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Executive Summary 
As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation 
of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and 
climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain 
model predictions, inform model development, and identify needed measurements and feld experiments. Better representations of 
biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial 
uncertainties in 21st century climate change projections. 

Building upon past model evaluation studies, the goals of the International Land Model Benchmarking (ILAMB) project are to: 

1. Develop internationally accepted benchmarks for land model performance by drawing upon international expertise 
and collaboration 

2. Promote the use of these benchmarks by the international community for model intercomparison 

3. Strengthen linkages among experimental, remote sensing, and climate modeling communities in the design of new model tests 
and new measurement programs 

4. Support the design and development of open source benchmarking tools. 

Te second ILAMB Workshop in the United States was convened on May 16 to 18, 2016, in Washington, District of Columbia, USA. 
Sponsored by the U.S. Department of Energy’s (DOE’s) Ofce of Biological and Environmental Research, the workshop was convened 
by the Biogeochemistry–Climate Feedbacks Scientifc Focus Area (BGC Feedbacks SFA) project. Overarching goals of the workshop 
were to engage the international research community in defning scientifc priorities for (1) design of new metrics, (2) improvement of  
model development and workfow practices, (3) Coupled Model Intercomparison Project (CMIP) evaluation, and to learn about new 
observational data sets and measurement campaigns. 

Te workshop drew more than 60 on-site participants, and between 20 and 30 individuals—including students and postdocs—attended 
online at any time during the plenary sessions. Participants were from Australia, Canada, China, Germany, Japan, Netherlands, Sweden, 
United Kingdom, and the United States and represented 10 diferent major modeling centers. Plenary presentations focused on model 
benchmarking, emergent constraints, evaluation metrics, uncertainty quantifcation, and feld experiment and measurement networks. 

Outcomes of the 2016 ILAMB Workshop 
Tis 2016 ILAMB Workshop Report provides a synopsis of the current state of the science and highlights challenges and opportunities 
for benchmarking, model development, and feld and laboratory measurements needed to advance climate science. Te main text of 
the report provides a synthesis of the ideas, concepts, and scientifc priorities presented and discussed at the workshop. Te appendix 
of the report consists of topical white papers that summarize invited presentations, describe breakout group proceedings, and ofer 
recommendations. In addition, the white papers identify critical gaps and opportunities in measurement programs, ofer new approaches 
for model evaluation, and point out synergies among research teams and tools being constructed to support model development, 
parameter estimation, and model–data integration. 

As depicted in the schematic fgure below, the topical white papers within the categories of Major Processes and Integrating and Cross-
cutting Temes were synthesized with those on the needs of Model Intercomparison Projects (MIPs) to produce a set of next generation 
Benchmarking Challenges and Priorities resulting from the workshop. Moreover, Benchmarking Approaches for addressing these 
challenges were identifed and Enabling Capabilities needed to facilitate next generation benchmarking and model development were 
distilled from the white papers. Addressing these challenges will advance climate science by enabling process understanding, quantifying 
feedbacks, reducing uncertainties, and improving model projections. 

Benchmarking Tools 
Model evaluation and benchmarking tools currently employed by international modeling centers were assessed at the workshop. Features 
of current benchmarking tools—including the Protocol for the Analysis for Land Surface models (PALS), the Program for Climate Model 
Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP), the Earth System Model Evaluation Tool (ESMValTool), and the 
Land surface Verifcation Toolkit (LVT)—were reviewed, and the new ILAMB benchmarking systems were described and demonstrated. 
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Te ILAMB version 1 (v1) and ILAMB version 2 (v2)  benchmarking systems compare model results with best-available observational 
data products, focusing on atmospheric CO2, surface fuxes, hydrology, soil carbon and nutrient biogeochemistry, ecosystem processes 
and states, and vegetation dynamics. ILAMBv2 is expected to become an integral part of the workfow for model frameworks, including 
the Accelerated Climate Modeling for Energy (ACME) model and the Community Earth System Model (CESM). Moreover, ILAMBv2 
will contribute model analysis and evaluation capabilities to phase 6 of the Coupled Model Intercomparison Project (CMIP6) and 
future model and model–data intercomparison projects. 

Benchmarking Challenges and Priorities 
A variety of statistical approaches have been adopted to evaluate model accuracy through comparison with observations, including 
calculations of bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor diagrams and scores, functional 
relationship metrics, and perturbation and sensitivity tests. While many of these statistical measures are not independent, each provides 
slightly diferent information about contemporary model performance with respect to observational data and about implications for 
future projections from ESMs. 

However, developing metrics that make appropriate use of observational data remains a scientifc challenge because of the spatial and 
temporal mismatch between models and measurements, poorly characterized uncertainties in observationally constrained data products, 
biases in reanalysis and forcing data, model simplifcations, and structural and parametric uncertainties. A variety of benchmarking 
challenges and opportunities emerged from workshop breakout group meeting reports. Common themes included the following: 

› Need for collocated measurements, particularly around a core set of AmeriFlux and FLUXNET sites with a sustained record of 
observations for repeated model testing 

› Lack of quantifed uncertainty information for observational data 

› Utility of functional response metrics and variable-to-variable comparisons 

› Value of metrics for future projections based on emergent constraints 
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› Unrealized opportunities for global observational data sets based on satellite remote sensing synthesized with ancillary databases, 
using new algorithms 

› Importance of applying statistical and machine learning methods to upscaling sparse measurements from sites to regions to the globe 

› Need for process-level benchmarks and metrics for extreme events 

› Opportunities for collaboration with earth system model developers (e.g., ACME, CESM, and others) 

› Opportunities for collaboration with important feld and laboratory experiments and monitoring activities, including AmeriFlux 
and FLUXNET, Integrated Carbon Observation System (ICOS), Next Generation Ecosystem Experiments (NGEE) Arctic, Arctic– 
Boreal Vulnerability Experiment (ABoVE), Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) 
project, Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER) sites, National Ecological Observatory 
Network (NEON), NGEE Tropics, and Tropical Responses to Altered Climate Experiment (TRACE). 

Recommendations for next-generation Benchmarking Challenges and Priorities included the following: 

› Develop supersite benchmarks integrated with AmeriFlux and FLUXNET 

› Create benchmarks for soil carbon turnover and vertical distribution and transport 

› Develop benchmark metrics for extreme event statistics and response of ecosystems 

› Synthesize data for vegetation recruitment, growth, mortality, and canopy structure 

› Create benchmarks focused on critical high latitude and tropical forest ecosystems 

› Leverage observational projects and create a roadmap for remote sensing methods. 

Model Intercomparison Project (MIPs) 
Model Intercomparison Project (MIPs) are important activities for assessing the coherence and reliability of ESMs. Ongoing and future 
MIPs focused on modeling terrestrial water, energy, and carbon cycles are particularly relevant to ILAMB. Benchmarking needs were 
evaluated for the CMIP6 historical and Diagnostic, Evaluation, and Characterization of Klima (DECK) experiments; the Coupled 
Climate–Carbon Cycle MIP (C4MIP); the Land Surface, Snow and Soil Moisture MIP (LS3MIP); and the Land Use MIP (LUMIP). 
Opportunities for benchmarking model results from other MIPs were also considered. 

Key recommendations that emerged on MIP benchmarking needs were the following: 

› Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specifc processes through emergent 
constraint and traceability approaches 

› Benchmark across coupling and complexity hierarchies—from ofine land-only simulations to fully coupled ESMs—to attribute 
model biases and uncertainties to specifc domains and identify feedbacks between domains 

› Develop paired site data sets for benchmarking model representations of subgrid scale heterogeneity. 

