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The Center for Applied Mathematics for 
Energy Research Applications (CAMERA) 

Mission: Build the applied mathematics that can accelerate scientific 

discovery at DOE experimental facilities 

Execution: Coordinated team of applied mathematicians, beam scientists, 

computational chemists, computer scientists, materials scientists, 

statisticians, image and signal processors, …

Support:  LBNL LDRD, now Joint ASCR-BES  Pilot Project

(Steve Lee, Program Manager)

Initial set of partners:

Advanced Light Source Molecular Foundry NCEM



Goal: Deliverables users can use (without becoming  mathematicians):

Advanced mathematics embedded in useable software tools

Build the advanced mathematics that can:

Extract information from murky data, and help interpret experimental results 

Provide on-demand analysis as results are being generated

Steer experiment and suggest optimal solutions

Decrease turn-around time/save money: More experiments and more users

Extend the capabilities of existing and future experimental facilities

To do so, we need to:

Have experimental scientists/applied mathematicians work together

Develop common language

Build new mathematical models, invent algorithms, build prototype codes

Test on “shop floor”, iterate until codes are solid and useful

Overview of CAMERA



CAMERA: Organization

CAMERA

Foundry/NCEM
(J. B. Neaton, W. Queen, D. Britt  )

LBNL Math
Department

(J.A.Sethian, C. 

Rycroft, J. Donatelli)

LBNL 
Comp.  Sci. 

(S. Li, M. Haranczyk, 

H. Harikrishnan, T. 

Perciano,  D. 

Ushizima, C. Yang) 

LBNL: 
Materials, 

Earth Sciences 
Berkeley 
Campus

EECS/Statistics
Depts.

Mathematics
(Faculty/postdocs/grad 

students)
(J.A. Sethian, L. Lin, A. Grunbaum, E. 

van Andel, B. Preskill) 

BIDS
(Berkeley Institute 
for Data Science)

LBNL/UCB: 
EFRC

(M. Haranczyk, J.B. 

Neaton, B. Smit)

ALS: Beam scientists
(D. Parkinson, A. Hexemer, S.Marchesini, D. Shapiro)



Coherent Diffraction with Microscopy
Pytchography (ALS/MATH)

Automatic Image Analysis (ALS/MATH)

New methods for 
Density Functional 
Theory (MF/MATH)



(1) For a relatively small investment, applied mathematics can help 
advance science, decrease turnaround, reduce cost at facilities. 

(2) Mathematics provides critical tools: reduces “barrier to entry”. 

(3) This is an opportune time:  traditional mathematical boundaries 
are breaking down, especially around experimental data. 

(4) Biggest opportunity:  when scientists, experimentalists, and 
mathematicians work together, in close proximity, at facilities.

(5) Ultimately,  underlying mathematics and algorithms should be 
invisible/automatic— users  “push a button and get information”. 

Key Points



How Did This Start? 

History and Motivation

What are the Efforts? 

Six Different Projects

How are we doing this?

Organization. The challenges. Opportunities.  

Where is it going? 

(Opportunities for model to tackle other DOE problems) 

Outline of Talk



Long Standing Program: 

Develop the mathematics, algorithms, and implementations for problems 

of interest to DOE’s Advanced Scientific Computing Research. 

Combination of:

• A lab/academic/university/high performance computing environment

(intimate connection to UC Berkeley: Math, Engin., Bio., Chem., Materials...)

• Scientific/engineering problems across traditional academic  boundaries

7/27/2014 8

People: Campus Faculty, Postdocs, Graduate students, Visitors (up at LBNL)

Long-Running Program (40+ years)

Semiconductors Industrial printing Wind turbines Seismic imaging Foams in manufacturing

Background: LBNL/UCB Mathematics: 

Example: Semiconductor Algorithms: Samsung, Intel, Motorola, Infineon, Synopsis…



Draining in Coal 

Hoppers

Industrial Inkjet 

Printing 

Cell Cluster Growth

Industrial Foams

Vertical Axis Wind Turbines

Examples:

Virtual Colonoscopy



Look broadly at mathematical needs of Office 

of Science facilities, starting with the ALS, 

Molecular Foundry, NCEM, Joint BioEnergy

Institute (JBEI), and future facilities

A New Challenge from LBNL/Director

Question: How can applied mathematics help facilities do

More science

More efficiently      

(users, materials, turn-around time…)?



Experimental facilities will be transformed by high-
resolution detectors, advanced mathematical analysis 

techniques, robotics, software automation, and 
programmable networks. 

Detectors capable of 

generating terabit data 

streams. Computational tools for 

analysis, data reduction 

& feature extraction in 

situ, using advanced 

algorithms and special-

purpose hardware.

Increase scientific 

throughput from 

robotics and 

automation software.

Data management and 

sharing, with federated 

identity management 

and flexible access 

control. Post-processing: 

reconstruction, inter-

comparison, simulation, 

visualization.

