PRESENTED TO BESAC JULY 12, 2018

APS-U PROJECT UPDATE AND SCIENTIFIC IMPACT

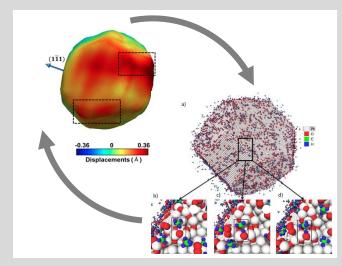
STEPHEN STREIFFER
Director
Advanced Photon Source

BES' LIGHT SOURCE STRATEGY

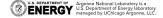
Responding to BESAC call to address pressing research needs, assure U.S. global leadership

Maintaining U.S. position within the competitive landscape was a central theme in the July 2013 Report of the BESAC Subcommittee on Future X-ray Light Sources

- "...recommendation for a new U.S. light source facility should not be based on capacity issues, but rather on sciencedriven needs for new and unavailable photon characteristics"
- "...The Office of Basic Energy Sciences should ensure that U.S. storage ring xray sources reclaim their world leadership position..."
- "...developments include diffraction limited storage rings with beamlines, optics and detectors compatible with the 10² – 10³ increase in brightness..."
- "...an exciting window of opportunity exists for the U.S. to provide a revolutionary advance in X-ray science by developing and constructing an unprecedented X-ray light source. This new light source should provide high repetition rate, ultra-bright, transform limited, femtosecond X-ray pulses over a broad photon energy range with full spatial and temporal coherence."


THE APS UPGRADE

OUTCOME


By 2026, the world's leading hard x-ray microscope — the upgraded APS — will enable multiscale, three-dimensional exploration of complex materials and chemical systems in unprecedented detail

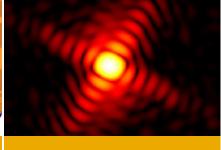
SIGNIFICANCE

APS-U will provide unique tools for understanding materials and chemical systems under operational conditions and at the atomic scale

Platinum nanoparticle in a catalytic environment: coherent diffractive image (left) and molecular dynamics simulation (right)

APS-U

A new analytical tool to approach the supreme goal of measurement science: to map any atom's position, identity, and dynamics


High Energy

Penetrating bulk materials and operating systems

Brightness

Providing
macroscopic 3D
fields of view with
nm-scale resolution

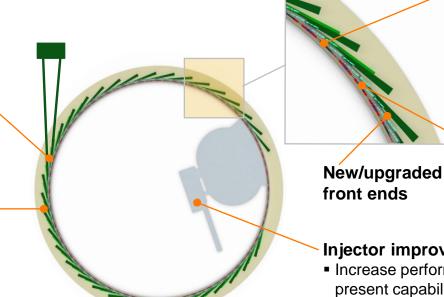
Coherence

Enabling highest spatial resolution even in non-periodic materials

Complementary to other DOE light sources

- NSLS-II
- SSRL
- ALS-U
- LCLS-II(-HE)

APS UPGRADE PROJECT SCOPE


Maximize scientific capability

Feature beamlines

Suite of beamlines. including long beamlines, designed for best-in-class performance

Beamline enhancements

- Improvements to make beamlines "Upgrade Ready"
- Existing beamlines are planned to come back online after the upgrade

New storage ring

- 6 GeV with 200 mA. 42 pm-rad emittance
- Hybrid 7BA lattice with reverse bends
- Improved electron and photon stability

New insertion devices

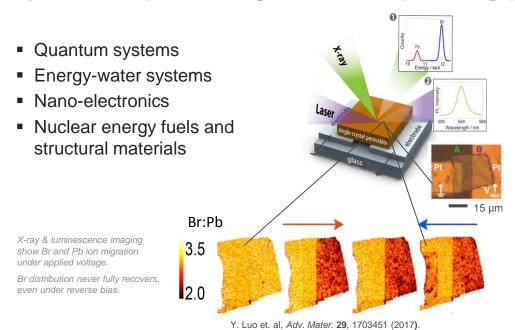
Including superconducting undulators

Injector improvements

 Increase performance beyond present capability

APS UPGRADE STATUS

- Storage ring hardware development phase is drawing to a close and detailed designs for all systems are in full swing
- Beam physics and lattice design were independently reviewed and confirmed in May 2018
- Execution of ~\$42M of CD-3B authorized LLPs for storage ring, front ends, insertion devices, and beamlines is underway
- CD-2 Review will take place in October 2018
- Earliest first light in 2023, CD-4 in FY26



SC SCAPE ID

IN SITU AND OPERANDO STUDIES OF DEFECTS

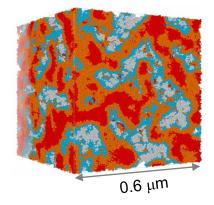
Development of advanced materials requires understanding of defect dynamics (including interfaces) during processing and operation