Benchmarking Approaches 
New and existing Benchmarking Approaches were identifed from the workshop. While traditional statistical comparisons with 
observations ofer a great deal of information about model performance, metrics based on functional responses or variable-to-variable 
comparisons often suggest why models produce incorrect results. Benchmarking future projections can be accomplished through careful 
use of emergent constraints. Reduced complexity models and traceability frameworks are usefully applied to enable greater process 
understanding through more frequent and detailed testing with reduced computational costs. Formal uncertainty quantifcation (UQ) 
frameworks and methods, described in papers in the appendix, provide rigorous techniques for understanding model predictions. Finally, 
meta-analyses of perturbation experiments provide a new approach for constraining model predictions of ecosystem responses under 
controlled environmental change conditions. 
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Enabling Capabilities 
To address the identifed next generation Benchmarking Challenges and Priorities, certain Enabling Capabilities are needed. New model 
development focused on improving process representations is required, and additional model variables should be saved for comparison 
with data. A new Land Model Testbed (LMT) capability employing community benchmarks and supporting UQ frameworks would 
enable more rapid model development and verifcation, particularly for major ESM frameworks like ACME and CESM. 

Additional feld measurements and monitoring activities, as well as perturbation experiments and lab studies, could provide valuable 
observational data for constraining models. High priority measurement needs for developing benchmarks and improving ESMs include 
the following: 

› Long-term energy, carbon, and water fux measurements at AmeriFlux and FLUXNET sites with standardized instrumentation and 
methods, and additional frequent or continuous ancillary in situ measurements of soil moisture, sap fow, tree height and diameter, 
litterfall, and soil nutrients 

› High latitude and tundra soil core measurements of carbon and nutrient distributions, including isotopes and ice/water content, and 
observations of vegetation growth and expansion of woody vegetation 

› Characterization of tropical ecosystem traits and canopy structure and chemistry; observations of tropical ecosystem responses to 
drought, increased temperatures, and elevated atmospheric CO ; and measurements of nutrient cycling and hydrology in tropical 2

forests, focusing on land–atmosphere interactions 

› Remote sensing algorithms and processing infrastructure for generating data products useful for large-scale ecosystem 
characterization and monitoring, scaling up in situ measurements, and informing future measurement site selection. 

Improved observational data archives (e.g., DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility and 
Environmental System Science (ESS) archives, NASA Distributed Active Archive Centers (DAACs)) and repositories (e.g., Obs4MIPs) 
are needed that ofer data discovery, server-side analysis, and advanced distribution capabilities. Finally, new computational resources and 
cyber infrastructure will be required to realize the promise of new benchmarking capabilities. Tis infrastructure needs to ofer a balance 
between pure compute capacity (high core count) and throughput (e.g., cache size, memory size and bandwidth, and input/output 
bandwidth) to support in situ analysis and benchmarking, growing observational data sets, and multi-model comparisons. 

Conclusions and Next Steps 
Te 2016 ILAMB Workshop was successful in bringing together the international community to identify scientifc challenges and 
priorities for future research. Te workshop demonstrated broad interest on the part of a vibrant community of scientists spanning many 
disciplines that are committed to reducing barriers for information fow between the measurement and modeling communities. 

To efectively address the individual processes and cross-cutting themes discussed above, small, targeted working groups should be formed 
to research and publish supporting analyses. A top priority is supporting CMIP6 activities, where additional development of ILAMB 
functionality could yield powerful automated analyses and model intercomparison capabilities for such national and international 
assessment eforts. 

Over the next decade, the community envisions the ILAMB system to serve as a core capability within a U.S. or international center that 
will provide a home to focused synthesis working groups, host MIP-related activities, and support expanded use of, and access to, ESMs 
by a broader cross section of scientists within disciplines of ecosystem ecology, biogeochemistry, and hydrology. 
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1.0 Model Benchmarking Principles 
and Workshop Introduction 

As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted 
evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with 
hydrology and climate under conditions of increasing atmospheric carbon dioxide (Figure 1.1), new analysis methods 
are required that use observations to constrain model predictions, inform model development, and identify needed 
measurements and feld experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem 
processes in these models are essential for reducing uncertainties associated with projections of climate change during 
the remainder of the 21st century. 

Figure 1.1. Today’s advanced Earth system models must represent the interacting energy and radiation dynamics and water cycle 
processes (left) as well as the geochemical and biological processes that control global carbon and nutrient cycles (right) under 
conditions of increasing atmospheric carbon dioxide. 

Building upon past model evaluation studies, the goals of the International Land Model Benchmarking (ILAMB) 
activity (Section 3; https://www.ilamb.org/) are the following: 

1. Develop internationally accepted benchmarks for land model performance by drawing upon international 
expertise and collaboration. 

2. Promote the use of these benchmarks by the international community for model intercomparison. 

3. Strengthen linkages among experimental, remote sensing, and climate modeling communities in the design 
of new model tests and new measurement programs. 

4. Support the design and development of a new, open source, benchmarking software system for use by the 
international community. 

To further these goals and advance the development of benchmarking software tools for use by the international 
community, a diverse team of national laboratory and university researchers sponsored by the US Department 
of Energy is engaged in developing new diagnostic approaches and model benchmarking tools for evaluating 
Earth System Model (ESM) hydrological and biogeochemical process representations. Collaborating through 
the Biogeochemistry–Climate Feedbacks Scientifc Focus Area (BGC Feedbacks SFA) project 
(https://www.bgc-feedbacks.org/), this team performs simulations, analyses, and benchmarking to identify 
model weaknesses that lead to model improvements and determine needed measurements that inform the 
design of future feld campaigns (Figure 1.2). Research activities such as the BGC Feedbacks SFA play a critical 
role in the model–data experimentation (ModEx) enterprise for the US Department of Energy and other agencies 
by connecting feld and laboratory data with models and producing syntheses, analysis methods, and open source 
tools that are made available to the larger international scientifc community (Figure 1.3). 

https://www.bgc-feedbacks.org
https://www.ilamb.org
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Figure 1.2. The 
Biogeochemistry–Climate 
Feedbacks Scientifc Focus 
Area (SFA) uses best-
available observational data 
sets to evaluate the fdelity 
of Earth system models. 
Open source benchmarking 
tools are produced to 
support model testbeds 
for Accelerated Climate 
Modeling for Energy 
(ACME) and Community 
Earth System Model (CESM) 
frameworks. The project 
identifes model gaps and 
weaknesses, informs new 
model development, and 
suggests new measurement 
and feld campaigns. 

Te benchmarking system developed by the BGC Feedbacks SFA compares model results with best-available 
observational data products, focusing on atmospheric CO2, surface fuxes, hydrology, soil carbon and nutrient 
biogeochemistry, ecosystem processes and states, and vegetation dynamics. Te system is expected to become an 
integral part of model verifcation for future rapid model development cycles for the model frameworks from 
the Accelerated Climate Modeling for Energy (ACME) project and the Community Earth System Model 
(CESM). Moreover, it will contribute model analysis and evaluation capabilities to phase 6 of the Coupled Model 
Intercomparison Project (CMIP6) and future model and model–data intercomparison experiments. 

Te second ILAMB Workshop in the United States was convened on May 16–18, 2016, in Washington, District of 
Columbia, USA. Te overarching goal of the workshop was to engage the international research community 
in defning the scientifc priorities for the design of new metrics, the identifcation of model development 
and workfow practices, and CMIP6 evaluation needs, and to learn about new observational data sets and 
measurement campaigns. Te workshop drew more than 60 on-site participants and included attendees from 
Australia, Japan, China, Germany, Sweden, Netherlands, United Kingdom, and the United States. Tey represented 
10 diferent major modeling centers. Approximately 90 individuals registered to participate remotely, and between 
20 and 30 were online at any time during the plenary sessions, including students and postdocs from various 
universities and labs and invitees unable to travel from Canada, China, and elsewhere. Te workshop agenda, 
presentation abstracts, and the participant list are contained in Appendix F. Plenary presentations focused on model 
benchmarking, emergent constraints, evaluation metrics, uncertainty quantifcation, and measurement networks. 

SECOND ILAMB WORKSHOP IN THE U.S. 
More than 5 years after the frst ILAMB workshop in the United States in 2011, the 2016 ILAMB workshop, jointly 
sponsored by the U.S. Department of Energy’s Regional & Global Climate Modeling (RGCM) and Earth System 
Modeling (ESM) Programs, was convened to: 

» Highlight new techniques and metrics for model evaluation, including applications of the emergent 
constraints approach. 