Integration of 

experimental and 

computational facilities 

in real time, using 

programmable 

networks.

DOE Facilities in 2025: 
More Data, More Users, More Discovery



Computational tools for analysis, data reduction & 

feature extraction in situ, using advanced 

algorithms and special-purpose hardware.

Post-processing: reconstruction, inter-

comparison, simulation, visualization.

What is the minimum/fastest computational 

model/algorithm that gives (at least some) useful 

information?

Can you quickly determine if data is useful, 

not useful, or in between?

Can you quickly do the analysis required to steer the 

experiment to more optimal configurations or output? 

What is the maximal amount of information 

you can get out of the data? 

Can data be measured, processed, organized and 

displayed in a way that helps understand and help 

shed light on further experiment? 

Can this data be transformed so that it can be used 

to initialize computational models, with output 

framed to complement experiment?

Mathematics for each can be quite different:

Mathematics for accelerating the analysis of 

experimental data  

Now! Later



(a) Problems have not yet been “mathematicized”.

(b) No “equations of motion”

(c) Deep connections between the science and math

(d) Many problems are similar, but not the same—
requires customization and tailoring….

To tackle these problems requires new 

mathematics that bridges across mathematical 

disciplines.

Why is this so interesting  

(and challenging?)



Traditional walls between continuous math, discrete math, analysis, probability

and statistics, topology, algebra, geometry …. are all breaking down. 

An explosion of work in new, hybrid fields:

Differential geometric methods for interface evolutions (MF)

Computational harmonic analysis in image reconstructions (ALS) 

Topological data reduction and classification (Foundry)

Stochastic analysis and uncertainty quantification (ALS)

Group theoretic methods in machine learning (ALS) 

Discrete/Continuous fast PDE solvers (Foundry, ALS)

For our six projects: 

Computational harmonic analysis

Discrete Galerkin methods
Machine learning

Statistical sampling Clique analysis

Representation theory

Bayesian analysis

PDE-based image segmentation 

Graph theory
Spectral clustering

Optimization methods

Hamilton-Jacobi solvers

Maximum likelihood estimators

Discrete/continuous shape descriptors

Voronoi methods

Mori-Zwanzig theory
Pole expansions

Conformal analysis

Topological data analysis

Fortunately, Applied Mathematics is Undergoing a 

Profound Transformation



Mathematics

ComputersData

Mathematics is what changes data into information

Mathematics and (or versus!) “Big Data”



More data

More complexity

Less obvious relational linking

More noise

More false signals

…

Going to need mathematics more 

than ever…

Problems are only going to get worse



CAMERA: Center for Applied Mathematics 
for Energy Research Applications

CAMERA

Pilot Partners computing computing computing computing structurestructurestructurestructure

from imagingfrom imagingfrom imagingfrom imaging analyzing samples and analyzing samples and analyzing samples and analyzing samples and 

proposed new  materialsproposed new  materialsproposed new  materialsproposed new  materials
designing new designing new designing new designing new 

materialsmaterialsmaterialsmaterials
ALSALSALSALS

Foundry & Foundry & Foundry & Foundry & 

NCEMNCEMNCEMNCEM

Goal: Build the applied mathematics that helps transform experimental data 

into understanding

Tomorrow:

More data. 

More quickly.

High resolution.

Today:

Facilities data 

is time-

consuming

Critical need:

algorithms and 

analysis for 

understanding

LBNL approach:

Focused teams of     

mathematicians/ 

domain scientists

New math to:

Guide and 

optimize 

experiments

Computational harmonic analysis Discrete Galerkin methods

Machine learning

Statistical sampling 
Clique analysis

Representation theory Bayesian analysis

PDE-based image segmentation 

Graph theory
Spectral clustering

Optimization methodsHamilton-Jacobi solvers

Maximum likelihood estimators

Discrete/continuous shape descriptors

Voronoi methods

Key: Leverage 

state-of-the-art 

mathematics

Mori-Zwanzig theory



CAMERA: Personnel

CAMERA
Who is working on this?

Advanced Light Source (ALS):

A. Hexemer (Beam Scientist/GISAXS)

S. Marchesini (Ptychography)

D. Parkinson  (Beamline Scientist, Hard X-ray tomography)

D. Shapiro (Beamline scientist)

Molecular Foundry

D. Britt  (Organic and Macromolecular Synthesis)

J.  Neaton (Electronic Structure)

W. Queen (Inorganic Nanostructures)

National Center for Electron Microscopy (NCEM)

P. Ercius (Scanning transmission electron microscope)

Computational Research Division (CRD)

M. Haranczyk (Materials Design)             T. Perciano (Image Analysis) 

X. Li               (GISAXS)                           H. Krishnan (Image Analysis/HPC)

L. Lin             (Electronic Structure)

R. Martin        (Materials Design)

C. Yang        (Electronic Structure)

D. Ushizima (Image Analysis)

CRD Mathematics Department:

J. Donatelli (X-Ray Nanocrystallography)

C. Rycroft  (Optimal Chemical Design)

J.A.  Sethian (Director)

•Opportunity: Steady stream of new Berkeley faculty/postdocs/grad students



CAMERA

What does CAMERA deliver? 

