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Basic Research Needs — Use Inspired Basic Research

Transformative, not incremental research
directions

Fundamental science challenges to move the
technology forward

New techniques and methods

10-30 years out
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BRN for Microelectronics Workshop — Motivation

« Semiconductor-based microelectronics are critical to the U.S. economy,
scientific advancement, and national security

— Semiconductor products are currently the third largest class of U.S. exports
(behind aircraft and automobiles)

— U.S. companies account for more than 50% of the world market by revenue

— Semiconductor industry directly employs ~250,000 people; ~1 million
associated jobs

* The decades long success of Moore’s Law was driven by innovation
— Materials and chemical sciences
— Computer science
— Electrical engineering
— Fabrication technologies
 Additional innovation needed to keep up with dramatic market growth

7 et o gl Offegreds:  SIA “Made in America: The Facts about Semiconductor Manufacturing,” Aug. 2015
X ENERGY Science  SIA “2014 Factbook”, 2014




Motivation: CMOS scaling slowdown

FINFET

Global Foundries

14n

FinFET

Intel Technol. & Manufacturer’s Day, 2017

http://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/03/Mark-
Bohr-2017-Moores-Law.pdf
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Impact to computational materials science--example

Current trends will increase the length
scales-accessible by large-scale molecular JLos Alamos

NATIONAL LABORATORY

dynamics simulations

“2018"
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Power 6 MW ~ ~20 MW
System memory 03PB 5P8 1264 PB
% Node performance 126 GF 05TFor7TF 1TF or 10x
1 012 ™~ N Node memory BW 25 GBis 0.17TB/'s or 10x 047TB's or 10x
Node concurrency 12 O(100) O(1k) or 10x

Total Node Interconnect BW 15GB's 20 GB/s or 10x 200 GB/s or 10x

System size (nodes) 18,700 50,000 or 1/10x O(100,000) or 1/10 x
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Source: DOE Exascale Initiative Technical Roadmap

10° Clock speeds and bandwidths will
not increase substantially, so the
timescale challenge is going to
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Rise of data intensive & edge computing: two examples of Office
of Science data management needs

Future needs at BES Light Sources ** Aggregate data generation rates
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Rise of data intensive & edge computing

Need for new computing paradigms

Memory bottlenecks
Data transport
Low power computing

One approach
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Future Computing Technologies are Important to DOE
as well as many other Federal Agencies

« High-performance computing & simulation underpin DOE missions in
energy, environment, and national security
— Historical role of computing in DOE
— DOE/vendor synergies in deploying computing technologies

« Future computing technologies (e.g., quantum, neuromorphic,
probabilistic, etc.) hold promise for next-generation DOE mission
applications

— DOE research and facilities (e.g. HEP experiments, ASCR HPC, BES light
sources) will depend on advanced computing and sensing technologies

— Likely will augment, not replace, conventional supercomputing

— Could open new avenues for use of computing in science
(data analytics, machine learning, artificial intelligence, ...)

* New directions for applied mathematics and computer science are likely
to emerge that could enable new science across DOE-SC
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Call To Action

Significant challenges as CMOS extends below 5nm
The end to Moore’s Law will impact U.S. industry and competitiveness

The importance of this issue and its technical complication will require
Innovative approaches to keep the U.S. in a leadership position

Solving a problem of this scale will require “whole of government”
approach and a robust public/private partnership to apply the best
research from industry, academia and government research facilities to
allow the U.S. to successfully make this technology transition

DOE, and particularly the Office of Science, will play a significant
role in this effort

DOE-SC was charged with organizing a Basic Research Needs
Workshop to define the highest priority research directions
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Basic Research Needs for Microelectronics — Charge

A thorough assessment of the scientific issues associated with advanced
microelectronics technologies for applications relevant to the DOE mission.

Identify critical scientific challenges, fundamental research opportunities, and priority
research directions that require further study as a foundation for advances in
microelectronics over the next decade and beyond.

Particular emphasis on energy-relevant applications, and areas that are aligned with the
missions and needs of ASCR, BES, HEP including data management and processing,
power electronics, and high performance computing.