» Enable coordination among the Coupled Climate–Carbon Cycle Model Intercomparison Project; Land Surface, Snow, 
and Soil Moisture Model Intercomparison Project; and the Land Use Model Intercomparison Project. 

» Increase awareness of new tools that will be available for model verifcation and benchmarking, drawing upon data 
streams from feld experiments, remote sensing, in situ measurements, and synthesis activities. 

» Increase the use and sharing of information and community tools for model evaluation and benchmarking. 

» Design new metrics and evaluation approaches for integration into the next generation ILAMB system. 

» Create new metrics that integrate across carbon, surface energy, hydrology, and land use disciplines. 
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Figure 1.3. Model simulations and benchmarking play a critical role in the model–data experimentation (ModEx) 
enterprise outlined in this diagram. By identifying model weaknesses and knowledge gaps, benchmarking helps 
inform process research and experimental design, which generate data that drives new model development in a cyclic 
fashion. All of these steps both use and produce data, models, and analysis capabilities and tools that can be shared 
and used by the larger international research community. 

Te white papers in the Appendix of this report were authored through “crowdsourcing” for the widest possible 
engagement with researchers at the workshop, attending remotely, or with general interest in model evaluation. 
Breakout group co-leads and plenary presenters, listed as authors of the respective white papers, contributed 
additional efort to resolve comments and produce the combined draft form of the report. In addition to transmitting 
audio and slides over the Internet from all plenary sessions, workshop updates from various participants were 
provided to the community via social media (see sidebar on Te Cloud and Social Media at the ILAMB Workshop). 
On the second and third afternoons of the workshop, ILAMBv2 software tutorials were webcast to increase outreach 
to students, postdocs, and early career scientists interested in land model benchmarking. 

Tis report provides a synopsis of the current state of the science and highlights challenges and opportunities 
for benchmarking, model development, and feld and laboratory measurements needed to advance climate 
science. Te main text provides a synthesis of the ideas, concepts, and scientifc priorities presented and discussed 
at the workshop. Section 4 highlights benchmarking priorities identifed by the scientifc community. Categorized 
as Major Processes (detailed in Appendix B) and Integrating and Cross-cutting Temes (detailed in Appendix C), these 
topics are listed below, and the process by which the corresponding white papers were synthesized for the main body 
of the report is summarized in Figure 1.4. 

Major Processes 

» ecosystem processes and states » soil carbon and nutrient biogeochemistry 

» hydrology » surface fuxes (energy and carbon) 

» atmospheric CO2 
» vegetation dynamics 
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Integrating and Cross-cutting Themes 

» process-specifc experiments » tropical processes 
» metrics from extreme events » remote sensing 
» design of new perturbation experiments » eddy covariance fux networks 
» high latitude processes 

Te Appendix of this report summarizes the invited presentations, describes breakout group proceedings and 
recommendations, and identifes critical gaps and opportunities in measurement programs, new approaches for 
model evaluation, and synergies among research teams and tools being constructed to support model development, 
parameter estimation, and model–data integration. 

Figure 1.4. The topical white papers within the categories of Major Processes and Integrating and Cross-cutting Themes 
were synthesized with those on the needs of Model Intercomparison Projects (MIPs) to produce a set of next generation 
Benchmarking Challenges and Priorities resulting from the workshop. In addition, Benchmarking Approaches for addressing 
these challenges were identifed and Enabling Capabilities needed to facilitate next generation benchmarking and model 
development were distilled from the white papers. Addressing these challenges will advance climate science by enabling 
process understanding, quantifying feedbacks, reducing uncertainties, and improving model predictions. 

Section 2 describes a collection of existing land model evaluation or benchmarking tools and identifes other model 
evaluation capabilities currently employed in international climate modeling centers. Strengths and weaknesses of 
these existing approaches are considered in the discussion of potential synergies for future development across varied 
benchmarking packages. Section 3 presents an overview of the ILAMB Software Packages (ILAMBv1 and ILAMBv2) 
released to the community at the workshop. Section 4 focuses on next generation benchmarking challenges, identifed 
by the international community, for confronting models. Suggestions for careful consideration of how best to 
employ measurements and observationally constrained data products are an important community contribution 
from the workshop. In some cases, the community would beneft from synthesis of existing data or from entirely 
new measurements. Section 5 describes future model intercomparison projects (MIPs), particularly those associated 
with the 6th phase of the Coupled Model Intercomparison Project (CMIP6), and discusses model evaluation needs, 
challenges, and opportunities expected in the future. 
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Section 6 describes a proposed land model development and evaluation testbed methodology and highlights specifc 
metrics and datasets identifed for evaluating new process parameterizations being developed for the ACME Land 
Model (ALM). Section 7 illustrates a mathematical methodology for evaluating structural components of carbon cycle 
models and describes approaches for integration of uncertainty quantifcation techniques into model benchmarking 
activities and tools. Section 8 presents computational needs and challenges for large scale climate data analytics, with 
a focus on model evaluation and benchmarking. Finally, Section 9 describes next steps for the scientifc enterprise 
of model benchmarking through focused mini-workshops, use of extensible archives for data expressly designed for 
model comparison (e.g., obs4MIPs), and community research opportunities centered on science questions to be 
addressed by large MIPs. Te Appendixes that follow these sections provide detailed descriptions of presentations, 
notes from meeting sessions, and citations to relevant research in support of the main body of the report. 

THE CLOUD AND SOCIAL MEDIA AT THE ILAMB WORKSHOP 
Conferencing technology, document crowdsourcing in the Cloud, and social media were all employed at the 
ILAMB Workshop to maximize community participation. Audio and slides from plenary sessions all three days 
were transmitted over the Internet through software called BlueJeans. 

All slides and meeting notes were developed and edited by workshop participants using Google Slides and 
Google Docs, allowing local and remote attendees to contribute notes and comments for any plenary or 
breakout group session. Twitter was employed by many participants to make comments, post ideas, or ask 
questions during the workshop. A sampling of these tweets is shown here. 

This workshop report was developed by crowdsourcing through the community using Google Docs, which 
enabled participants to continue contributing new ideas, fgures, and references to relevant research right 
up until fnal production. 

The use of technology even helped reduce gender, racial, and cultural imbalances among workshop 
participants since female caretakers could attend from their homes and researchers in foreign countries 
could attend without traveling long distances. 
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2.0 Benchmarking Tools 
2.1 Evaluation and Benchmarking Tools 
To prepare ILAMB Workshop participants for discussions of model evaluation and benchmarking, several of the 
leading benchmarking tools being employed by the research community were reviewed and presented by invited 
workshop speakers. Tese tools, some of which were designed specifcally for evaluating land models and others for 
general applicability to Earth system models, are described here. Te Protocol for the Analysis for Land Surface 
models (PALS; Abramowitz, 2012) is an online web application for the automated evaluation and benchmarking 
of land surface model (LSM) simulations. Te Program for Climate Model Diagnosis and Intercomparison 
(PCMDI) Metrics Package (PMP; Gleckler et al., 2016) emphasizes summary statistics that gauge model 
errors across a range of spatial and temporal scales for the  atmosphere, ocean, and sea ice, and is designed to 
deliver  systematic benchmarking for Coupled Model Intercomparison Project (CMIP) Diagnostic, Evaluation 
and Characterization of Klima (DECK) simulations. Te Earth System Model Evaluation Tool (ESMValTool; 
Eyring et al., 2016a) is a community efort to encourage open exchange of diagnostic source code and evaluation 
results through a standardized workfow framework. Te Land surface Verifcation Toolkit (LVT; Kumar et al., 
2012), originally designed to support NASA’s Land Information System (LIS; Kumar et al., 2006), is an automated 
evaluation framework that incorporates a model–data fusion paradigm. Te new ILAMB packages (Section 3), 
ILAMBv1 (Mu et al., 2016) and ILAMBv2 (Collier et al., 2016), are open source land model evaluation systems that 
operate on global-, regional-, and site-level data and provide a hierarchical scoring system to indicate model fdelity 
(Mu et al., in prep.). 