(1) Codes that run locally on 

computers embedded at facilities.

(4)  Downloaded and run remotely. (3) Codes remotely run on data downloaded from 

facilities to supercomputer centers

(2) Remote browsers executing

code locally running at facilities.

Additionally: providing codes/browsers/portals  to SpotSuite



AN OVERVIEW OF SOME OF 

THE WORK UNDERWAY

(Describe problem, emphasize new mathematics, 

describe deliverables)

Application Mathematical 

issues

New mathematics 

we needed to 

build and exploit

Software 

for Users



SHARP 
(Scalable Heterogeneous Adaptive Robust Ptychography)

Fast scalable methods for 

ptychographic

reconstructions
S. Marchesini, D. Shapiro (Advanced Light Source)

H. Krishnan (LBNL Computing Sciences)

F. Maia (LBL/Uppsala)

H-T Wu (LBNL/Stanford, now Toronto)



CAMERA: Ptychographic Imaging

CAMERA

Fundamental  idea: combine:
• High precision scanning microscope with

• High resolution diffraction measurements.

• Replace single detector with 2D CCD array.

• Measure intensity distribution at many 

scattering angles 

Each recorded diffraction pattern:
• contains short-spatial Fourier frequency information

• only intensity is measured: need phase for reconstruction.

• phase retrieval comes from recording multiple diffraction 

patterns from same region of object. 

Combine Coherent Diffraction with Microscopy

Pytchography:
• uses a small step size relative to illumination geometry to scan sample.

• diffraction measurements from neighboring regions related through this geometry

• Thus, phase-less information is replaced with a redundant set of measurements.

Lots of ptychographic equipment/codes throughout DOE, universities, world-wide

S. Marchesini, D. Shapiro, H. H. Krishnan (LBL) F. Maia (LBL/Uppsala), H-T. Wu (Stanford))



CAMERA: Ptychography

Mathematical and Algorithmic Issues
CAMERA

When does it (not) work?
(no convergence proof yet available for method)

Existing algorithms may have trouble converging on large data sets:
(iterative methods intrinsically operate by interchanging information

between nearest neighbor frames (diffraction patterns) at each step, so it

might take many iterations for frames far apart to communicate.)

Effects of noise and physical uncertainties:
(how do reconstruction algorithms perform with uncertainties in photon

statistics, lens perturbations, illumination positions,  incoherent

measurements, detector response and discretization, time fluctuations, etc.)

What is the best lens and illumination scheme for arbitrary specimens?
(given a detector, with a limited rate, dynamic range and response

function, what is the best scheme to encode and extract more information

per detector channel?)



Phase retrieval in high dimensional 
spaceCAMERA

Challenges with basic alternating projection algorithm:

x
1

x
2

(i)x
3

Poor scaling:
long range interactions among

frames decay exponentially with distance.

Poor initial guess:
can significantly delay convergence.

Ultimately, an overdetermined problem
in high dimensional space.

How can we speed this up?

Large dimensional data Low dimensional space

Short-time Fourier 

Transform



Graph Theory/Graph Laplacians

CAMERA

Building a better starting guess: Diffraction data manifold

Multi-D torus
(1) View every pixel of every frame as a dimension. 

Each data point lives on a torus (complex plane)

(2) Build “relationship network RN: a graph (V,E)

that  relates each frame to its neighbors. 

Approximate torus with ball 

(3) Construct Graph Laplacian of RN: defined

as difference between the degree matrix D 

and the adjacency matrix A: GL = D - A

(4) The largest eigenvector of the Connection graph provides the 

most aligned phases encoding the (approximate) data topology. 

This provides a strong starting guess. 



Fast Multiscale Algorithms 

CAMERA

Fast multiscale approach:

(1) Above approach can be augmented by alternating long range/short range 

(framewise/pointwise) relaxations of the connection graph Laplacian. Additionally, 

use implicit Hessian for fast line search. 

(2) This achieves accelerated convergence for large scale phase retrieval problems 

spanning multiple length-scales. 

(3) This approach also recovers experimental fluctuations over a large range of time-

scales.

(4) Brand-new: Framewise rank-1 accelerated illumination recovery by 

transparency estimation. 



Released Code: SHARP: 

Scalable Ptychography SolverCAMERA

Fast Implementation of Split and Overlap 

Kernels on GPU

Higher level parallelization for real -time 

performance (MPI)

Strong Scaling tests for large 

dimensions

Lens reconstruction, vibrations, 
background, coherence, multiplexing

PytchographyMicroscopy



Released Code: SHARP: 

Scalable Ptychography SolverCAMERA

Code: Open source, downloadable package

�release    �prototype   ☐under way/testing

•Scalable code, (�source package, �remote 
interface, ☐ web interface, ☐ API).

