

Proton Power Upgrade (PPU) Update

Presented to the Basic Energy Sciences Advisory Committee

John Galambos Director, SNS Upgrades Office Rockville, Maryland March 7, 2019

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Project motivation: Key science drivers

- PPU science drivers respond to grand challenges identified in DOE workshop reports
 - Non-equilibrium processes in active soft matter
 - Complex and dynamic biological systems
 - Highly entangled quantum states of matter
 - Liquid-solid reactions
 - Proton transfer processes
 - Chemical reactions at interfaces
 - Materials for extreme conditions
 - Interfacial science under non-equilibrium conditions
- PPU and the Second Target Station (STS) will ensure US researchers access to leading neutron science capabilities in the US

Machine design concept

- PPU doubles SNS proton beam capability from 1.4 MW to 2.8 MW
 - 2 MW to First Target Station (FTS), 0.8 MW to STS
 - 30% energy increase,
 50% current increase
 - Largely an extension of existing accelerator technology
 - Leverages built-in upgrade provisions

Key performance parameter	Threshold	Objective
Beam power on target (MW)	1.7	2.0
Beam energy (GeV)	1.25	1.3
Target operation without failure (hours)	1250 × 1.7 MW	1250 × 2.0 MW
Stored beam in ring (ppp)	1.6 × 1014 at 1.25 GeV	2.24 × 1014 at 1.3 GeV
Number of installed PPU cryomodules	6	7

Project scope

Superconducting linac (with JLab): 7 cryomodules

Ring (with FNAL): Injection, extraction

RF: Upgrade existing linac RF, RF for new cryomodules

Basis for WBS structure

Target: 2 MW target vessel, support system upgrades

Conventional facilities: Klystron gallery, transfer line stub for STS

CAK RIDGE HIGH FLUX ISPALLATION NATIONAL LABORATORY REACTOR SOURCE

PPU timeline CD plans are dependent on funding availability

- PPU will minimize user impact, with only one extended outage in 2023
- As PPU installs equipment, beam power will gradually be increased
- TPC estimate at CD-3a is
 \$239M

Level 1 Milestone	Date	Comments
CD-0, mission need	January 2009	Approved
CD-1, cost range alternative selection	April 2018	Approved
CD-3a, long lead procurement	October 2018	Approved
CD-2, performance baseline	Q1 2020	
CD-3, start of construction	Q1 2021	
CD-4, project completion	Q3 2027	Early completion: Mid-2024

Recent progress

Accelerator systems

- Long lead procurement for superconducting cavities placed
- High power RF equipment design and testing under way

RF high voltage modulator undergoing heat test

Target systems

- Testing gas injection techniques to mitigate target damage
- Upgraded full-scale mercury Target Test Facility

Upgraded Target Test Facility

One year forecast

Finalize cryomodule and high power RF designs / initiate procurements

Finalize target gas injection development

Complete klystron gallery final design / initiate construction

Discussion

- SNS upgrades will enable researchers to address new scientific capabilities
- SNS upgrades are needed to maintain US leadership in neutron sciences
- PPU is largely based on existing accelerator technology
- We are implementing target gas injection capabilities to mitigate damage at high power
- We are partnering with other labs to leverage fabrication capabilities
- Favorable FY18 and FY19 budget allocations have helped advance the project
 - CD-3a approval for early cavity procurement
 - Pursuing CD-3b long lead approval to accelerate the early power ramp-up