Te ESM community agrees that systematic model assessment should be a routine component of the model 
development process. Benchmarking systems should provide a mechanism for archiving of previous results in a 
manner that allows for ease of viewing later. For example, ILAMB facilitates the comparison of multiple models or 
model versions simultaneously (e.g., Figure 2.1). Scores for individual metrics can easily be compared to determine 
the tradeofs resulting from model modifcations. Likewise, the PALS system retains all datasets, analysis scripts, 
and results for efcient comparison across model versions. Te second phase of PALS will introduce a distributed 
architecture in which analysis nodes are located at modeling centers to circumvent the need for repeated transfers of 
large fles that may be a barrier to routine model evaluation. 

Model evaluation tools should be designed to test the predictive power of a model under conditions of a changing 
climate. Given that direct model evaluation is possible only with contemporary observations, it is difcult to establish 
whether a model has predictive skill. However, within the ILAMB system, development of functional benchmarks 
to relate biogeochemical or biogeophysical responses to a physical driver will test whether a model can accurately 
simulate the relationship between a model variable and a physical driver across a range of driver values. When a model 
can reproduce functional relationships across a full range of present day climate regimes, for example, it may yield 
more robust responses to future change (e.g., Figure 2.2). While this approach is indirect, it moves beyond simple 
time series or spatial comparisons to probe relationships among variables and drivers or among variables and other 
variables. Tese relationships may then be useful for testing future predictions using emergent constraint approaches. 
A complementary approach for testing model predictivity, prototyped in the LVT, are metrics based on information 

KEY RECOMMENDATIONS 
» Well-established aspects of model assessment should be a routine component of the model development process 

that over time becomes increasingly comprehensive. 

» Evaluation tools should include testing the predictive power of models under a changing climate. 

» Benchmarking packages should span a wide range of spatial and temporal scales and extents. 

» Integration of a diversity of evaluation tools into a common workfow framework could lead to new insights into 
climate processes and phenomena. 

» Evaluation and benchmarking systems should be open source and freely distributed to leverage the work of many 
modeling teams and to minimize redundancy. 

» Benchmarking tools should be integrated with data repositories that support standardized access through an 
applications programming interface. 
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Figure 2.1. The ILAMBv2 package produces a summary 
graphic depicting model performance across a wide 
variety of variables, emphasizing absolute performance 
(left) as well as relative performance (right) with respect 
to comparisons with observations. This fgure compares 
results from the ACME Land Model (ALM) run offine 
with carbon–nitrogen (CN) biogeochemistry (ALM_CN), 
run offine in satellite phenology (SP) mode (ALM_SP), 
and fully coupled in SP mode (ALM_WCYCL) with the 
Community Land Model (CLM) run offine for CLM-4.0 
(CLM40cn), for CLM-4.5-BGC (CLM45bgc_CRUNCEP) 
and for CLM-4.5-BGC with Global Soil Wetness Project 
version 3 (GSWP3) forcing (CLM45bgc_GSWP3). 
(image to the right) 

theory. By considering entropy or information 
content within model output, a package may be 
able to evaluate the robustness of model predictions 
to a diferent mean state. 

Building a benchmarking system that spans spatial and 
temporal scales is crucial. Land surface processes are 
heterogeneous, but the climate impact of biogeochemical 
exchange with the atmosphere is global. ILAMB currently 
incorporates both global gridded observations and site-level 
time series and ofers a scheme for scoring performance 
on both kinds of comparisons, representing both spatial 
and temporal aspects of model performance. 
Te LVT system dynamically transforms model 
output to match the scale of observational 
constraints. Te PALS system is presently 
limited to a set of fux tower sites with high 
data density in the temporal domain and 
ancillary observations. 

Ultimately, linking ILAMB to existing 
model evaluation tools for physical climate 
will facilitate improved prediction in fully 
coupled Earth system models. Te PCMDI 
Metrics Package and the ESMValTool are 
community tools designed to evaluate a 
set of outputs complementary to ILAMB, 
especially from non-terrestrial components 
of the Earth system. We see opportunities for 
linking with these packages because a lack of 
fdelity in the simulation of physical climate in 
biogeochemical hotspots, such as the Amazon, 
may induce a cascade of impacts across 
ecosystems, aerosols, atmospheric chemistry, 
and atmospheric dynamics. Routinely 
employing ILAMB or other diagnostics 
packages for analysis of the 6th phase of the 
Coupled Model Intercomparison Project 
(CMIP6) will facilitate sharing of process-level 
insights for more rapid and productive future 
model development and evaluation. 

Figure 2.2. A metric for heat transfer through snow. The dashed line and 
gray shading show observed relation between the normalized difference in 
the amplitude of the annual cycle of air temperature versus near-surface soil 
temperature at different levels of effective mean snow depth. Colored lines 
represent the snow heat transfer relationship as obtained from CMIP5 models 
(Figure 4 of Slater et al., 2016). 
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Many model evaluation packages are open source community tools, and such a free and open framework facilitates 
wide use of the benchmarking system because users can add evaluation metrics or sub-select from existing metrics 
as desired. Challenges to adoption, integration with other tools, and cooperative development include standards 
for fle formats and data conventions, programming languages, and the diversity of computational architectures 
required to support single-point to high resolution global analyses. Given that most Earth system modeling centers 
do not presently share evaluation packages, building fexibility into the structure of news tools is likely to minimize 
redundant efort across centers. Opportunities to leverage developments across modeling centers should be pursued 
by engaging with ongoing data infrastructure eforts for CMIP and more broadly the World Climate Research 
Programme (WCRP). 

2.2 Other Model Evaluation Capabilities in Use 
at Modeling Centers 

Modeling centers presently employ a patchwork of model evaluation methodologies. A survey conducted prior 
to the 2016 ILAMB Workshop, designed to gauge the philosophies and approaches used for model evaluation, 
confrmed unanimous community interest in comprehensive evaluation tools, with all modeling centers reporting 
that evaluation played multiple roles in the model development process. Although the primary reported use for model 
evaluation was to diagnose errors in the model, modeling centers also use their evaluation packages to tune model 
parameters and to aid with model analyses. 

Responses from the modeling centers also revealed the need for community-based approaches to share best 
practices. Although most modeling centers had their own model evaluation package, some of these packages are 
slanted toward general diagnostics rather than land-specifc diagnostics. Of these packages, roughly half included 
quantitative metrics and scoring; however, most of the packages also relied signifcantly on expert judgment, such 
as for interpreting graphical comparisons between model output and observational constraints. An impediment 
to quantitative comparisons was the perception that data quality varies widely from one dataset to another. For 
quantitative comparisons, several modeling centers had already begun to rank variables by the availability and quality 
of observations (e.g., Figure 2.3), both for prioritizing the integration of new variables into their package and for 

Figure 2.3. Ranking system employed by UKMO in determining land variables to incorporate into their metrics 
package. Adapted with permission from Martin Best and Chris Jones (UK Met Offce). 
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gauging the relative importance of an observational constraint that had already been incorporated into the package. 
An important contribution from ILAMB may therefore be parsing the appropriate uses and limitations of various 
datasets that can be used for model evaluation. 

Te workfow through which model evaluation packages are employed suggests that another important contribution 
from a system like ILAMB is in facilitating comparisons for both coupled and uncoupled model runs. Most modeling 
centers reported that they develop their model sequentially, frst focusing on uncoupled simulations, and later tuning 
for coupled simulations. A challenge for this sequential approach is that there are signifcant uncertainties in driver 
datasets that likely propagate to biases in land model output. Tus, ILAMB capabilities to evaluate both coupled 
and uncoupled runs is likely advantageous. Further development of functional response metrics would facilitate both 
types of comparisons. 