• ☐ real time feedback by reducing latency
• � 80x speedup with algorithms

• � 30x speedup with GPUs

• � >16x speedup with distributed GPU

• � Optimal Network fabric design for throughput

• � Optimal lens design for SNR

• � Iterative tomography (☐ network/bandwidth 
optimized)

• � Chemical mapping (robust PCA/SVD)

• � Dynamics

“Compute design”
SHARP real time specs:
• 3D torus p2p fabric
• CCD/RDMA streaming
• instrument calibration

Partners:
CXRO/SEMETEC, LLNL/NASA, UI 

Chicago, UC San Diego, UC Davis, 

UCB, McMaster, Stanford. ALS, BNL,

F. Maia, Uppsala, BYU

Software presentations: Ptycho 2013, FIO/LS, SIAM IM14,  MSPPR, XRM, Coherence 14

Software tutorials: Coming: SSRL/CAMERA xx/2014 (invited), CAMERA/ALS/BNL AUG 2014

CAMERA/ALS/APS Sep 10/14, COHERENCE, XRM , SIAMIM, FIO/LS, 

RACIR summer school, ALS Users workshop

Intercalation Battery Research: 
Mechanisms in Lithium Ion Phosphate

ALS BL 5.3.2  (Nat. Phot. /in press)



Toward real-time feedback
CAMERA

High bandwidth 3D torus p2p
For hyperspectral ptycho

tomography 

Scan: 10 micron^2, 10 nm resolution, 
60x60 (1024) frames/minute.
Processing: 60x60 (1024^2) 
frames/minute

Currently 
the user interface starts processing at the end 
of a full scan. (1 minute each)

In the future 

low Latency (<5 ms) feedback  by streaming 

detector frames on distributed direct memory 

access fabric.

Real time enables smart self-calibrating, auto-

tuning feedback of the microscope  control 

system.



QuantCT

Automatic image 

analysis tools for 

micro-CT
D. Ushizima, D. Morozov, H. Krishnan, T. Perciano  (LBNL Computing Sciences)

D. Parkinson (Advanced Light Source)



Goal: Develop algorithms for 3D/4D quantitative analysis of experiments, addressing 

challenges posed by noise, artifacts, sheer size, and heterogeneous materials.

CAMERA: Quantitative Image Analysis of 
Micro-CT Samples

CAMERA

Analyze structure: porosity, pathways, interior voids, ...
• Application: High-resolution synchrotron-based X-ray absorption microtomography.

• Suitability of materials and biomineralization processes for carbon sequestration.

• Acquire projection views at equi-spaced angles: produce 2D cross-sections.

• Gray level value of image voxels reflects x-ray attenuation and density.

• Compute pathways through materials:

Imaging Pipeline Requires:

• Filtering: remove noise, sharpen contrasts (bi-lateral and non-linear filters)
• Segmentation to isolate, and extract shapes from images (PDE-VIIM methods)
• Feature detection/analysis (Reeb graphs, topological analysis, channel detection)



Filtering of microCTFiltering of microCT

Gaussian

Median

Bilateral

Anisotropic diffusion

Non-linear tensor PDE

Segmentation of (near) homogeneous regionsSegmentation of (near) homogeneous regions

Thresholding
(local/global)

Variational Level Set 
Methods

Fast Marching Methods

Statistical Region Merging

Voronoi Implicit Interface

Analysis of microstructuresAnalysis of microstructures

Porosity

Intensity descriptors

Topological descriptors

• Pore network

• Max Flow curves

• Slope of max flow

• Persistent pockets

QuantCT: Timeline of Mathematics/ 
Algorithm Development

CAMERA



• Smooth and preserve edges: weighted average of local neighborhood –

weights based on spatial and intensity (range) distances;

h(x) = k
−1

(x)
−∞

+∞

∫ f (ξ )c(ξ, x) s( f (ξ ), f (x))
−∞

+∞

∫ dξ

ξξξ dxffsxcxk ∫ ∫
+∞

∞−

+∞

∞−

= ))(),((),()(

QuantCT: A. Pre-processing/bilateral filters

CAMERA



QuantCT: B. PDE-based Automatic 
Segmentation and Extraction

CAMERA

(2) Becomes PDE transport method using level set methodology: 

(1) Mumford-Shah functional for image segmentation of two phases
(index i indicates separate phases,   Find interface G G G G to minimize E)

E(Γ, I
1
, I

2
),= (I (

A∫ x, y) − I
1
)

2
dx + (I(

B∫ x, y) − I
2
)

2
dx + µ g

Γ∫ (Γ(s))ds

(3) New approach: Extend the Mumford-Shah energy

functional to multi-phase multi-interface 

Voronoi Implicit Interface Method (VIIM)

φt + F | ∇φ |= 0, where F = [((I − I1)
2 + ((I − I2 )

2
) − µ∇⋅(g∇φ / | ∇φ |)]

Fi = [((I − Ii )
2 − µ∇ ⋅(g∇φ / | ∇φ |)]

(4) Allows simultaneous extraction
of multiple structures in 3D.

