SRs and XFELs in Asia-Oceania

Tetsuya Ishikawa

RIKEN SPring-8 Center Sayo, Hyogo 679-5148, Japan ishikawa@spring8.or.jp

12 July 2018@ BESAC_Rockville, MD, USA

SR Sources in Asia-Oceania

Australia

Australian Synchrotron (Clayton)

China

Beijing SR Facility (Beijing) Shanghai SR Facility (Shanghai) National SR Laboratory (Heifei) HEPS (Beijing) HALS (Heifei) Wuhan Xian

Dongguan

India

INDUS-II (Indore) Kolkata

Japan

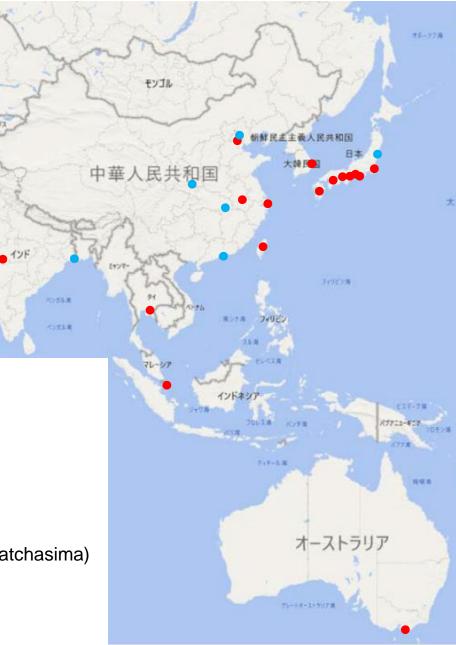
Photon Factory (Tsukuba) PF-AR (Tsukuba) UVSOR (Okazaki) AICHI SR (Seto) RITUMEI SRC (Kusatsu) SPring-8 (Harima) SPring-8-II (Harima) NEW SUBARU (Harima) HiSOR (Hiroshima) Kyushu SR (Tosu) SLiT-J (Sendai)

Korea

PLS-II (Pohang) Singapore SSLS

フスタン

きえろ


Taiwan

TLS (Hsinchu) TPS (Hsinchu)

Thailand

SPS (Nakhon Ratchasima) SPS-II

2nd generation, 3rd generation In construction/planning

Council Report 2018

AOFSRR workshop 2018 @ Taipei International Convention Center

AOFSRR 2018 Council meeting @ Grand Hyatt Hotel Taipei

AOFSRR 2018 Council Members

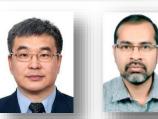
President

Andrew Peele (Australia)

Vice President

Shangjr Gwo (Taiwan)

Secretary General


Secretary

Treasurer

Richard Garrett

Yoshihisa Harada

Zhentang Zhao Tapas Ganguli (China) (India)

Sarawut Sujitjorn (Thailand)

Mark Breese

(Singapore)

In Soo Ko (Korea)

Keng Liang

Don Smith (New Zealand)

Open (Malaysia)

Representatives

Kosugi

(Japan)

Tran Duc Thiep (Vietnam)

Advisers

Masaki Takata

Australian Synchrotron – 2018 Progress

The Australian Synchrotron operates 10 beamlines:

- > 99% beam availability; 5000 hours User Operations
- > 6,500 registered users from over 80 research organisations
- > 3,000 Students and Early Career Researchers
- > 13% of users from international institutions

20% of articles in high impact journals (IF > 7)

