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Changes in Our Energy Landscape Drive the Need for Advances in Catalysis
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Impact of New Energy Technologies on the US Chemical Industry
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New Paradigms in Catalysis Science

Metal-free redox catalysis using
Frustrated Lewis Pairs (FLPs)

R F

(CeF5)B PMes,

F F

H,, 25 °C l T 150 °C

(CeFs5)2B
S

Room temperature H, activation leads to
hydrogenation of unsaturated organic compounds.

Qphan,Acc. Chem.Res. 2015,48, 306-9y

/Stabilization of isolated metah

atoms on oxide supports

Individual Pt atoms (brightdots) are stabilized on
the surface of CeO, and catalyze CO oxidation

withoutsintering.

\Datye etal., Science 2016, 353, 150-154/

/Outer coordination sphere\

assistance in multiproton,
multielectron reactions

The rate of electrochemical H,evolution is
dramaticallyenhanced bystrategic placement of
pendantaminesthatfunction as protonrelays to a
metal hydride.

@k etal.,, Chem.Commun.2014,50,3125-3143
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Dedicated Olefin Synthesis from Methanol

On-Purpose Propylene Production
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Low Temperature Catalysts for Diesel Exhaust Aftertreatment

Fuel-efficient diesel vehicles created new challenges for catalysis. Starting in 2007, NOx had to be removed from exhaust gases to
meet stricter air quality standards. In selective catalytic reduction (SCR), a Cu/zeolite catalyst uses NH; to reduce NO, to N,.

NO,/temperature i

Ammonia-exhaust mixer
sensor

Exhaust-gas temperature sensor

McEwen, Pedenetal., ACS Catal. 2014, 4, 4093

Selective
Aqueous reduction

urea

Inlet

Diesel oxidation catalyst

Catalyzed diesel particulate filter O '
n

Ford DOC-SCR-DPF system layout
Beale etal., Chem.Soc. Rev. 2015,44, 7371

1907 cm’!
o o O Q0 o

Cu Al Si N O H 2000 1900 1800 1700
Wavenumbers (cm™)

Bifunctional Cu/chabazite catalyst, selective &
for SCR and resistant to poisoning due to |
Cu?* confinement in small zeolite pores
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New Catalysis Science to Transform Energy Technologies

From feedstock focus to understanding and using chemical complexity.

BRN 2007

.......

Mechanisms and dynamics
Controlled catalyst synthesis
Heavy fossil energy feedstocks
Biologically derived feedstocks
Conversion of CO, and H,0O

BRN 2017

Basic Research Needs
Catalysis Science to Transform
Energy Technology

A

Standard free energy G°

+BH* + H,0

Panel 1: Diversified Energy Feedstocks and Carriers

Panel 2: Novel Approaches to Energy Transformations
Panel 3: Advanced Chemical Conversion Approaches
Panel 4: Cross-cutting Capabilities and Challenges in

Carl Koval
University of Colorado, Boulder

\
Johannes Lercher
Pacific Northwest National Lak

Technical UniversityMunich

Susannah Scott
UC Santa Barbara

Synthesis, Characterization, Theory and Computation
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Plenary Presentations at May Workshop

Catalyst Design for Sustainable Production of Fuels and Chemicals Jens Norskov (Stanford)

The Nexus of Reaction Mechanism and Dynamic Materials Properties in Designing Catalytic
B . :
i : Processes Cynthia Friend (Harvard)

i

Opportunities for Catalysis in Utilization of Biomass Resources Jim Dumesic (Wisconsin)

Creating New Economic Advantages from US QOil and Gas Jim Rekoske (UOP)
Lessons From the Quest for Cellulosic Biofuels...... Kim Johnson (Shell)

Impact of Catalytic Technology on Use of Renewable Energy Resources
Reuben Sarkar (EERE)

Frontiers, Challenges and Opportunities in Biological and Bio-Inspired Catalysis
Russ Hille (UC Riverside)

U.S. DEPARTMENT OF Office of
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Panel Breakout Sessions at May Workshop

Panel 1: Diversified Energy Feedstocks and Carriers
Geoffrey Coates, Cornell University
Enrique Iglesia, University of California Berkeley, and Lawrence Berkeley National Laboratory