(combination implicit embedding plus dual Eikonal Voronoi reconstruction) 

Calcite precipitation: ”pore clogging”



QuantCT: C. Determination of Connectivity 
and Channel Pathways

CAMERA

Augmented Topological Descriptors: Max Flow Graphs and Persistence Diagrams

Void Space Wide pathways Reeb graph

Edge capacities

Flow graph

Ford Fulkerson

• Reeb graph: Evolution of level sets of function on manifold.

• Use to detect pathways for particle of size aaaa

• Edge capacities = Intersection area between slices

• Flow between source/sink without exceeding capacities

• Family of graphs: Vary α 

Pocket distribution from 
persistence diagram 

• Track components in superlevel set of distance function
• When component merge: “younger” component merges 

into “older” component

Max-Flow:

Persistence Diagram:



software for microCT analysis (0.33 images/s)

Pore network through porous material

QuantCT: Results

CAMERA

Automatic detection of 3D fibers and matrix 

cracking from assembled 2D slices



Ref. Ushizima, D.M., Bianchi, A.G.C, deBianchi, C., Bethel, W., "Material science image analysis using quant-CT in ImageJ", 

in: ImageJ User and Developer Conference, 2012.

QuantCT: Workflow

CAMERA



Ref. Ushizima, Parkinson, Nico, Ajo-Franklin, Macdowell, Kocar, Bethel and 

Sethian, Statistical segmentation and porosity quantification of 3D X-ray micro-

tomography.  Applications of Digital Signal processing XXXIV,  Vol. 8135, pp.1-14 

(2011).

QuantCT: Delivery Mechanisms

Delivery mechanisms:

Current: 
(1) Browser/computer at ALS

(2) Available as FiJi plugin

(3) Prototype source
downloadable.  

• Implemented in Java.
• Part of Fiji framework.
• Implemented in OpenCL.
• Called from Java code through

JOCL.
• Dedicated thread assigned to each

OpenCL device to handle multiple
accelerators on any given node.

• Each thread requests unprocessed
slices up to the maximum allowed
by the hardware.

Code Specifics:



PEXSI:
Accelerating electronic 

structure calculations for 

large scale materials systems

L. Lin (UC Berkeley Math), 

C. Yang (LBNL Computing Sciences)

J.  Neaton (Molecular Foundry)



Accelerating electronic structure calculations 
for large scale materials systems CAMERA

Starting point: Density Functional Theory:

Reformulates Schrödinger’s eqn. as non-interacting electrons moving in 

an effective potential, which must be determined.

Results in a non-linear  eigenvalue problem: 

• Solve for eigenvalues ε & eigenfunctions ψ, which depend on electron density

• Electron density from summing eigenfunctions. Eigenfunctions orthogonal.

• Exchange correlation function V_{xc} (ρ) depends on electron density.

• Big Challenge: Find a self-consistent way to solve this.

One  Approach: Iterate:
•First, make initial guess for the electron density ρ(x)

•Then, solve eigenvalue/eigenvector problem.

•Then, recompute ρ(x), and repeat.

Problem: Slow, expensive, limited to small systems:

•Scales like  cN3, N = # electrons, c=grid/orbital resolution



PEXSI: 
Pole Expansion and Selected Inversion

CAMERA

A different approach: (L. Lin and C. Yang, LBNL & UC Berkeley)

(1) PEXSI: Reduce KSDFT cost calculation 
to at most N^2 scaling without 
sacrificing accuracy.  

Idea 1a: Represent Fermi 

operator by pole expansion

(2) Develop  discontinuous Galerkin basis 
functions to represent continuous physical 
quantities with low cost and  high accuracy. 

Idea 1b: Develop selected 

memory inversion. Idea 1c:  

massively parallel distributed 

memory implementation

Discontinuous basis 

function for 3D Na

Nearly continuous electron 
density recovered

(3) New elliptic preconditioner:  reduce  number of
required  self-consistent  field iterations (SCF) 
for large inhomogeneous  metallic systems:

Example: Standard systems: 1 million degrees of freedom (DOF). 

PEXSI solves 4 billion DOF in 25 min on 4096 processors

Further ideas:



(a) Electron density typically evaluated by taking diagonals of  “Fermi operator”

(1) Density Functional Problem: typically viewed as a non-linear eigenvalue problem.

