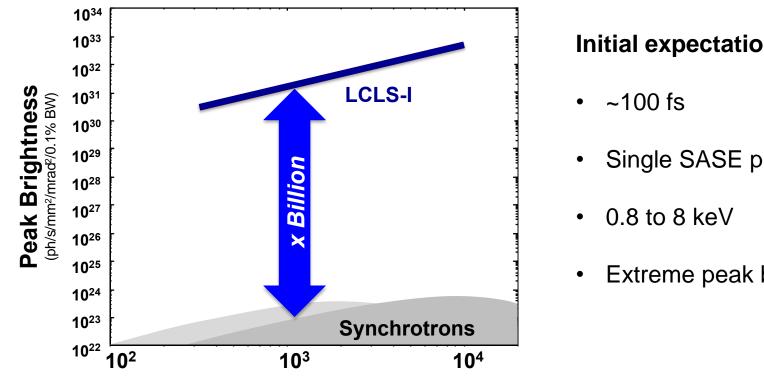
LCLS-II, LCLS-II-HE


Mike Dunne Director, LCLS

BESAC, July 2018

The performance of LCLS was designed to be a true game-changer

Photon Energy (eV)


Initial expectations:

Single SASE pulse

Extreme peak brightness

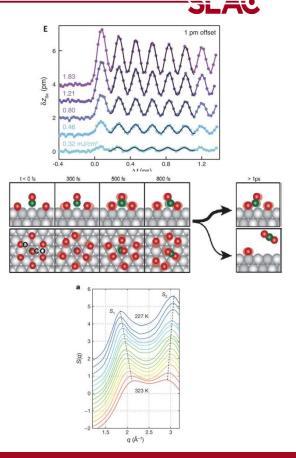
LCLS was a technical and scientific leap into the 'unknown'

The ability to tailor LCLS has far exceeded expectations, with major steps in capability year-on-year

The scientific reach of LCLS has been dramatically extended

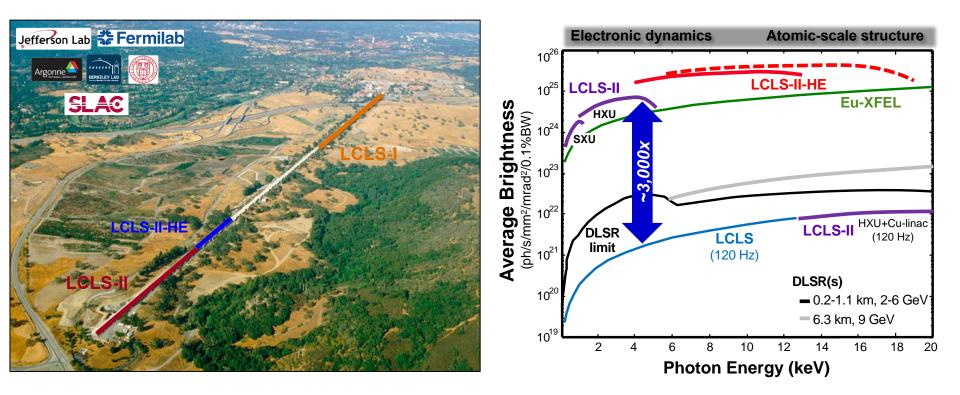
LCLS has opened new research opportunities to tackle grand challenge problems in multiple disciplines

Collective dynamics in complex materials


- Direct measurements of electron-phonon coupling (FeSe)
- Field-induced 2D to 3D charge density wave order (YBCO)
- Observation of purely relaxational diffusive dynamics (LBCO)

Real-time tracking of chemical bond formation

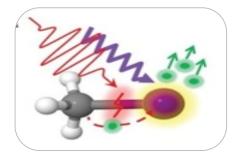
- Transient catalytic states in CO oxidation on metal surface
- Room temperature, damage free PS-II transient states
- Observing ionization and decay pathways (DNA repair)


Molecular dynamics in soft matter and biology

- Water structure below the ice nucleation temperature
- Ultrafast functional motions tracked in CO-myoglobin
- Structures of ligand-triggered riboswitch RNA reaction states

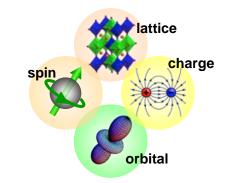
Pioneering results from LCLS have highlighted the key areas where coherence, fs time-resolution, and high power can have a revolutionary impact

LCLS-II and LCLS-II-HE will take us from 120 pulses per second to <u>1 million</u> pulses per second


LCLS-IICurrently 70% complete.Users online in 2021LCLS-II-HECD-1 review in June 2018.Targeting mid-decade users

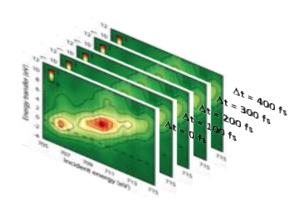
SLAC

LCLS-II will transform our understanding of dynamics in real-world materials and chemical science systems


Charge dynamics on fundamental timescales

- Reveal coupled electronic and nuclear motion in molecules
- Capture the initiating events of charge transfer chemistry with sub-fs resolution

Emergent phenomena in quantum materials


- Connect spontaneous fluctuations, dynamics and heterogeneities on multiple length- and time- scales to bulk material properties
- Study interacting degrees of freedom (e.g. unconventional superconductors)

Molecular dynamics with exquisite resolution

SLAC

- Measure element-specific, local chemical structure and bonding
- Study efficient, robust, selective photo-catalysts

The leap from 120 Hz to up to 1 MHz will be transformative

LCLS-II-HE will enable structural dynamics at the atomic scale – a key aspect of the BESAC Transformative Opportunities

Heterogeneity & complexity in ground & excited states

- Correlate catalytic reactivity and structure
- Real-time evolution with chemical specificity and atomic resolution

CXI of heterogeneous

nanoparticles in situ

Möller et al., lature Comm. (2014

Dynamics of biomolecules & molecular machines

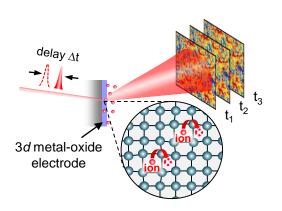
- Study large scale conformational changes via solution scattering
- Physiological conditions

Conformational (PE) landscape

hν

~*k*T

e-


Dynamics ties structure to function

ctive

site

Ground State <u>Fluctuations</u> & spontaneous evolution

- Characterize statistically dynamic systems without long-range order
- Inform directed design of energy conversion and storage materials

LCLS-II-HE provides the ability to study non-equilibrium phenomena and move beyond idealized materials and systems

The X-ray laser revolution is set to drive a new era of Grand Challenge discovery science

REVIEWS of

Published by American Physical Societ

From early scientific impact,

... to unprecedented measurements,

... to accessing critical new regimes,

... to full exploitation and exploration of new frontiers

ttosecond X-ray analysis

Basic Energy Sciences Roundtable Opportunities for Basic Research at the Frontiers of XFEL Ultrafast Science

