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BES pioneered fission and spallation neutron sources 

and now operates the world’s highest flux facilities

High Flux 
Isotope 
Reactor 

(HFIR) 

World’s 
highest 

continuous 
neutron flux

Spallation 
Neutron 
Source 
(SNS) 

World’s 
highest 
peak  
neutron 
brightness

DOE’s Oak Ridge National Laboratory is the cradle of neutron scattering. 
Today, SNS and HFIR form a world-leading center for neutron scattering studies of materials.
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Neutrons reveal Majorana 
fermions in a Kitaev quantum 

spin liquid 
(a-RuCl3 honey-comb lattice)

Banerjee et al., Science 2017

SNS & HFIR enable progress in forefront fields of 

research

Neutrons expose lipid 
nanodomains in a living 

bacterium 
(Bacillus subtilis) 

Nickels et al., PLoS Biology 2017

Neutrons relate ultrahigh   
piezoelectricity and multiscale 

structure in relaxor 
ferroelectrics 

Krogstad et al., Nature Mat. 2018

Neutrons validate novel 
proton conducting solid 
state battery materials

Kobayashi et al., Science 2016 
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Emerging science requires enhanced neutron scattering

What exotic particles exist in 
quantum spin liquids?

More long-wavelength neutrons at 
the STS will provide access to lower 
energy (meV) excitations and slower 
dynamic time-scales (ms) with high 

resolution 

e.g. probing visons in Kitaev quantum 
spin liquids 

How do complexes dynamically 
assemble within living cells? 

Beams of pulsed neutrons with higher 
peak brightness at the STS will 
provide access to single-pulse 

experiments, microsecond dynamics, 
and 100 millisecond time-resolutions 

e.g. in vivo dynamic self-assembly of 
membrane-less organelles linked to 

neurodegenerative disease

What are the mechanisms of 
catalysis in liquids and at 

interfaces?

The broad wavelength range
between short pulses of neutrons at 

the STS will allow simultaneous 
access to larger length and time 

scales 

e.g. in operando catalytic reactions 
such as dehydrogenation of liquid 

organic carriers
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SNS upgrades to accelerate scientific and 

technological progress

PPU project is 
an upgrade to 
the existing 
accelerator 
structure

• Doubles 
accelerator 
power 
capability

• Increases FTS 
neutron flux 
and provides 
new science 
capabilities

• Provides 
a platform 
for STS

STS project is a 
second target 
station with an 
initial suite of 
beam lines 
• More long-

wavelength  
neutrons

• Higher peak 
brightness

• Broader 
wavelength
range
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SNS Upgrade Plans

After PPU Upgrade

22 instrument slots, 8 initial 
instruments

24 instrument positions
21 instruments built
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24 instrument positions
19 instruments built

SNS First Target 
Station (FTS)

Accelerator

After STS Upgrade
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The Neutron Source Landscape is Evolving and 

Attracting Investment

Operating Spallation Sources

Operating Reactor Sources

Planned Spallation Sources

Planned Reactor Sources
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European investment in spallation sources

Journey	to	deliver	the	world’s	leading	facility	for	
research	using	neutrons

2

2014
Construction	Starts	on	
Green	Field	Site

2009
Decision	to	Site	ESS	
in	Lund

2025
ESS	Construction	
Phase	Complete

2003
European	Design	of	ESS	
Completed

2012
ESS	Design	Update	Phase	
Complete

2019
Start	of	Initial	
Operations	Phase

2023
ESS	Starts
User	Program

• Consortium of 16 European Countries 

• $2B investment in European neutron 
science to serve 6000 users

• 15 Instruments in the construction 
budget – can host up to 35 instruments

• 5 MW proton power 

• Long pulse source (~3ms@14Hz)

• Solid-W/He-cooled rotating target 

• Brightness optimized (Flat) moderators

• Time-averaged flux~ ILL-reactor

The European Spallation Source
Lund, Sweden 
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HFIR
ILL

FRM-II

Long-pulse
Spallation 

Reactors

Short-pulse
Spallation SNS-STS

As international capabilities expand, the SNS

upgrades will sustain U.S. 

leadership in neutrons

Instrument performance gains of 100 – 1000 make 
STS a next generation source enabling new 
science

CSNS: China Spallation Neutron Source, China

J-PARC: Japan Proton Accelerator Research Complex, Japan

ESS: European Spallation Source, Sweden

ILL: Institut Laue Langevin, France

FRM-II: Forchungsreaktor Munchen II, Germany

ISIS: UK 



13

Performance Gains via Development of Detectors, 

Optics and Software

• Impactful neutron science is becoming as 

reliant on sample environment, data 

analysis, and computing as on raw neutron 

flux

Detector Array at LET Spectrometer TS2@ISIS

• Major gains in source performance will continue to 

come from innovations in moderator design, 

neutron optics, and detector technology in the 

medium term.  Continual investment in these 

areas is essential. 

– Prudent to invest in new approaches for the 

cost effective generation of brilliant neutron 

beams (next generation of proton accelerators, 

laser driven sources etc). 
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Neutron Instrumentation Evolving to Enable New 

Insights

• Instruments and new source designs continue to 
evolve to address modern science problems 

Special issue on neutron 
instrumentation 

June 2018

• Next generation neutron instruments focus on: 

– Deep integration with complex sample environments 

– Small sample geometries 

– High throughput/ kinetic studies 

– Increase deployment of polarized neutrons over a variety 
of techniques 

– Rapid mapping of S(Q, w) at higher resolutions

• Next generation of moderators will be 
optimized on brilliance as opposed to flux.  