(2) Instead, solve a non-linear fixed-point problem involving the Fermi-Dirac operator,  

defined in terms of a matrix function of the Hamiltonian. 

(Trading a non-linear eigenvalue problem for a non-linear fixed point has its own challenges—

has to be evaluated at every step.)   

A Breakthrough: Represent the Fermi operator using a pole expansion. 

(µ = chemical potential)

(b) Pole expansion: Represent the Fermi operator by rational functions (single 

poles), and evaluate the rational function directly without using diagonalization.

(c) Evaluate using contour integration techniques. 

Want to find ρ through fixed 

Point iteration

PEXSI: 
An alternative representation of Kohn-Sham

CAMERA



Next idea: apply selected inversion

[Idea of selected inversion dates back to [Erisman and Tinney, 1975], 

[Takakashi et al 1973]; For electronic structure [LL-Lu-Ying-Car-E, 2009]; For 

quantum transport [Li, Darve et al, 2008, 2012]]

PEXSI: 
Now, extract key elements of Hamiltonian

CAMERA



Other Speedups: 
Adaptivity and faster convergence

CAMERA

Next idea: Build discontinuous basis functions which are eigenfunctions of

the Kohn-Sham Hamiltonian on local domains

A more economical representation, providing systematically higher accuracy.

(a) Discontinuous Galerkin (DG) based adaptive local basis set:

(b) Constructed by solving Kohn-Sham problems locally in the real space.

(c) Automatically and systematically builds the rapid oscillations of the Kohn-Sham 

orbitals around the nuclei into the basis functions.

(d) Each basis function is discontinuous in the global domain.  

(e) The continuous Kohn-Sham orbitals and the electron density are evaluated from 

the discontinuous basis functions using discontinuous Galerkin (DG) framework.

Next idea: Developed elliptic preconditioners for accelerating the nonlinear

SCF iteration for large scale inhomogeneous metallic systems.

(i) This elliptic preconditioner solves an elliptic equation derived from the 

polarizability matrix with O(N) cost.

(ii) Much smaller computational cost than existing preconditioners, some of which 

scale as badly as O(N^4).



Summary of the algorithmic cycle

CAMERA: PEXSI: Overall framework for 
accelerating electronic structure calculation 

for large scale materials systems CAMERA



CAMERA: PEXSI. Delivery system:

CAMERA

(1) PEXSI is integrated and available within SIESTA

(Spanish Initiative for Electronic Simulations with Thousands of Atoms)

(2) PEXSI currently being integrated into CP2K (Joost VandeVondele et al). 

(4) “Electronic Structure 

Infrastructure” (ELSI) Proposal 

(Pending )

Integrate PEXSI, together with 

companion software,  into a 

large set of Electronic 

Structure Codes

(3) In communication with BigDFT (Basel)  and FHI-aims (Fritz Haber Institute) 



Zeo++

Mathematics and 

Algorithms for 

Designing New 

Porous Materials
M. Haranczyk (LBNL Computing Sciences, Molecular Foundry)

J.B. Neaton (Molecular Foundry)

C. Rycroft, J.A. Sethian (Mathematics: UC Berkeley and LBNL Mathematics)



Scientific Opportunities:

CAMERA: Mathematics and Algorithms for 
Designing New Advanced Porous Materials 

CAMERA

Figures from Nature 2003, 423, 705, Science 2013, 341, 1230444 

• Numerous families of advanced porous 

materials synthetized: MOFs, COFs, PAFs 

• Demonstrated in multiple applications: 

separations, gas storage, catalysis, drug delivery 

etc.

• Structures offer unmatched “tunebility” under 

reticular chemistry paradigm: (replacing 

building blocks within same topology of 

materials ) – by exchange of building blocks one 

executes tinker toy chemistry 

Mathematical/Scientific Challenges:

• Infinite search space pose challenge to identify optimal 

materials for particular applications as well as to explore 

possibilities

• Need tools to analyze, characterize and classify porosity in 

very large number of structures 

Growth in built materials 

Assembly of 

larger structures 

from smaller 

“basis” 

molecular 

building blocks. 



Mathematical issues/Transforming into Math:

CAMERA: Mathematics and Algorithms for 
Designing New Advanced Porous Materials 

CAMERA

• Abstracting real molecules/materials into mathematical models
• Statistical approaches to describe abstract molecules

• Replace atoms with geometric blocks,

(don’t know the mass of building blocks, use model to link surface area and mass.)

• Mapping porosity (“dual” of an real material)
• Computational geometry and Voronoi diagrams to quickly characterize void space. 

• Fast PDE-Eikonal solvers to navigate, characterize, and refine void space. 

• Optimization and optimal selection of building blocks to achieve desired properties
• Gradient descent optimzation

• Genetic algorithms. 

• Are using these to optimize structure to maximize surface area 

• (internal surface area important for MOFs). 