Excellent Scientific Output from 2017

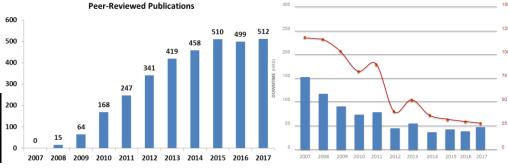
512 journal articles

~1000 experiments

5177 researcher visits

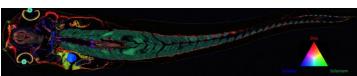
< 30 unplanned downtimes

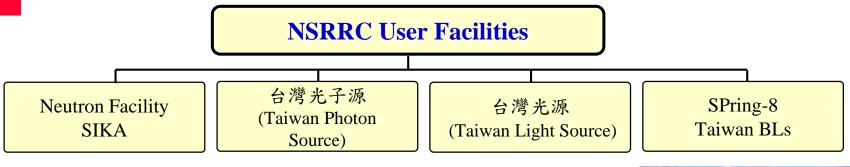
A wide range of Australian and international companies


New beamlines – part of the BRIGHT Program

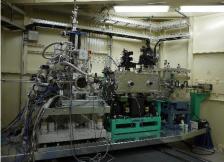
Micro Computed Tomography (MCT)* (*Commenced construction) Medium Energy XAS (MEX1 & MEX2)* Biological Small Angle X-ray Scattering (BioSAXS)* Advanced Diffraction & Scattering (ADS1 & ADS2) High Performance MX (MX3) X-ray Fluorescence Nanoprobe (Nanoprobe) Micro Materials Characterisation (MMC)

Beamline and Capability Developments


- ASCI High Performance Computing Cluster
 - MX structure solution; CT reconstruction & rendering; XFM analysis,...
- MX2 detector (EIGER 16M); MX1/MX2 sample robot upgrades - Average cycle time reduced from several minutes to -35 s.
- XFM fast scanning stages; Maia detector upgrade; Eiger X 1M
 - Simultaneous Milliprobe & Microprobe operation; ptychography
 - Toroidal Analyser ARPES
 - High-throughput NEXAFS
- IRM Focal Plane Array detector; Macro-ATR sample stages – Rapid, micron resolution IR maps of soft matter
- SAXS/WAXS endstation & detector upgrade; Co-Flow + SEC – High-throughput protein scattering, down to 0.005 mg/mL
 - IMBL Large Animal & Patient Position Systems
 - Phase contrast in vivo imaging & CT; ~80 kg & ~1 m high
- PD robotic sample changing & auto-alignment; battery carousel
 - High-throughput protein scattering, down to 0.005 mg/mL



Chris Clarkson, et al., Nature, 547, 306 (2017).

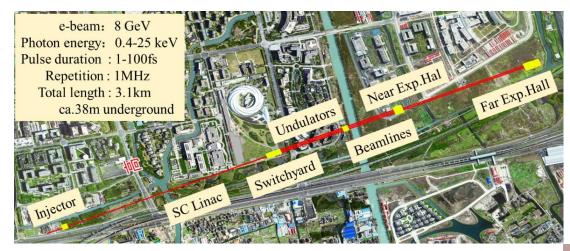


Accelerator-based Light Sources (still) in operation and to be constructed in Japan

MEXT	: Academic to S&T
Government	: Central to Local
Application	: Basic to Applied
Users	: Universities to Industries

1982 Photon Factory, IMSS, KEK	MEXT (Academic)	SX, HX	Тор-ир	to be upgraded again
1983 UVSOR, IMS	MEXT (Academic)	UV, SX	Top-up	upgraded to UVSOR III in 2012
1987 PF-AR, IMSS, KEK	MEXT (Academic)	НХ	Тор-ир	upgraded in 2002
1996 HiSOR, Hiroshima Univ.	MEXT (Academic)	UV, SX		
1996 Ritsumeikan SR	Ritsumeikan Univ.	UV, SX		
1997 SPring-8, RIKEN	MEXT (S&T)	НХ	Тор-ир	to be upgraded to SPring-8 II
1998 NewSUBARU	Hyogo Prefecture	UV, SX	(Top-up)	
2006 SAGA Light Source	Saga Prefecture	SX, HX		
2012 SACLA (XFELs), RIKEN	MEXT (S&T)	НХ		
2013 Aichi SR	Aichi Prefecture	SX, HX	Тор-ир	
2023? SLiT-J (3GeV), QST	MEXT (S&T)	SX, HX	Тор-ир	
+ regional assoc	iations in Tohoku			
(industries, pre	fecture, city, universitie	s)		

We hope MEXT(S&T) will soon (before the end of this June) approve the partnership between QST and the Tohoku team!