Examine extension of CMOS and beyond CMOS technologies, beyond exascale
technologies. however Quantum Information Science is outside the scope of this
workshop.

focus on a co-design innovation ecosystem in which materials, chemistries, devices,
systems, architectures, and algorithms are researched and developed in a closely
integrated fashion.

PN
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Basic Research Needs for Microelectronics Workshop participation

77 panelists, ~70 observers

Other Fed
Agencies
4%

By affiliation By expertise

Systems: circuits, micro-architecture, architecture, algorithms, software
Hardware: devices, materials, physics, chemistry
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Panels

Panelists were invited for their expertise — and are assigned to a particular
panel that will determine priority research directions in the breakout
sessions

1) Big data collection, analytics, processing for SC facilities
Leads: Kirsten Kleese van Dam (BNL) and Sayeef Salahuddin (UC Berkeley)

2) Co-design for high performance computing beyond exascale
Leads: James Ang (PNNL) and Thomas Conte (Georgia Tech)

3) Power control, conversion and detection
Leads: Debdeep Jena (Cornell U) and Robert Kaplar (SNL)

4) Crosscutting themes — may roam and join other panels
Leads: Harry Atwater (Caltech) and Rick Stevens (ANL)
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Oct 22-25

Themes

Panel
discussions

First cut

Co-chairs +
DOE team

2" round
panel
discussions

Revised

Co-chairs +

DOE team
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Summary Brochure Published on 7 December 2018

Basic Research Needs for

Microelectronics

Priority Research Directions
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Principles of co-design underpin all five priority research directions (PRDs)

Algorithms and programming paradigms
System architecture design and modeling
Interconnects and component integration
Devices and circuits

Physics of logic, memory, and transport

Fundamental materials science and chemistry
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PRD 1: Flip the current paradigm: Define innovative materials, device, and architecture
requirements driven by applications, algorithms, and software

*Develop an “end-to-end” co-design framework
*Applications €= Algorithms <= System SW €= System
HW

Applications

Algorithms
ENATE

Stacked PIMS B, C,
D,EF,G,H,IJ

* Novel Interconnect Networks Architecture
* Disaggregated memory

* Heterogeneous Integration

e STT circuit Accelerators "

* Single-electron Charge Logic Xyc E
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-
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devices

* Single Electron devices

* Magnetic/spin-torque RAM
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PRD 2: Revolutionize memory and data storage

Storage & Memory

SRAM DRAM Flash Hard Disk

>$300/GB $7/GB $1/GB $0.03/GB $0.01/GB >$3.5K/MB
10 nano-sec 50 nano-sec micro-sec milli-sec Seconds Hours
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. A A
e Density: 1-100s of atom memory - -
* Latency c c
. Q Q
* Bandwidth = =
* |In-memory computing In-memory
compute
) Q
N &
66 6?’(\
R, U.S. o .
U DEPARTMENT OF Offlce Of 21

ENERGY Science



PRD 3: Reimagine information flow unconstrained by interconnects

Data movement is growing exponentially

pJ/bit not ramping down significantly

Worthy Goal: >>Tbyte/sec-mm channel capacity for <100 fJ/bit
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Microelectronics moving to three dimensions

3D Logic

— 3D Memory

Thermal
Management

Interconnect &
Via
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PRD 4: Redefine computing by leveraging unexploited physical phenomena

Finding and understanding physical phenomena that can express computation

New ways of reasoning about computation

Leveraging physical processes to compute (“analogous computing”)
NvN Optimizers, both continuous and integer
Artificial Neural Networks

input layer

hidden layer 1  hidden layer 2 hidden layer 3

Algorithm

Language
API
Architecture
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FU
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PRD 5: Reinvent the electricity grid through new materials, devices, and architectures

Substation in a Suitcase

Silicon Carbide IGBT;
15 kV, 100 A;
50 kHz from Cree Inc.

IGBT

100 Ibs

8000 Ibs, 60 Hz Dtstnbutton Transformer
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