Specific Linkage and Utility:
For the Molecular Foundry: On-going research on MOFs

For the EFRC: Discovering new advanced porous materials for gas separation)

For the Material Genome: Materials discovery, high-throughput materials analysis,

and data mining tools



Example Algorithms and Math Involved: 

+    =

Map building blocks to vertices and 

edges of topology graph
Final 3-D model exhibits 

desired  topology

Tools for 3D assembly of porous polymer models from 

enumerated periodic graphs

Fast PDE-based algorithms for porosity analysis 

Efficient material design with optimization algorithms

Haranczyk, and Sethian,   PNAS,  2009; Willems, Rycroft, Kazi, Meza, Haranczyk, Microporous Mesoporous Mater. 2012; Martin, Haranczyk, Chem. Sci. 2013; J. Chem. Theory Comput. 2013

Optimization in abstract space 

representing a material reveals high-

performing material designs

Abstract representation captures  

shape of real building block of a 

material

(1) Assembling Potential Materials (2) Analyzing Proposed Materials

CAMERA: Mathematics and Algorithms for 
Designing New Materials 

CAMERA

(3) Steering the Design

Voronoi decomposition-based tool for 

characterization of porosity

Fast discrete algorithms for calculation of guest-diffusion paths, 

pore size distributions and other properties with sub 0.1 A accuracy

Material 

structure

Monte Carlo sampled 

surface area 

3D Voronoi network

Simplified network representing 

void space is used for structure 

similarity and calculation of 

structural descriptors

Probe-accessible Voronoi 

network in pink



Applications and Early Successes:

CAMERA: Mathematics and Algorithms for 
Designing New Advanced Porous Materials 

CAMERA

Resulting publications: 

Nature Chemistry (2014)
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• High-throughput material characterization tools used to analyze porosity in 

multiple material databases (zeolites, MOFs, PPNs, etc.) 

• Material and porosity descriptors used, together with results of molecular 

simulations, to perform data-mining for structure-property relationships

• Various approaches to material sampling, diversity selection and similarity 

searching developed and demonstrated 

• Demonstrated (Multi-)Objective optimization of porous material structures, 

and approaches to compare materials topologies

Cryst. Growth Des. (2014), Phys. Chem. Chem. Phys. (PCCP) (2014), J. Chem. Phys. C (JPCC) (2014), J. Am. Chem. Soc. (JACS) 136 (2014) 5006, JACS 136 (2014) 2228, PCCP 16 (2014) 5499-

5513, JACS 135 (2013) 17818, PCCP 15 (2013) 20937, CrystEngComm 15 (2013) 7531, JPCC 117 (2013) 20037, Crystal Growth Des. 13 (2013) 4208, Microporous and Mesoporous Mat. 

(MMM) 181 (2013) 208, J. Mol. Graph. Model 44 (2013) 208, JPC C 117 (2013) 12159, J. Chem. Theory Comput. 9 (2013) 2816, Chem. Sci. 4 (2013) 1781, JACS 134 (2012) 18940, 

ChemPhysChem 13 (2012) 13, 3595, Langmuir 28 (2012),11914, Nature Materials 11 (2012) 633, J. Chem. Inf. Model. 52 (2012) 308, MMM 149 (2012) 134, Mol. Sim. 37 (2011) 986



CAMERA: Mathematics and Algorithms for 
Designing New Advanced Porous Materials 

CAMERA

• Algorithms implemented in an open-source 

package - Zeo++ - www.zeoplusplus.org

• Zeo++ has been adopted and become a default 

tool for two BES Materials Genome Centers 

(Nanoporous Materials Genome Center 

(Minnesota) and Center for Functional Electronic 

Materials (LBNL)) and the EFRC for Gas 

Separations (LBNL) 

• Ca. 200 registered users world-wide in both 

academia and industry (e.g. Bosch, Samsung) 

• Initial work on web-interfaces to allow easy access 

to structure enumeration and analysis capabilities 

(target users: experimentalists and material 

designers alike)

Deliverables: 

http://urchin.lbl.gov:8080/draw



Prototype Web Interface:



GISAXS and HipGISAXS

A. Hexemer (Advanced Light Source) 

X. Li and C. Yang (Computing Sciences Division)

J. Donatelli, J. A. Sethian (UC Berkeley Math, LBNL Computing Sciences)

Faster Analysis for X-ray 

Scattering Data

(Grazing-incidence small-angle X-ray scattering)



GISAXS: Overview
CAMERA

GISAXS nanorod calculation

• Received data not just Fourier transform 

• Use distorted wave Born approximation(DWBA)
Treat scattering by nanorods as perturbations of  

incident, reflected, and refracted scattered waves



GISAXS: Sample Uses
CAMERA



GISAXS: 
Mathematical/Computational Issues

CAMERA

Forward Simulation: 

Design input structure

compute scattering pattern

Sample Structure

GISAXS Image

Next Generation Computing for X-ray Science

• HipGISAXS simulation code based on DWBA

• High Performance Parallel Code

• Orders of magnitude faster than before

• Resulted from designing the mathematics to 

parallelize the algorithms. 