A crucial component of benchmarking workfows is the ability to confront models with observational datasets that 
may reside in one or more data archives or repositories, and may evolve in time as new observations are added or as 
data processing methods are improved. Currently, this process is ad hoc, with modeling centers or individual scientists 
typically accessing a given dataset once, possibly converting its format to one that is most consistent with model 
output, and then storing the data locally for use in analysis. Tis process could be considerably streamlined through 
the development of an application programming interface (API) that allows benchmarking toolkits to rapidly and 
traceably access specifc versions of datasets wherever they may be archived, align the data with model formatting 
requirements, and track whether updated dataset versions are available or new quality control issues with a given 
version of a dataset have been identifed. Tis functionality is particularly important for model developers, like 
those in DOE’s ACME project, who wish to track the evolution of model performance over time. If automatically 
downloaded observational data change without the user being informed, the fdelity of the model will appear to 
change even though no change was made to the model code or input data. We advocate for Federated data centers 
that support interoperable services as a means for solving the myriad of challenges associated with integrating 
observational data for model benchmarking (Williams et al., 2016). Obs4MIPS, a Federated archive built for data 
sets created or reprocessed specifcally for use in comparison with model results, represents early work toward meeting 
these data management, versioning, and provenance challenges (Teixeira et al., 2014; Ferraro et al., 2015). 

ILAMB promises to address barriers to sharing model evaluation packages across centers. A few modeling centers 
have already adopted ILAMB as a primary or secondary model evaluation package. Several centers desired better 
integration with other centers; however, a difculty is that a diversity of software is used, including the NCAR 
Command Language (NCL), Ferret, Fortran, R, and Python. Tus, an open source evaluation system will likely 
facilitate cross-center interactions and drive community standards for model evaluation. 

2.3 Synergies Across Different Benchmarking 
Activities 

Several modeling groups have well-developed eforts focusing on land model assessment and benchmarking. Tese 
projects are all moving forward in parallel with ILAMB development. While some overlap exists across these projects, 
each package has a particular set of capabilities and strengths. PALS focuses on benchmarking in the true sense 
of the word by defning, through statistical models, an a priori expectation of minimum land model performance 
and assessing the prognostic models against that a priori expectation. LVT focuses primarily on water and energy 
cycling metrics and includes uncertainty and ensemble diagnostics, as well as more advanced statistical measures 
based on information theory, spatial similarity and scale decomposition techniques. ILAMB, on the other hand, 
emphasizes breadth through compilation and use of a comprehensive array of land datasets that cover a wide 
spectrum of terrestrial system processes and space and time scales. Te ESMValTool and PCMDI Metrics Package 
provide mechanisms for routine analysis of coupled model output and include a set of diagnostics packages that 
collectively provide a comprehensive assessment of a wide range of essential climate variables—including some land 
variables—that are simulated by Earth system models. Each of these benchmarking eforts is serving unique as well as 
complementary purposes. 

At this stage, coordination of these distinct and international land model benchmarking/assessment activities is 
challenging due to the diversity of approaches and the complexities of the international funding environment. 
Nonetheless, the 2016 ILAMB Workshop provided a good opportunity for everyone to share progress and ideas. 
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Over the longer term, it may be possible and benefcial to integrate existing land diagnostics packages under a loosely 
coordinated framework, potentially in a manner similar to that employed by ESMValTool for analysis of the coupled 
climate system. Under this scenario, the independently developed diagnostics packages (ILAMB, PALS, LVT) could 
be brought together under a single umbrella. Transitioning to this mode of operation would have the beneft of 
reducing efort related to the overhead of benchmarking (e.g., workfow processes such as reading in, processing, 
and reformatting model and observational data), which would allow more time, efort, and funding to be devoted 
to metrics development. One idea, as a frst step toward a more coordinated international land model benchmarking 
activity, would be a joint benchmarking analysis project, wherein each of the existing packages is applied to a set of 
multi-model output that would enable direct comparison and evaluation of precisely how each package uniquely 
contributes to our understanding of model strengths and weaknesses. 
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3.0 Current Status of the ILAMB 
Software Packages 

Te complexity of today’s process-rich Earth system models poses a verifcation challenge to developers implementing 
new parameterizations or tuning process representations, and a validation challenge to modelers for comprehensive 
and multifaceted evaluation of model predictions. Model developers and software engineers require a systematic 
means for evaluating changes in model results to ensure that their developments improve the fdelity of the target 
process representations while not adversely afecting results in other parts of the model. To objectively assess the 
performance of such models and identify model weaknesses—supporting the goals of the ILAMB project—a frst-
generation prototype benchmarking package and a second-generation package re-architected for better modularity 
and increased extensibility were developed. Called ILAMBv1 (Mu et al., 2016) and ILAMBv2 (Collier et al., 2016), 
respectively, both open source packages evaluate scientifc model performance on 24 variables in four categories from 
about 45 data sets; produce graphical global-, regional-, and site-level diagnostics; and provide a hierarchical scoring 
system (Mu et al., in prep.). 

At the previous ILAMB Workshop in the United States—held in Irvine, California, in January 2011—a methodology 
was developed for targeting aspects of model performance to be evaluated, identifying a set of benchmarks to test 
model performance, and guiding model improvements (Luo et al., 2012). Since that workshop, which advocated 
for near-term research eforts directed at developing a set of widely accepted benchmarks, the team of ILAMB 
developers and contributors have worked to design critical metrics for terrestrial model evaluation and to build 
software tools to evaluate those metrics and generate graphical diagnostics. Leveraging prior work on the Carbon-
Land Model Intercomparison Project (C-LAMP; Randerson et al., 2009), the ILAMBv1 and ILAMBv2 packages 
were developed with support from the Biogeochemistry–Climate Feedbacks Scientifc Focus Area (SFA) project 
(https://www.bgc-feedbacks.org/; Appendix F.6). ILAMBv1 is written in the National Center for Atmospheric 
Research (NCAR) Command Language (NCL) and was released as a prototype at the American Geophysical Union 
(AGU) Fall Meeting in 2015. ILAMBv2 is written in Python and was released at this workshop. 

Both ILAMBv1 and ILAMBv2 assess model performance for variables in categories of biogeochemistry (aboveground 
live biomass, burned area, carbon dioxide, gross primary production, leaf area index, global net ecosystem carbon 
balance, net ecosystem exchange, ecosystem respiration, and soil carbon), hydrology (evapotranspiration, latent 
heat, and terrestrial water storage anomaly), radiation and energy (albedo, surface upward shortwave radiation, 
surface net shortwave radiation, surface upward longwave radiation, surface net longwave radiation, surface net 
radiation, and sensible heat), and climate forcing (surface air temperature, precipitation, surface relative humidity, 
surface downward shortwave radiation, and surface downward longwave radiation). For each of these variables, the 
packages generate graphical diagnostics and score model performance for the period mean over whole years and its 
bias (Figure 3.1),RMSE, spatial distribution, interannual coefcient of variation, and seasonal cycle and long-term 
trend (Figure 3.2). Variable-to-variable comparisons, or functional relationships, are also diagnosed to show how well 
models capture global or regional prognostic behavior in relation to one or more forcing variables (e.g., gross primary 
production vs. precipitation). 

Model performance scores are calculated for each metric and variable and are further scaled based on the degree of 
certainty of the observational data set, the scale appropriateness and spatial and temporal coverage, and the overall 
importance of the constraint or process to model predictions. Scores are aggregated across metrics and data sets, 
producing a single scalar score for each variable for every model or model version. In ILAMBv2, these scores are also 
presented graphically to indicate absolute performance in stop-light colors and intra-model relative performance 
(Figure 3.3). Both graphical representations are useful because the absolute performance shows which variables are 
captured well by the models, while the relative performance or Z-score indicates which models or model versions are 
doing a relatively better or poorer job of reproducing the variable in question. 

ILAMBv1 has been applied to analyze results from a suite of models that participated in the 5th phase of the Coupled 
Model Intercomparison Project (CMIP5) and new model development underway for ALM and the Community 
Land Model (CLM). ILAMBv2 is routinely used to study the evolving performance of both ALM and CLM. While 
ILAMBv1 is continuing to be used for individual studies, all new metrics development is expected to take place 
in the ILAMBv2 package because it runs in parallel across multiple compute nodes and is more modular, fexible, 
and extensible. 

https://www.bgc-feedbacks.org
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Figure 3.1. Shown here is the year 2000 pantropical forest biomass benchmark data (Saatchi et al., 2011) (top row 
left) and the Accelerate Climate Modeling for Energy (ACME) Land Model version 1 (ALMv1) annual mean biomass 
for years 1996 to 2005 (top row right). Below the horizontal line are maps of the bias from four models (CLM4.0-CN, 
CLM4.5-BGC, CLM4.5-BGC forced with GSWP3, and ALMv1). These biases are computed by subtracting the benchmark 
from the model annual mean biomass for years 1996 to 2005. 