Panel 2. Novel Approaches to Energy Transformations
Morris Bullock, Pacific Northwest National Laboratory
Thomas Jaramillo, Stanford University, and Stanford Linear Accelerator Center

Panel 3: Advanced Chemical Conversion Approaches
Maria Flytzani-Stephanopoulos, Tufts University
Cathy Tway, Dow Chemical Company
Daniel Resasco, University of Oklahoma

Panel 4. Crosscutting Capabilities and Challenges: Synthesis, Theory, and Characterization
Karena Chapman, Argonne National Laboratory
Victor Batista, Yale University
Sheng Dai, Oak Ridge National Laboratory
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Transformative Capabilities for Catalysis:
Synthesis, Computation, and Characterization

» |dentify rare and/or metastable active states
» Span multiple time/length-scales
« Conduct multimodal operando characterization

 Resolve reaction mechanisms

Incisive
Characterization

 Control interfacial interactions

* Incorporate cooperativity and resilience

Predictive
Theory and
Computation

Precision
Synthesis
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Recent DOE Reports Emphasizing Synthesis, Computation, and Characterization

CHALLENGES AT THE

Basic Research Needs for

Transformative Experimental Tools

BASIC ENERGY SCIENCES

EXASCALE
REQUIREMENTS
REVIEW

An Office of Science review sponsored jointly by
Advanced Scientific Computing Research and Basic Energy Sciences
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Instrumentation Science—Driving the Invention of Novel

Experimental Tools to Accelerate Scientific Discovery

Report of the Basic Energy Sciences Workshop on

Basic Research Needs for Synthesis Science
for Energy Relevant Technology

NOVEMBER 3-5, 2015
May 2-4, 2016
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Priority Research Direction 1

Construct catalyst architectures to incorporate strong and weak
Interactions that organize matter and space beyond the binding site

The extended structure of the active site includes not only the locations where the molecular orbitals of the reactants interact
directly with the catalyst, but also nearby regions in space where the atomic organization in 3-dimensions serves to assemble
and precisely position both reacting molecules and non-reacting components such as solvent molecules and counter-ions to
achieve selective chemical transformations at high rates.

Metal nanoparticle catalyst confinement, (A) inside a zeolite pore; (B) inside a Glucose s?lvation by water in a
carbon nanotube; (C) beneath a graphene sheet zeolite supercage

B C

R U.s. DEPARTMENTOF | (Office of  FU et al. Proc. Natl. Acad. Sci. 2017,114, 5930. Scott etal. ACS Catal. 2017,114, 5930.
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Constructing Cooperative Catalyst Architectures

How do we map the cooperative roles in catalyst-substrate Redox-active ligands enable

ensembles at an atomistic level, using powerful emerging thermally-forbidden cyclodimerization

characterization and theory methods?

How do we design synthesis methods that direct the organization / “:] Ny A

of structural and functional motifs in the extended catalyst R . )F'll/ R

architecture so as to influence the ground and transition states of 2 f —| o) Q """ AR S

reacting molecules? R o
Redox-Active Iron Catalyst

Effect of metal-acid site proximity on activity and selectivity
In bifunctional catalysts

[, Diffusion-enhanced secondary ] /O ] Bimetallic cooperativity in polyol dehydration
interconversions shift kinetic selectivities

towards thermodynamic values OH

Chirik et al., Science 2015, 349, 960.

Pt Function

Dehydration Hydrogenation

. Rhenium
@ Platinum
@ Oxygen
& Bronsted Acid

‘-\\ Ho A _on REOH, o O Pty HO_~_OH

Measured Selectivities

‘/O r' 4
more distant metal-acid sites — larger acid domains, Pt
higher densii tivity of H+, e . )
igher density or reactivity o \/o Diffiision-Enhanced
Secondary Interconversions

or lower diffusivities.
2, U.S. DEPARTMENT OF Office of lglesiaetal., J. Catal. 2016, 344, 817. Davisetal., ACS Catal. 2015, 5, 5679
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Priority Research Direction 2

Control the dynamic evolution of catalysts by influencing the rates
and directing the pathways for reorganization

Catalysts are inherently dynamic materials whose local and extended structures change continuously, beginning when the
components are assembled into a catalytically active architecture and continuing as materials interact with reaction mixtures.

