Hewlett Packard Enterprise

Computing for a new era

John Paul Strachan, Miao Hu, Cat Graves, Suhas Kumar, Naveen Muralimanohar, Dejan Milojicic, R. Stanley Williams

BESAC Meeting

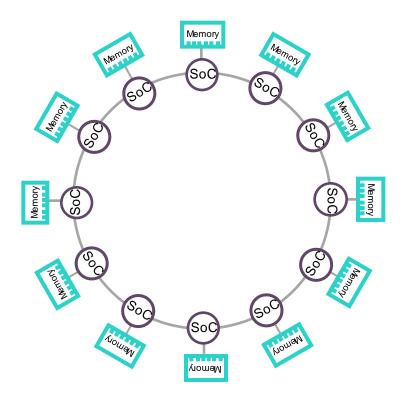
July 13, 2017

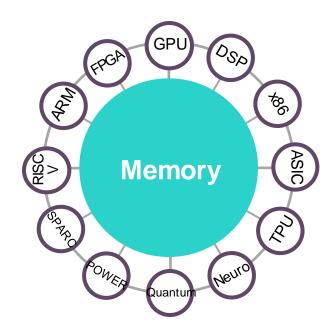
What's Next?

The end of Moore's law could be the best thing that has happened in computing since the beginning of Moore's law.

Future exponential increases in computer performance and efficiency will require multiple advances:

- Memory-centric computing no von Neumann bottleneck
- Gen-Z high performance open fabric to democratize computing


(<u>http://genzconsortium.org/</u> - ~40 companies so far)


 Dot-product engine: memristor-based vector-matrix multiplication accelerator for neural nets and signal processing

Chaos as a computing resource for constrained optimization

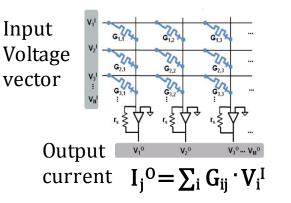
Systems and Architectures

Devices

From processor-centric computing...

the traditional von Neumann architecture

Hewlett Packard Enterprise ...to Memory-Driven Computing


with Gen-Z open (nonproprietary) fabric, computing is plug and play


Memory-Driven Computing (MDC) is a reality: The Machine

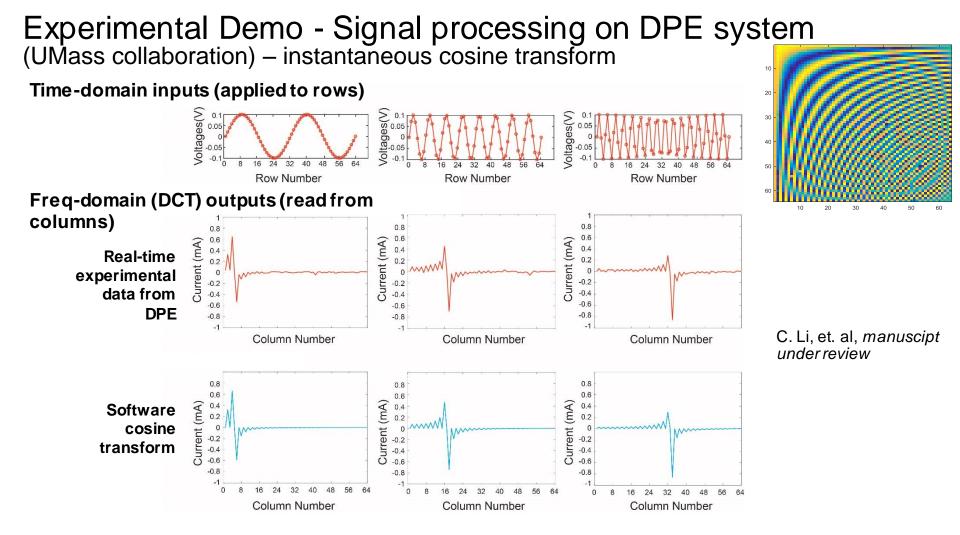
	Fast, persistent memory	Fast memory fabric	Task-specific processing	New and Adapted software
	Combining memory and storage in a stable environment to increase processing speed and improve energy efficiency	Using photonics where necessaryto eliminate distance and create otherwise impossible topologies	Optimizing processing from general to specific tasks	Radically simplifying programming and enabling new applications that we can't even begin to build today
	Gen-Z fabric: ultra bandwidth open bi democratize comp		ous to	to 8000x speed-up for Monte Carlo simulations
	Memristor technology, ongoing transfer from lab to commercial product		Developing new accelerators from novel device behavior	
T	Hewlett Packard			The second second second second