MULTIMODAL CHARACTERIZATION

 Operando studies of transport behavior, chemical reactions, and optoelectronic phenomema in novel materials

FUTURE

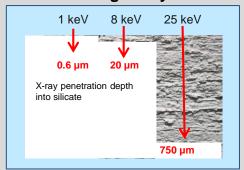
- 10x increased resolution enables probing of single defects
- 1000x increased flux enables fast tracking of metastable intermediates and crystallization during growth, and the ability to capture rare events
- Broad in-situ capabilities enable deeper understanding of material evolution during processing

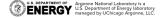


TRANSPORT AND DYNAMICS IN NANOSCALE NETWORKS

APS-U enables imaging across nano- and mesoscales

EXAMPLE PROBLEM


- Nanoscale pore spaces play a major role in properties of silicate composites, e.g. during water freeze/thaw
- Can now simulate calcium silicate hydrate on micron-size scales
- But can NOT effectively characterize
 1-20 nm pore networks across relevant
 3D field of view, because adequate tools with both high resolution and extended 3D field of view are not available today



Simulated calcium silicate hydrate (C-S-H): K. loannidou et al, PNAS, 2016. 113 (8) 2029-2034

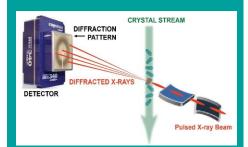
APS-U will make it possible to determine structure and chemical composition at nanoscale resolution matched to pore network, in relevant sample volumes

- Structural materials, including concrete
- Electrochemical systems
- Soil networks, other environmental systems
- Cells and other biological systems

ACCELERATING STRUCTURE BASED DRUG DESIGN AND DISCOVERY


Drug discovery is slow and extremely costly

interpretation


Opioid (pain killer) crisis: µ-opioid receptor

G-protein coupled receptors are the largest class of pharmaceutical targets

μ Opioid receptor in the active state with a morphinan agonist bound APS-U enables highthroughput structure determination up to 1,000's of structures per day

Drug development at APS

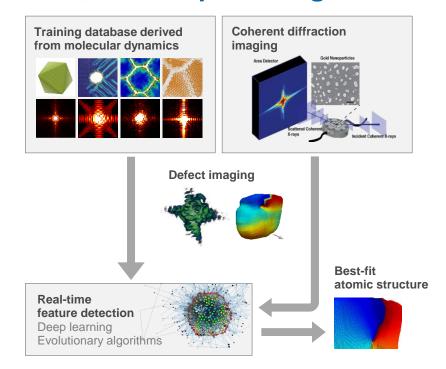
Januvia
diabetes. Merck

Kaletra HIV. AbbVie

Votrient
kidney cancer,
GlaxoSmithKline

Zelboraf *melanoma, Genentech*

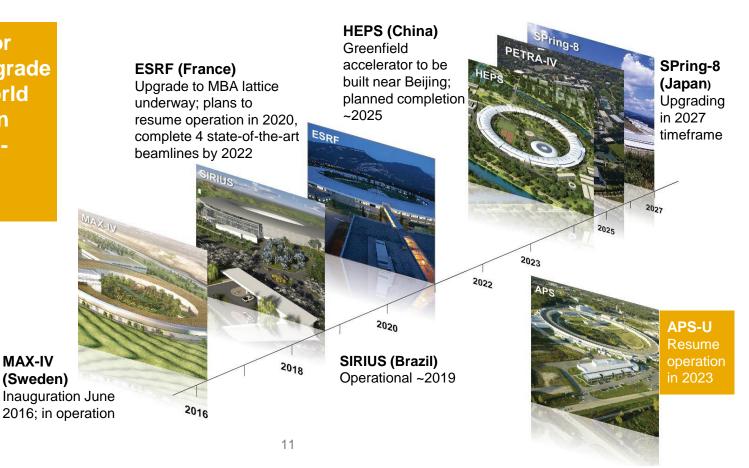
Venclexta leukemia, AbbVie



X-RAYS AND ARTIFICIAL INTELLIGENCE

Combining coherent imaging, simulation, and deep learning

- A single APS beamline can currently produce 200TB/day
- Expected to produce 10-100PB/day raw data in 10 years
- Single Reconstruction:
 - Today: 512 x 512 x 512 volume elements
 - 30 gigabytes (for phasing)
 - 7nm resolution
 - APS-U: 5120 x 5120 x 5120 volume elements
 - 30 terabytes (for phasing)
 - 7Å resolution



TO STAND STILL IS TO LOSE GROUND

Our plans for the APS Upgrade maintain world leadership in storage ringbased x-ray sources

Argonne Argonatory