No TiO, layer on Pd nanoparticle TiO, monolayer on Pd TiO, bilayer on Pd nanoparticle
under oxidizing conditions nanoparticle under H,/O, mixture under reducing conditions
- ‘ '\ P _'Z_SV T v P ; 3 :
' RIS ; S : :
TiO ‘g:% Tiox \"..;;,. 237
D &>

% U.S. DEPARTMENT OF Office of Pan et al. Nano Lett., 2016, 16, 4528-4534. 14
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Observing and Directing Complex Catalyst Behavior

o How do we monitor changes in catalysts in real time and relate their consequences to reactivity and selectivity?
o Howdo we design catalysts to control their rates of activation, deactivation, and reactivation?

Time- lved TEM i f Pt ticl dto CO/O, at 727 K
ime 30 |mag of Pt hanoparticle exposedto 28 Reduction/ignition of individual Pt-Rh nanoparticles during

Pt(11'1)' i % i | | | , | v(':atalytic parf[ial OXidatiOI:l of rnc?thane
o
g 0.8}
o
{5
. = 0.6}
(&)
® ; , ; . ,
14 20 40 60 80 100
Time (s)
T 40}
8 |co
£ 2
QO
E 20 co Catalyst bed
@ CH, CH,, CO,, H,0
nh- oL | | | | 02_> CO, H,
20 40 _60 80 100
Time (s) CHj, CO,, H,0

CO,, H,0 CO, Hy

Kooyman, Helveg, et al. Nature Mater., 2014, 13, 884-890.
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Priority Research Direction 3

Decode complex networks of reactions, and integrate catalytic
reactions with molecular transport and separations

Emerging chemical fuels and feedstocks are often mixtures that present challenges for catalysis in terms of their inherent
complexity and variability. In addition, their highly distributed nature will require entirely new approaches to catalytic processing.

Pulp Wet Fats, QOils,
Waste Sludges and Greases

Agriculture Flared Municipal Alternative feedstocks have o=~ a2

Residues Gas Solid Waste huge energy potential, and . =
f = pose unique challenges for - Complelx /mixtures
b 5 catalyst technology. Distributed sources . -

o Solids handling .

U.S. DEPARTMENT OF Office of
@ ENERGY Science °



Integration of Reaction with Separation and Design for Catalyst Resilience

o How do we design catalysts that adapt to transients in feed composition and reaction conditions, and that
are capable of operating in highly distributed systems with minimal external control?
Achieving spatial control over catalysts, reactions and separations

Printed Lewis Printed Pd/C
Acid Catalyst Catalyst

Cotton Self-healing oxygen-evolving catalyst

acked No Bias Potential Bias

. Silica Co* = .
Starting Material Sealed Co* ‘ . .
0o =
Chambers Celite Outlet .
Montmorillonite K10 Starting Material .u
Catalyst Chambers . ’ no Pi
with Pi

Pd/C | Silica 7
Catalyst Column Noceraetal.J. Am.Chem.Soc. 2009, 131, 3838.

U.S. DEPARTMENT OF Office of Croninetal. Chem.Sci. 2013, 4, 3099.
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Combining Catalyst Discovery and Mechanisms with Systems-Level Insight

o Howdo we direct chemical transformations in multicomponent mixtures towards specific desired chemical products, via
systems-level control of all the micro- and macro-kinetic factors that dictate rates in catalytic reaction cascades?

@ Sugar
@ Enol

® Acetal
@ Other

Construction of a reaction network for the formose reaction (self-condensation of formaldehyde in alkaline solution, resulting in a complex
mixture of aldose and ketose sugars) using heuristic transformation rules.