GISAXS (forward simulation):

simulation: 20 sec � 0.05 sec /frame
before after

(In progress: allow “CAD” input: building high order integration of form factors)



GISAXS: Deliverables

CAMERA



GISAXS: 
Mathematical/Computational Issues

CAMERA

Backward Simulation: 

Given scattering pattern

what was the structure?

Mathematical Questions:

• Not unique: is there theory to be developed within class constraints?

• Can you guide toward plausible solutions with constrained optimization?

• Can you use machine learning, coupled to image/pattern analysis to  help steer?

(identify peaks from image analysis and help identify crystal structure?)

• Better optimization methods: (non-linear methods, genetic algorithms) 

Current “beta” approach: Reverse Monte Carlo (recover structure): 
1 frame in 240 min � 100 frames in 15 min

before after

Software: Can  we expand the software to work better with other 
techniques, such as TEM, SEM maybe Tomography ?



Reconstruction Algorithms 

for X-Ray 

Nanocrystallography

J. Donatelli (LBNL Math) 

J. A. Sethian  (UC Berkeley Math, LBNL Computing Sciences)



Reconstruction Algorithms for X-ray 
Nanocrystallography 

CAMERA

X-ray Nanocrystallography Experimental Setup

Central issues:

X-ray nanocrystallography allows structure of a 

macromolecule to be determined from a large 

ensemble of nanocrystals.

Each nanocrystal is destroyed during the process. 

The goal is to assemble diffraction images from all 

the crystals to determine structure

Several parameters, including crystal sizes, orientations, and 

incident photon flux densities, are initially unknown.

Additionally, images are highly corrupted with noise. 

Tremendous amount of advanced mathematical algorithms for these problems:

John Spence’s group, Kay Diederich’s group.

Large amount of working software in use every day.  



Tools for determining crystal shape and size

Donatelli and Sethian, An algorithmic framework for x-ray nanocrystallographic reconstruction in the presence of the indexing ambiguity, PNAS,  2013 (to appear)

(2) Peak Shape Analysis

(3) Multi-Modal Modeling  

Reconstruction Algorithms for X-ray 
Nanocrystallography 

CAMERA

Structure determination of  puuE allantoinase 
from simulated data

(1) Autoindexing

(4) Resolving Indexing Ambiguities

Techniques for orienting images up to crystal lattice 

symmetry

Periodicity analysis of reflections yields partial orientation information

Fourier analysis of finely sampled low angle data coupled with image 

segmentation reveals crystal features 

Algorithms for removing orientation ambiguities resulting from 

crystal lattice symmetries

Multi-stage expectation maximization/scaling locates histogram 

modes from ambiguously oriented data

Clique analysis of a graph theoretical model of value concurrency 

resolves indexing ambiguities

Methods for reducing data variance in the presence of indexing 

ambiguities

Reconstruction via iterative phase retrievalSimulated diffraction pattern

We’re trying to bring some new math to these challenges:

Computational harmonic analysis, 
graph clique analysis, dimensional 
reduction, compressed sensing, multi-
modal expectation, PDE segmentation…

Hope: Use fewer images, deal with
more noise, harder cases



BUILDING, TESTING, EXPORTING:

•Building the new mathematics required to partner with 

experimental facilities

•Together with experimental partners, testing algorithms on data and 

“on the shop floor”

•Exporting codes, software to other DOE Facilities, Labs, and to 

advanced computing environments (HIPGISAXS, MicroCT, PytchoPS, 

PEXSI, ZEO++,…)

CAMERA: What is Happening Now 

CAMERA

camera.lbl.gov



Current Status:

CAMERA: Future? 

CAMERA

LBNL LDRD: Expires in one month (35 out of 36 months completed) 

ASCR-BES Pilot Project: Expires in 13 months (10 out of 23 months completed) 

Immediate Tasks:
Supporting on-going software development/delivery to wider DOE community. 

Bring current projects into deliverables

Tremendous Opportunities and Impact:
Small DOE investment in mathematics/algorithms. .

Gains in productivity could be massive, orders of magnitude more than now.

Expand the range and influence:
More beams, facilities: (inversions, reconstructions, segmentations, extractions)

More nanofacilities (high throughput, computational speedups)

More experimental partnerships (lab/faculty/postdocs/grad students)

Aim the next generation of ASCR mathematicians at these problems. 



CAMERA: Take Home Messages

CAMERA

Knowing what to build, how to build it, and how to use it 

requires close-knit, coordinated teams with many different skills. 

camera.lbl.gov

With careful attention to mathematics and algorithms, most 

users need not worry about becoming mathematicians, and 

can instead just *use* tools that transforms their data into the 

information they really want. 