Enterprise

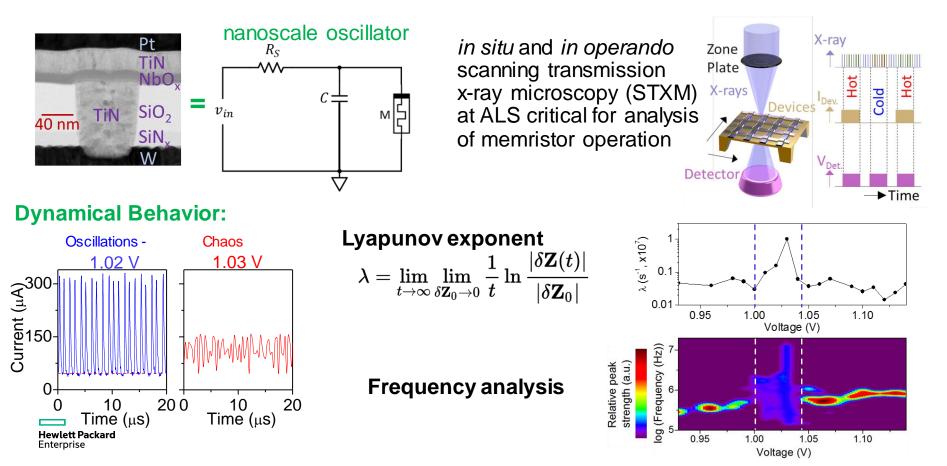
Dot Product Engine: memristor arrays accelerate vector-matrix multiplication

Parallel multiply & add through Kirchoff's and Ohm's laws

1961, K. Steinbuch "Die Lernmatrix"- suggests using "ferromagnetic toroids"


- Memristors as highly scalable, tunable analog resistors
 High ON/OFF ratio (~10⁵), supporting multiple levels
- Well suited for streaming workloads like neural nets
- Many ways to scale up

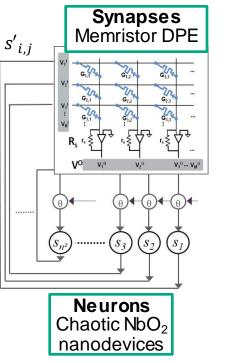
Memristor levels, array size, wire pitch, 3D layer, DAC/ADC speed & width etc.


 Performance (execution time) improvements >1000x and

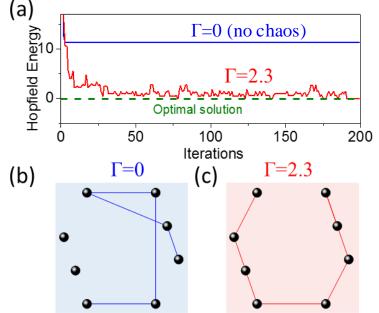
energy efficiency >100x over GPUs for <u>particular</u> applications

Hewlett Packard Enterprise

NbO₂ memristor: computing with nonlinear dynamics and chaos



Chaos enabled Hopfield network for optimization problems



Traveling Salesman problem:

Find shortest route visiting all cities

Example solutions w/ and w/o chaos

Hewlett Packard Enterprise

S Kumar, et al. Nature, in press

Acknowledgments

Miao Hu Suhas Kumar Catherine Graves Emmanuelle Merced Dejan Milojicic Ali Shafiee Naveen Muralimanohar Stan Williams

Jianhua Yang Qiangfei Xia Can Li Yunning Li

Izzat El Hajj (UIUC) Pedro Bruel (IME)

David Kilcoyne David Vine

Johanna Weker Hendrik Ohldag

Funding assistance

Synchrotron at LBNL

To study the very small, we had to use the very large

The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory

