PRESENTED TO BESAC JULY 12, 2018

APS-U PROJECT UPDATE AND SCIENTIFIC IMPACT

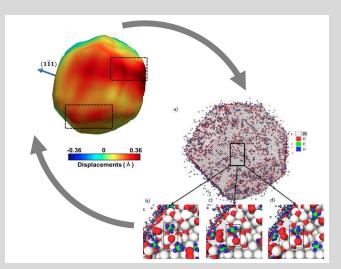
STEPHEN STREIFFER Director Advanced Photon Source

RGCY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BES' LIGHT SOURCE STRATEGY Responding to BESAC call to address pressing research needs, assure U.S. global leadership

Maintaining U.S. position within the competitive landscape was a central theme in the July 2013 *Report of the BESAC Subcommittee on Future X-ray Light Sources*

- "…recommendation for a new U.S. light source facility should not be based on capacity issues, but rather on sciencedriven needs for new and unavailable photon characteristics …."
- "...The Office of Basic Energy Sciences should ensure that U.S. storage ring xray sources reclaim their world leadership position..."
- "...developments include diffraction limited storage rings with beamlines, optics and detectors compatible with the 10² – 10³ increase in brightness…"
- "…an exciting window of opportunity exists for the U.S. to provide a revolutionary advance in X-ray science by developing and constructing an unprecedented X-ray light source. This new light source should provide high repetition rate, ultra-bright, transform limited, femtosecond X-ray pulses over a broad photon energy range with full spatial and temporal coherence."


THE APS UPGRADE

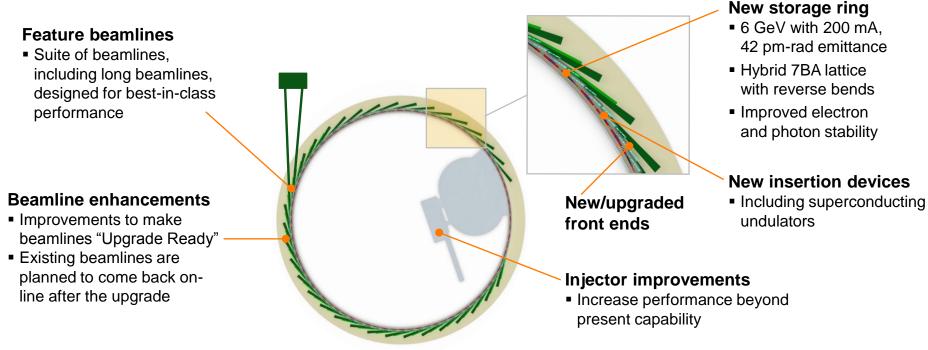
OUTCOME

By 2026, the world's leading hard x-ray microscope the upgraded APS — will enable multiscale, threedimensional exploration of complex materials and chemical systems in unprecedented detail

SIGNIFICANCE

APS-U will provide unique tools for understanding materials and chemical systems under operational conditions and at the atomic scale

Platinum nanoparticle in a catalytic environment: coherent diffractive image (left) and molecular dynamics simulation (right)


APS-U A new analytical tool to approach the supreme goal of measurement science: to map any atom's position, identity, and dynamics

			Complementary to other DOE light sources NSLS-II SSRL
High Energy	Brightness	Coherence	 ALS-U LCLS-II(-HE)
Penetrating bulk materials and operating systems	Providing macroscopic 3D fields of view with nm-scale resolution	Enabling highest spatial resolution even in non-periodic materials	

APS UPGRADE PROJECT SCOPE

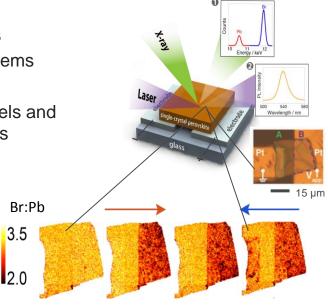
Maximize scientific capability

APS UPGRADE STATUS

- Storage ring hardware development phase is drawing to a close and detailed designs for all systems are in full swing
- Beam physics and lattice design were independently reviewed and confirmed in May 2018
- Execution of ~\$42M of CD-3B authorized LLPs for storage ring, front ends, insertion devices, and beamlines is underway
- CD-2 Review will take place in October 2018
- Earliest first light in 2023, CD-4 in FY26

for rapid scan nanoprobe

SC SCAPE ID



IN SITU AND OPERANDO STUDIES OF DEFECTS Development of advanced materials requires understanding of defect dynamics (including interfaces) during processing and operation

- Quantum systems
- Energy-water systems
- Nano-electronics
- Nuclear energy fuels and structural materials

X-ray & luminescence imaging show Br and Pb ion migration under applied voltage.

Br distribution never fully recovers, even under reverse bias.

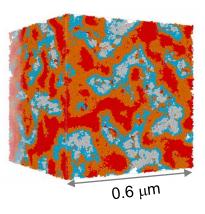
Y. Luo et. al, Adv. Mater. 29, 1703451 (2017).

MULTIMODAL CHARACTERIZATION

 Operando studies of transport behavior, chemical reactions, and optoelectronic phenomema in novel materials

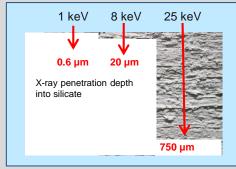
FUTURE

- 10x increased resolution enables probing of single defects
- 1000x increased flux enables fast tracking of metastable intermediates and crystallization during growth, and the ability to capture rare events
- Broad *in-situ* capabilities enable deeper understanding of material evolution during processing



TRANSPORT AND DYNAMICS IN NANOSCALE NETWORKS

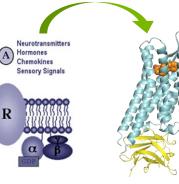
APS-U enables imaging across nano- and mesoscales


EXAMPLE PROBLEM

- Nanoscale pore spaces play a major role in properties of silicate composites, e.g. during water freeze/thaw
- Can now simulate calcium silicate hydrate on micron-size scales
- But can NOT effectively characterize 1-20 nm pore networks across relevant 3D field of view, because adequate tools with both high resolution and extended 3D field of view are *not available today*

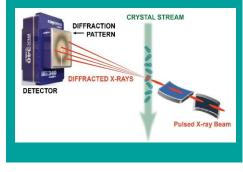
Simulated calcium silicate hydrate (C-S-H) : K. Ioannidou et al, PNAS, 2016. 113 (8) 2029-2034 **APS-U** will make it possible to determine structure and chemical composition at nanoscale resolution matched to pore network, in relevant sample volumes

- Structural materials, including concrete
- Electrochemical systems
- Soil networks, other environmental systems
- Cells and other biological systems



ACCELERATING STRUCTURE BASED DRUG DESIGN AND DISCOVERY Drug discovery is slow and extremely costly

Opioid (pain killer) crisis: µ-opioid receptor



G-protein coupled receptors are the largest class of pharmaceutical targets

Model from biochemical interpretation

μ Opioid receptor in the active state with a morphinan agonist bound APS-U enables highthroughput structure determination up to 1,000's of structures per day

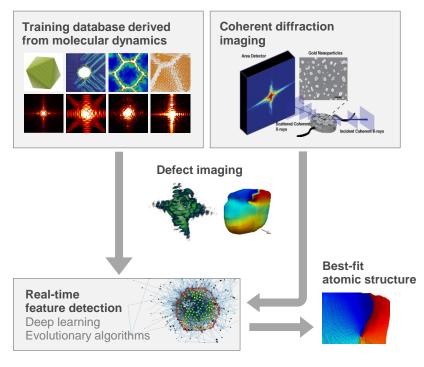
Drug development at APS

Januvia diabetes, Merck

Kaletra HIV, AbbVie

Votrient kidney cancer, GlaxoSmithKline

Zelboraf melanoma, Genentech Venclexta leukemia, AbbVie



X-RAYS AND ARTIFICIAL INTELLIGENCE

Combining coherent imaging, simulation, and deep learning

- A single APS beamline can currently produce 200TB/day
- Expected to produce 10-100PB/day raw data in 10 years
- Single Reconstruction:
 - Today: 512 x 512 x 512 volume elements
 - 30 gigabytes (for phasing)
 - 7nm resolution
 - APS-U: 5120 x 5120 x 5120 volume elements
 - 30 terabytes (for phasing)
 - 7Å resolution

TO STAND STILL IS TO LOSE GROUND

Our plans for the APS Upgrade maintain world leadership in storage ringbased x-ray sources

ESRF (France) Upgrade to MBA lattice underway; plans to resume operation in 2020, complete 4 state-of-the-art beamlines by 2022

2016

HEPS (China) Greenfield accelerator to be built near Beijing; planned completion ~2025

SPring-8 (Japan) Upgrading in 2027 timeframe

2027

2025

2022

2023

SIRIUS (Brazil) Operational ~2019

2020

APS-U Resume operatior in 2023

(Sweden) Inauguration June 2016; in operation

MAX-IV

2018

Argonne