Figure 3.2. The ILAMBv1 
prototype compares the model 
and FLUXNET (Lasslop et al., 
2010) mean annual amplitude 
and phase of gross primary 
production (GPP) (top left); 
computes the annual mean, bias, 
and root-mean-square error 
(RMSE) of GPP (top right), and 
compares the full time series of 
GPP for prescribed regions. 
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Within US Department of Energy (DOE)-sponsored 
projects, the ILAMB framework is not only being 
leveraged by the ACME project but is bridging with large 
measurement and modeling projects in DOE’s Terrestrial 
Ecosystem Science (TES) Program, including the Next 
Generation Ecosystem Experiments (NGEE) Arctic, 
NGEE Tropics, and Spruce and Peatland Responses 
Under Climatic and Environmental Change (SPRUCE). 
Te ILAMB framework is developing and implementing 
metrics for new features of ALM, as a standard means 
for verifying model improvements. It is being adopted 
by TES projects to assist in development and testing of 
new process parameterizations, and as a mechanism for 
rapidly delivering observational data sets collected in the 
project to the modeling community. In addition, ILAMB 
is being used routinely to evaluate community-contributed 
enhancements to CLM within the Community Earth 
System Model (CESM) framework at NCAR. Both 
ACME and CESM are incorporating ILAMBv2 into their 
new workfow packages, so it will be run automatically as 
a standard post-processing step after executing a model 
simulation for rapid model development and assessment. 

Figure 3.3. The ILAMBv2 package produces a summary graphic depicting 
model performance across a wide variety of variables, emphasizing 
absolute performance (left) as well as relative performance (right) with 
respect to comparisons with observations. This fgure compares results 
from the ACME Land Model (ALM) run offine with carbon–nitrogen 
(CN) biogeochemistry (ALM_CN), run offine in satellite phenology (SP) 
mode (ALM_SP), and fully coupled in SP mode (ALM_WCYCL) with the 
Community Land Model (CLM) run offine for CLM-4.0 (CLM40cn), for 
CLM-4.5-BGC (CLM45bgc_CRUNCEP) and for CLM-4.5-BGC with Global 
Soil Wetness Project version 3 (GSWP3) forcing (CLM45bgc_GSWP3). 
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4.0 Next Generation Benchmarking 
Challenges 

Maintaining and improving the scientifc performance of today’s complex Earth system models (ESMs) requires 
comprehensive, multifaceted, and systematic evaluation, analysis, and diagnosis of model results. A widening range 
of in situ measurements and remote sensing observations is available for use in judging the fdelity of land surface 
and terrestrial ecosystem models. A variety of statistical approaches have been adopted to evaluate model accuracy, 
including calculations of bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor 
diagrams and scores, functional relationship metrics, and perturbation and sensitivity tests. While many of these 
statistical measures are not independent, each provides slightly diferent information about contemporary model 
performance with respect to observational data and about implications for future projections from ESMs. 

Developing metrics that make appropriate use of observational data remains a scientifc challenge because 
of the spatial and temporal mismatch between models and measurements, poorly characterized uncertainties in 
observationally constrained data products, biases in reanalysis and forcing data, model simplifcations, and structural 
and parametric uncertainties. Te modeling community, in direct collaboration with the observation community, 
should develop clear guidelines on how these measures may best be used and how they complement each other for 
diferent benchmarking purposes. For example, functional relationships or variable-to-variable comparisons can 
partially compensate for errors in forcing data and provide information on ecosystem responses by comparing the 
relationships between two variables from models and observations, thus ofering a zeroth order characterization of 
overall model behavior with reduced sensitivity to biases in atmospheric driver variables. A second example is the use 
of results from perturbation experiments, which can be used to probe specifc process representations in the models. 

Tis chapter outlines important challenges and benchmarking opportunities identifed by the research community for 
assessing the performance of ESMs. At the workshop, a set of breakout group meetings was held on benchmarking 
major Earth system processes and another set focused on cross-cutting benchmarking themes. For this report, 
the summary of a separate plenary presentation and discussion about eddy covariance fux networks was added 
to the section on Integrating and Cross-cutting Temes. Te breakout group meeting reports—contained in the 
Appendix—provide supporting details for the following benchmarking topics: 

KEY RECOMMENDATIONS 
» Developing metrics that make appropriate use of observational data remains a scientifc challenge that should be 

addressed through synthesis activities in collaboration with the modeling and observational communities. 

» Common benchmarking challenges highlighted the need for collocated measurements and uncertainty information, 
functional response metrics, emergent constraints, combining observational products, upscaling measurements, and 
collaborations with modeling and measurement communities. 

» Develop “super site” benchmarks—integrated with AmeriFlux and FLUXNET—with detailed process-specifc 
observations and robust model driving data to attribute model biases to underlying mechanisms. 

» Create benchmarks for soil carbon turnover and the vertical distribution and transport of soil organic matter. 

» Develop benchmark metrics for extreme event statistics, and on the response of ecosystems to extreme events. 

» Synthesize data for vegetation recruitment, growth, mortality, and canopy structure, including disturbances, for 
benchmarking forthcoming demographic models. 

» Develop a set of focused benchmarks for critical high latitude ecosystems, focusing on the dynamics of the coupled 
soil physical and biogeochemical system in permafrost-affected ecosystems. 

» Create a set of focused benchmarks for tropical forest ecosystems, including observational targets for size-
structured vegetation models, and coupled carbon–nitrogen–phosphorus cycle models. 

» Leveraging efforts in observational projects, construct a roadmap and new methods for creating remote sensing 
data products for benchmarking models. 

» Develop meta-analyses of perturbation experiments (e.g., nutrients, hydrology, temperature, CO2) and related 
protocol for model comparisons. 
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Major Processes (Appendix B) 

» ecosystem processes and states (Appendix B.1) » soil carbon and nutrient biogeochemistry (Appendix B.4) 
» hydrology (Appendix B.2) » surface fuxes (energy and carbon) (Appendix B.5) 
» atmospheric CO  (Appendix B.2) 2 » vegetation dynamics (Appendix B.6) 

Integrating and Cross-cutting Themes (Appendix C) 

» process-specifc experiments (Appendix C.1) » tropical processes (Appendix C.5) 
» metrics from extreme events (Appendix C.2) » remote sensing  (Appendix C.6) 
» design of new perturbation experiments (Appendix C.3) » eddy covariance fux networks (Appendix C.7) 
» high latitude processes (Appendix C.4) 

Te most important new metrics, benchmarking approaches, and observational data needs—distilled from the 
workshop breakout group meeting reports—are identifed below. A number of common challenges and opportunities 
emerged from these reports, and they are described in the sidebar on Common Benchmarking Challenges and 
Opportunities. Workshops or sustained research working groups organized to address these topics could be conducted 
in the same fashion as working group meetings ofered by national research synthesis centers in the US. Such 
workshops would bring together topical experts (e.g., modelers, ecologists, observationalists, remote sensing experts, 
mathematicians, and computer scientists) to make rapid research progress on the science topics identifed in the two 
subsections below. 