@ U.S. DEPARTMENT OF Office of Rappoport, Aspuru-Guzik et al. J. Chem. Theor. Comput.2014, 10, 897.
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Priority Research Direction 4

Design electrocatalyst systems to optimize electron-driven processes
for precise chemical transformations efficiently under mlld condltlons

The interconversion of chemical and electrical

energy is based on the ability to store energy in
chemical bonds and retrieve energy from those
bonds by using the electron potential to control

the directions and rates of chemical processes. / £’/

Electrochemical systems offer the possibility to v s
drive chemical transformations under mild | ety By
conditions, where thermal catalysis is inefficient. 1

CO and CO,
hydrogenation

Thermal catalysts

CXHyOZY
‘ H, storage 3
T A
Battery-, fuel cell- or

combustion-powered transportation Fuel storage Chemicals, materials

Electrocatalysts

Fuel cell

”"!,. U.S. DEPARTMENT OF Oﬁlce Of
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Enhancing Activity in Molecular Electrocatalysts for H, Production

How do we design conducting solid/solution interfaces, and coupled redox reaction chemistries, that catalyze electron-driven
chemical processes with high precision and efficiency under mild conditions?

How do we improve electrocatalysts for critical multi-electron, multi-proton reactions, and also expand the repertoire of chemical
transformations that can occur effectively in electrochemical systems?

How do we develop new electrocatalytic systems that circumvent known scaling relationships through detailed mechanistic

understanding of catalytic pathways?
chHw e

O e+ ( Ph Ph>

CigH37

{ Ph Ph
Detailed mechanistic
\O understanding

In dry MeCN, TOF =6 x 102 s? //) O O

TOF =5x 107 s
Roberts, DuBois etal., J. Am.Chem. Soc. 2011,133,5861. O’Hagan et al., Angew. Chem.Int. Ed. 2016, 55, 13509.
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Designing Nano-Structured Catalysts for H, Production

MoS, nanoparticles

B . y
20nm fiTds L LK
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Jaramillo, Besenbacheretal., Nat. Chem., 2014, 6, 248.
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Priority Research Direction 5

Drive new catalyst discoveries using data science to resolve
complex structure-function relations, predict new catalyst
properties, and design more incisive experiments

The complex coupling of many variables that govern
catalyst reactivity and its evolution in time makes it
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Mining Complex Information Using Data Science Approaches

o Howdo we deploy the tools of machine learning to find and extract robust, often unexpected structure-activity relations from

large, heterogeneous datasets?

o How do we use this information to predict effective combinations of catalytic structural components and reaction cascades,

leading to entirely new catalyst formulations?

In situ multimodal 3D chemical imaging of a hierarchically
structured core@shell catalyst for methanol synthesis

DME

3D
wIn situ
«Imaging

Grunwaldtetal. J. Am.Chem. Soc. 2017, 139, 7855

Machine learning simplifies reaction network for
syngas (CO+H,) conversion to acetaldehyde over Rh(111)

Full network

Gas phase @

D=

Beee—— 16 — =
® @
~100 species =
©9
~200 reactions
e [\ 0
>2,000 pathways ' V

>
>

) Important subset on Rh(111) CCHICO

Mechanism reduction
necessary for every
catalyst active site

Acetaldehyde

U.S. DEPARTMENT OF Office of
% EN ERGY Science

Bligaard, Nagrskoy, et al. Nat. Commun.2017,8, 14621 0a



Extracting More Detailed Information from Experiments

o Howdo we use data science tools to design better experiments with higher resolution and greater sensitivity, and extract
more information from them?

As-prepared catalyst Active catalyst Dynamic catalyst behavior Controlled catalyst

QL e e e architecture and performance
€@ .9 i

S ow

S 2 5

0D g

@2 89

O E S

ST 5

555

M L

Correlative
learning

V

M L

Unsupervised
learning

V

Data science:

Theory and
computational modeling
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Embracing Complexity in Catalysis Science

PRD2

In-depth sontrol

. namic
understanding o Synthesis evéution in Characterization

individual catalyst

reactions and structure
catalysts

PRD1
Construct
catalyst
architectures
beyond the
binding site

PRD3
Decipher
complex
reaction
networks

Optimal
catalytic reaction
PRD5 PRD4 systems in extra

Integrate Design dimensions for
data science properties versatile energy

Computation

with for precise
catalysis electron application

science transfer

U.S. DEPARTMENT OF Office of
ﬁ ENERGY Science -



Progress towards Final Report

Appendix I: Technology Perspectives Resource Document

Draft Panel Reports and PRDs on Sharepoint Site

Weekly videoconferences involving ca. 30 people involved in writing

Goal is to have first drafts of Brochure and Final Report by end of July
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