– Reduced dimensionality moderator promise 
relief from the 4p problem

– Focus beams in small sample volumes
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How Neutron Scattering Facilities Work

• Facilities as innovation hubs

– Science driven by user community 

– Instrumentation advances driven by facilities

– multi-disciplinary innovative environments

• Output driven by the quality of 

– Materials and ideas from users 

– Neutron Source

– Neutron instrumentation 

– Sample environment

– Instrument scientists

– Primary data analysis

– Theory and modelling

Pr2Zr2O7

Koohpayeh
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Scientific opportunities at the STS

Community workshops 2015-2016

• Emergent Quantum Materials

• Soft Condensed Matter

• Life Sciences

• Materials Discovery, Characterization, 
and Application

• Neutronic technologies for the STS

• Proposed instrument Concepts
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Exotic Quasi-particles in Quantum Magnets

CuCl2
.2N(C5D5)

Endoh, Shirane, 
Birgeneau et al. (1974)

KCuF3
Lake, Tennant, Caux et al. (2013) 

NaCaNi2F7

Plumb et al. (2018) 

polarized neutrons on HYSPEC-SNS 
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Spinons, visons, and majoranas in quantum magnets

Probing field driven phases
of quantum materials

• High efficiency 
Polarized INS

• Ultra high field 
scattering

• High pressure INS

• Time evolution 
beyond equilibrium

• Deep integration with 
theory and simulation

Bright cold neutrons @ STS:
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Soft matter:

Beyond equilibrium and in extreme conditions 

FTS capabilities: 
Sensitivity to H/D, non 
destructive and highly 
penetrating, dynamic time-
scales ~100 ns, time-
resolutions ~1 min, limited 
by weak-signal-to noise

Dynamic assembly and function of hierarchical systems – flow and shear – transport 
across films and membranes - soft matter under extreme conditions 

STS capabilities:
dynamic time-scales up 
to  ~1 ms, time-
resolutions down to ~10 –
100 ms, single-pulse 
experiments, 
simultaneous access to 
broader length-scales, 
S/N gains for 
experiments in operando 
and under extreme 
conditions

Phase morphologies

Srivastava et al., Nature Com. 2017

Kinetics, functional 
polymers and micelles

Dynamics & transport

Abney et al., J. Phys. Chem. Lett. 2017 Holt et al., Phys. Rev. Mat. 2017

Oppositely charged
tri-block 

co-polymers
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Materials and Chemistry:

In-situ, real-time imaging of synthesis, catalysis, and performance

SNS capabilities: 
Highly penetrating, 
sensitivity to light 
elements, and elements 
with neighboring Z, 
vibration spectra from >5 
to <400 meV, dynamic 
time scales ~ ps to ns, 
diffraction and total 
scattering, imaging, time-
resolutions ~ 1min. 

STS capabilities:
Large gains in signal-to-noise 
enable access to extreme 
environments and time-resolutions 
~ 50 ms, simultaneous 
measurements over broader 
dynamic range to characterize 
evolution of structure and chemistry 
in hierarchical materials

Functional materials 

Weinrauch et al.  Nature Com. 2017

Catalysis

Charles et al. Nature Comm. 2017 Shao et al., Nature Com. 2017

Energy storage

Monitor hierarchical materials across under their extreme operating conditions

Nb2O6

Batteries while discharging Engines while operating Hot crystalline turbines
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Biological Materials:

Directly following key processes within living systems 

SNS capabilities: 
Sensitivity to H/D, non 
destructive and highly 
penetrating, dynamic 
time-scales ~100 ns, 
time-resolutions ~15 
mins, direct visualization 
of H/D limited by weak-
signal-to noise

Dynamic assembly and function of complexes – disorder and flexibility – pathogenic 
misfolding and aggregation

STS capabilities:
time-scales ~1 ms, time-
resolutions 10 – 100 ms, 
single-pulse experiments, 
signal-to-noise gains 
enabling the study of 
critical process in vitro 
and within living systems, 
following catalytic 
reactions

Dynamics and disorderEnzyme and ligand designComplexes and Membranes

Vandavasi et al., Plant Phys. 2016 Kovalevsky et al., Structure 2018 Tian et al., Phys. Rev. Letters 2018
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Summary 

• BES pioneered fission and spallation neutron technologies

• Operating with high reliability near their design potential, SNS and HFIR form a world-leading facility 

for neutron scattering studies of materials

• Advanced materials with hierarchical structures and broad band dynamics require more long-

wavelength neutrons, higher peak brightness, and broader wavelength ranges

• PPU and STS upgrades will 

• Provide next generation capabilities to accelerate scientific and technological progress

• Sustain US leadership in an increasingly competitive international landscape of neutron facilities  

• World leading STS performance will open new windows on advanced materials:

• Quantum Matter: Broad band dynamics beyond equilibrium and under extreme conditions

• Softer Matter: Image hierarchical structure during self-assembly and flow

• Materials Chemistry: Structure of materials in operating technical systems

• Biological Materials: Imaging the living cell from atoms to membrane proteins 
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Discussion
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