4.1 Major Processes 
4.1.1 Carbon and Energy Fluxes 

Surface fuxes of carbon and energy are key inputs from land to atmosphere models, and observations of these 
variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. 
Routine observations of these fuxes come primarily from eddy covariance fux measurement tower sites. Networks of 

COMMON BENCHMARKING CHALLENGES AND OPPORTUNITIES 
A variety of common challenges and opportunities emerged from the individual breakout group meeting 
reports. Common themes focused on the following: 

» need for collocated measurements, particularly around a core set of FLUXNET sites with a sustained record 
of observations for repeated model testing; 

» lack of quantifed uncertainty information for observational data; 

» utility of functional response metrics and variable-to-variable comparisons; 

» value of metrics for future projections based on emergent constraints; 

» unrealized opportunities for global observational datasets based on satellite remote sensing synthesized 
with ancillary databases, using new algorithms; 

» importance of applying statistical and machine learning methods to upscaling sparse measurements from 
sites to regions to the globe; 

» need for process-level benchmarks and metrics for extreme events; 

» opportunities for collaboration with Earth system model developers (e.g., ACME, CESM, and others); and 

» opportunities for collaboration with important feld and laboratory experiments and monitoring activities, 
including AmeriFlux and FLUXNET, the Integrated Carbon Observation System (ICOS), Next Generation 
Ecosystem Experiments (NGEE) Arctic, the Arctic–Boreal Vulnerability Experiment (ABoVE), the Spruce 
and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project, Critical Zone 
Observatories (CZOs), Long-Term Ecological Research (LTER) sites, the National Ecological Observatory 
Network (NEON), NGEE Tropics, and the Tropical Responses to Altered Climate Experiment (TRACE). 
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these sites, such as AmeriFlux (http://amerifux.lbl.gov/) and the FLUXNET (https://fuxnet.ornl.gov/) network-
of-networks, have expanded rapidly over the last 25 years, and the data and meta-data they collect have been used 
in numerous model intercomparison and model–data comparison studies. Long term observations (>15 years) are 
available from an increasing number of sites, ofering the opportunity to consider new studies of interannual to 
decadal variability, long term fux trends, ecological succession, multivariate climate response, and regional to global 
upscaling. While most of these sites are located in mid-latitude regions in North America and Europe, new sites are 
being deployed in the tropics, at high latitudes, and the undersampled Southern Hemisphere. Te increasing density 
and widening spatial extent of sites, especially through organized and funded activities like ICOS (http://www.icos-
infrastructure.eu/) and NEON (http://www.neoninc.org/), further enable studies of storm systems and convection, 
monsoons, and large scale extreme events, as well as providing signifcant improvements in estimates of regional and 
global gross primary production and ecosystem respiration. 

Scaling fux observations to regions or the globe produces very important data products for constraining models. 
Machine learning techniques that account for nonlinearities, like artifcial neural networks and model tree ensembles, 
have produced the most promising results, but provide limited explanatory information. Te FLUXNET-MTE 
product (Beer et al., 2010), considered to be a best estimate of global GPP distribution, is widely used both for model 
evaluation—including within the existing ILAMB system (Ghimire et al., 2016)—and model tuning, suggesting the 
need for complementary approaches (e.g., Kumar et al., 2016). Current upscaling approaches do not incorporate 
information about disturbance, canopy structure, and other legacy efects (e.g., wildfre, efects of extreme events, 
insect infestation, disease, blowdowns). However, ancillary databases now contain observations of disturbance and 
detailed biological metadata that could be combined with fux observations to improve upscaled estimates or model 
predictions of surface fuxes. 

Tese data and improved process representation in ESMs present opportunities for new synthesis activities directed 
toward carbon and energy benchmarking. Signifcant progress in improving process understanding and constraining 
models could be made through studies focused on the following: 

» Multifactor ecosystem responses to climate change, extreme events, and changes in seasonality, which should 
integrate new phenocam observations (Brown et al., 2016), remote sensing products (Reed et al., 2009), data from 
the National Phenology Network (NPN; https://www.usanpn.org/; Schwartz et al., 2012), similar observations 
from citizen science programs (Fuccillo et al., 2015), and ancillary databases 

» Roles of extreme events and “return times” on ecosystem resilience (Zscheischler et al., 2013) 

» Long term trends in light use efciency, water use efciency, evapotranspiration, and other quantities, some of 
which may yield new emergent constraints 

» Relationships between forcing and response variables (e.g., stand age and net ecosystem exchange; 
Noormets et al., 2007) 

» Top-down approaches to constraining surface fuxes using vertical measurements of atmospheric CO2 and other 
trace gases, and employing atmospheric inversion models (Xu et al., 2016) 

» Synthesizing new observations from many data sets across space and time scales (e.g., FLUXNET, remote sensing, 
disturbance maps, etc.) 

» “Super site” benchmarks developed around stable, long-running fux tower sites with a diversity of collocated 
measurements (e.g., AmeriFlux and FLUXNET, CZOs, LTER sites, or NEON sites) 

» Upscaling point measurements, incorporating ancillary databases, to study areas, regions, continents, and the 
globe (Beer et al., 2010; Langford et al., 2016; Kumar et al., 2016) 

A long-standing challenge to synthesis has been the reluctance of some researchers to share their eddy covariance 
fux data through openly distributed databases, like the FLUXNET2015 Dataset (http://fuxnet.fuxdata.org/data/ 
fuxnet2015-dataset/). While fux tower operators are increasingly convinced contributing their data is to their 
advantage, many researchers prefer direct involvement in synthesis working groups or workshops, which typically 
demonstrate the value of integrated analyses through high profle publications. Synthesis workshops would optimally 
involve modelers, fux tower operators, remote sensing observationalists, ecosystem ecologists, and mathematicians, 
and would be designed from the outset to produce original research papers and new synthesis or meta-analysis 
datasets for parameter optimization and model benchmarking. Additional details are contained in Appendixes B.5, 
C.7, B.3, B.1, and C.2. 

http://fluxnet.fluxdata.org/data
https://www.usanpn.org
http://www.neoninc.org
https://infrastructure.eu
http://www.icos
https://fluxnet.ornl.gov
http://ameriflux.lbl.gov
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4.1.2 Soil Carbon and Nutrient Biogeochemistry 

Earth’s soil holds roughly 2,000 Pg C, and soils have sequestered a signifcant fraction of CO2 emissions from fossil 
fuel burning and human land use change since the start of the industrial era. However, under continued climate 
change and human intervention, soil carbon (C) is expected to have strong feedbacks to the atmosphere, shifting 
the balance to make soil a signifcant source instead of sink of carbon. Te soil sequestration strength is determined 
by turnover rates, which are functions of plant inputs from litter and losses via microbial decomposition. Both 
of these mechanisms are regulated by nutrient availability. Understanding how the C balance may shift is limited 
because many key processes that regulate soil C stocks are poorly represented or missing in ESMs. Te soil C stocks 
produced by current ESMs (CMIP5 models) are in only fair agreement with global soil C distributions, and the 
models are unable to reproduce local to regional scale spatial soil C patterns or to quantify bulk C stocks 
(Todd-Brown et al., 2013). 

Traditionally, model evaluations have focused primarily on whether models can reproduce observed time series or 
spatial patterns in observational data (e.g., soil C stocks). Such benchmarks provide initial insights in model–data 
discrepancies, but ofer limited insights into the sources of these diferences. Benchmarks should be designed 
to test the representation of important controlling mechanisms (e.g., soil carbon age determined from isotope 
measurements; He et al., 2016) and environmental factors (Mishra and Riley, 2015), and benchmark datasets should 
include metadata to determine the appropriateness of comparisons and ofer robust estimates of data uncertainties. 
To address challenges to ESM representation of soil C stocks and fuxes, scientifc priorities for synthesis studies 
include the following: 

» Developing improved benchmarks of soil C turnover through evaluation of soil nutrient biogeochemical processes, 
including (1) cycling of nitrogen (N) and phosphorus (P) and their interactions with ecosystem productivity and 
decomposition (e.g., Bouskill et al., 2014; Zaehle et al., 2014; Yang et al., 2016) and (2) competition for nutrients 
among microbes, plants, and mineral surfaces (Tang and Riley, 2013; Zhu et al., 2016) 

» Representing the vertical distribution and transport (e.g., bioturbation and cryoturbation of soil organic matter 
(SOM), particularly at high latitudes, and synthesizing data on radiocarbon ages and C stocks to evaluate these 
parameterizations (Braakhekke et al., 2014; Koven et al., 2013; 2015; Riley et al., 2014; Tang et al., 2013; 
He et al., 2016) 

» Evaluating models on their ability to simulate ecosystem responses to natural or anthropogenic disturbances and 
extreme events to highlight or expose processes critical to important phenomena 

» Developing and applying emergent constraints based on carbon storage and turnover times to provide limits 
or bias corrections on future projections (Hofman et al., 2014; He et al., 2016) 

» Improving and harmonizing mapping and upscaling of global soil properties, especially for wetlands, tropical 
and boreal peatlands, and permafrost regions (Mishra et al., 2013; 2016; Mishra and Riley 2015) 

Synthesis activities involving modelers, soil biogeochemists, microbial ecologists, and mathematicians could address 
the topics above. New collaborative research in these areas should focus on meta-analyses and developing new datasets 
useful for benchmarking models. Additional details are contained in Appendixes B.4, B.1, and C.2. 

