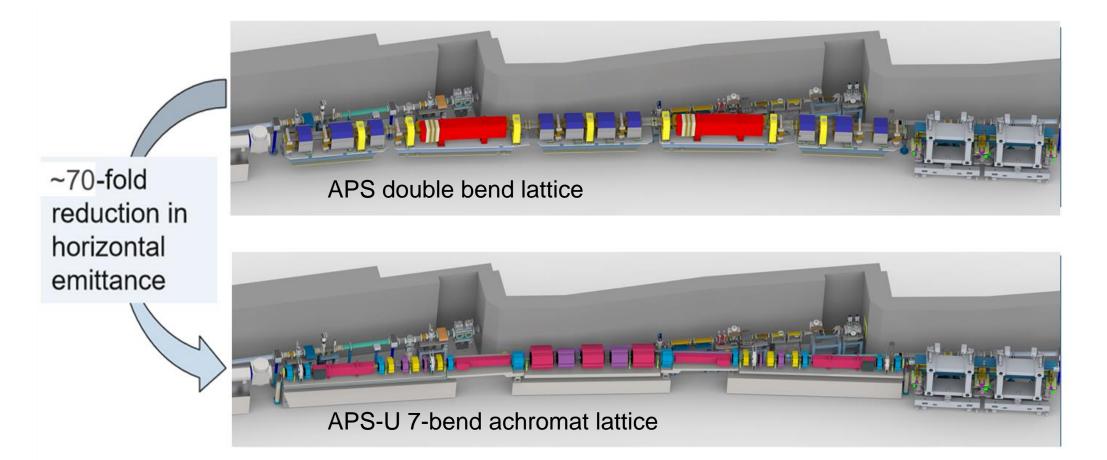
SC bunch lengthening cavity cryo-vessel

ID chamber extrusions

SC bunch lengthening cavity

Photon stoppers




back-up

APS-U Brightness and Coherence

APS-U – High brightness storage ring lattice

Hybrid 7BA lattice with longitudinal gradient, transverse gradient and reverse bend dipoles

$$\varepsilon \propto \frac{E^2}{(N_D N_S)^3}$$

APS/APS-U MAC Meeting