PAL? POHANG ACCELERATOR LABORATORY

SSRF, SXFEL and SCLF (Shanghai)

- A Soft X-ray FEL based on 1.5GeV C-band linac is under phased construction and commissioning
- A Hard X-ray FEL based on 8GeV SRF linac started its construction in April 2018

- 3.5GeV SR facility
- 3.9nm·rad emmitance
- 432m storage ring

SSRF Phase-II Beamline

Project with 16 new beamlines started in 2016 and will last for 6 years.

HEPS (Beijing)

- 6GeV SR facility
- 0.06nm·rad emittance
- 1360m storage ring

- A R&D project (HEPS-TF) with 50MUSD started in 2016.
- The project of HEPS has been approved by central government.
- Construction will start by end of 2018, and its commissioning is expected in 2024.

HALS (Hefei)

2.4GeV SR facility0.03nm·rad emittance672m storage ring

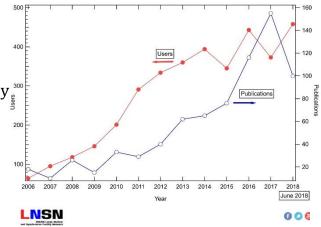
- A R&D Project for HALS was launched with 50M USD in December 2017.
- This project will be listed in the national big scientific infrastructure plan from 2021 to 2025.
- Its construction is expected to start in 2021.

Synchrotron Light Research Institute

1. Infrastructure

- Number of beamlines: **10** (operations) and **1** (under construction)
- New beamline for XAS using 3.5 T SMPW (designed and constructed by ³ NSRRC) will be in operation in 2019.
- Full injection for storage ring is in operation.

2. Statistics


- Number of proposal nearly 400 in 2017 and more than 450 in 2018 •
- Number of publications more than **150 papers** in 2017.
- Number of International users is about 10% (40 proposals)

3. Other activities

- An ASEAN network 'ASEAN Large Nuclear and Synchrotron facilities Network (LNSN) has been established.
- Collaboration with other synchrotrons (NSRRC, AS, Diamond, etc.)

4. Plan

Proposal for the 3rd generation synchrotron facility will be submitted in 2018.

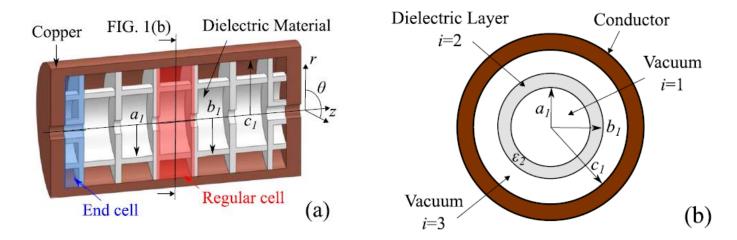
Concluding Remarks

SR Sources

- An MBA upgrade is planned for SPring-8
- Greenfield construction for MBA is underway at many facilities:
 - SLiT-J (Japan), HEPS (China), HALS (China), Wuhan (China), Xian (China), Dongguan (China), SPS-II (Thailand), Kolkata (India)
 - Japanese SLiT-J relies on funding from industry; Chinese facilities are funded partly by local governments.

XFELs

- 3 RT linac-based XFELs (SACLA, PAL-XFEL, SXFEL). An SC linac-based XFEL is planned in Shanghai (SCLF).
- Japan is exploring the possibility of making a 10 kHz machine using RT technology


RT Linac may Reach 10 kHz Repetition Rate

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 011302 (2016)

Dielectric assist accelerating structure

D. Satoh,^{1,*} M. Yoshida,² and N. Hayashizaki³ ¹Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan ²High Energy Accelerator Research Organization KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ³Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan (Received 7 October 2015; published 25 January 2016)

A higher-order TM_{02n} mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