4.1.3 Hydrology 

Te key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into 
evapotranspiration, runof (streamfow), and changes in soil moisture storage. Tese water cycle calculations are 
intrinsically tied to energy and carbon balance calculations. Soil moisture lies at the heart of land surface control over 
moisture fuxes, including both evapotranspiration and runof. Hydrological processes operate across a range spatial 
and temporal scales, and LSMs in most ESMs attempt to approximate their efects using one-dimensional physics 
with varying degrees of complexity in the vertical direction. Groundwater formulations are restricted by the lack of 
lateral fuxes, surface reservoirs and impoundments are absent, and river and dam management is not considered in 
these models. Nevertheless, current process representations can be evaluated using a growing collection of in situ and 
remote sensing data. Te greatest opportunities for improving water cycle benchmarking lie in synthesizing multiple 
datasets and developing metrics for related variables that indirectly constrain water fuxes. To improve hydrological 
evaluation of models and inform future model development, scientifc priorities for hydrology benchmarking include 
the following: 
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» Benchmarking runof and streamfow-related processes with Model Parameter Estimation Experiment (MOPEX; 
Duan et al., 2006) data for headwater watersheds in the US and Global Runof Data Center (GRDC; Fekete et 
al., 2002) data globally 

» Evaluating model performance in reproducing slow versus fast hydrological responses and capturing the impact of 
managed streamfow, including mapping of unmanaged watersheds 

» Producing benchmark datasets for weather and climate extremes (WCEs), including shifts of the ITCZ and 
other circulation patterns, hydroclimatic intensity, food inundation extent and duration, rainfall defcits, and 
experimentally induced extremes (e.g., throughfall exclusion and warming) 

» Synthesizing many in situ soil moisture measurements from a wide collection of feld activities with satellite 
remote sensing (e.g., SMOS, SMAP, ASCAT, GRACE) into a long-term dataset 

» Developing a global-scale snow water equivalent (SWE) dataset 

» Designing indirect benchmarking metrics for global-scale hydrology (e.g., estimate evapotranspiration from 
streamfow and diurnal temperature cycles from latent heat fux) 

Synthesis studies involving modelers, hydrologists, ecohydrologists, and mathematicians could address the topics 
above. New collaborative research in these areas should focus on collecting and constructing new datasets, particularly 
for managed systems, and on developing new indirect metrics, particularly from remote sensing, for benchmarking 
models. Additional details are contained in Appendixes B.2, C.2, C.3, C.6, and B.1. 

4.1.4 Vegetation Dynamics and Biomass 

Vegetation dynamics refers to changes in ecosystem composition and structure through processes that include 
recruitment, succession, growth, mortality, and disturbance. In many LSMs, vegetation distribution is prescribed, 
making metrics of vegetation dynamics valuable only for testing model behavior of dynamic vegetation models 
(DVMs) that prognostically redistribute plants, or plant functional types (PFTs), across the landscape. In the last 
decade, vegetation demographic models (VDMs) have emerged that simulate light-competition driven coexistence 
and competition of PFTs through representation of varying tree size (e.g., cohorts or individuals) in the vertical 
canopy structure and successional dynamics through representation of disturbance history. 

Over time, new data suggest that previous estimates of global vegetation biomass, both above and belowground 
combined, may be too high. Since most ESMs project higher global live biomass in the contemporary era than recent 
observations, the carbon storage potential in terrestrial vegetation and the turnover time of vegetation are in question 
(Negron-Juarez et al., 2015; Koven et al., 2015) . Many regional biomass products exist, but they tend to be limited 
to forests only or account only for aboveground live biomass. Additional studies that further constrain biomass 
inventories and how they evolve over time and respond to increasing atmospheric CO2 are needed. To improve 
evaluation of vegetation dynamics in ESMs, particularly as VDMs become available, synthesis activities should 
address the following: 

» Developing synthesis datasets for recruitment, mortality, and canopy structure from plot-scale measurements 
(e.g., Forest Inventory and Analysis (FIA); Johnson, Xu, McDowell et al., in prep.), AmeriFlux and FLUXNET, 
ForestPlots, ForestGEO, and national inventories for constraining models 

» Comparing models with multiple burned area fre products, including GFED3, L3JRC, MCD45A1, Fire_cci, and 
the Global Fire Assimilation System 

» Developing metrics based on multiple satellite remote sensing products for phenology, canopy height, and land 
cover to allow for characterization of uncertainties across classifcations 

» Creating metrics for vegetation responses to weather and climate extremes (WCEs), including disturbances from 
tornadoes and straight line winds, early/last frosts, hail streaks, and fooding 

» Searching for emergent constraints based on organic carbon inventories and turnover times to provide limits or 
bias corrections on future projections (Hofman et al., 2014) 

» Developing benchmark datasets on repeated observations of remotely-sensed biomass to constrain biomass change 
over time (the most direct cumulative measure of carbon sink activity over time and a high priority to distinguish 
between diferent model predictions of the control of the terrestrial carbon sink) 
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» Participating in FireMIP to support new fre-related metrics and encouraging similar model intercomparisons for 
ecological networks like Drought-Net and Nutrient Network (NutNet) 

» Developing maps of plant traits, land use change, disturbance, and mortality from wildfre, deforestation, drought 
stress, insects, and disease 

Working groups involving modelers, ecosystem ecologists, foresters, and mathematicians could address the topics 
above. New collaborative research in these areas should focus on developing meta-analyses from widely dispersed 
feld measurements to characterize recruitment, mortality, canopy structure, and biomass inventories, and developing 
metrics from remote sensing products for phenology, canopy height, and land use/land cover change. Additional 
details are contained in Appendixes B.6, C.2, C.6, B.5, C.7, and B.1 

4.2 Integrating and Cross-cutting Themes 
4.2.1 High Latitude Processes 

Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). Tis 
enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated 
warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; 
Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. 
For example, active-layer dynamics, thermokarst formation, thermal erosion, shrub expansion, fre disturbance, soil 
moisture heterogeneity, and the overall rate of wetting and drying that will accompany warming. Tese processes 
impact the vulnerability of permafrost carbon pool through diferent mechanisms. Active layer thickness determines 
the volume of SOC available for microbial decomposition, and has been projected to go deeper under future 
warming. Termokarst formation on the permafrost landscape enhances methane emissions to the atmosphere. 
Termal erosion due to permafrost collapse can increase microbial decomposition and translocate large amounts 
of soil carbon to river networks. Increased wildfre occurrence has been projected under future warming scenarios; 
wildfres can directly combust the carbon in the surface organic layers and may alter the soil moisture dynamics. 
Similarly, many studies projected shrub expansion northwards under future warming, which can further destabilize 
the existing permafrost. 

Because high latitude ecosystems are governed by extremely strong gradients in temperature and moisture, both 
vertically and horizontally, benchmarks must assess the coupled nature of biophysical and biogeochemical processes 
through variable-to-variable relationships in these regions (Harden et al., 2012; Koven et al., 2013; Bouskill et 
al., 2014). A wide variety of datasets are needed for next-generation benchmarking of ESMs at high latitudes, 
including maps of soil carbon that provide vertical profles of carbon and isotopic age data, geographic distributions 
and dynamics of vegetation across boreal–tundra ecotone, relationships between snow properties and soil thermal 
dynamics, traits for vascular and nonvascular plants, and large-scale distributions of permafrost extent and active 
layer thickness. Research in DOE’s NGEE Arctic project is directed at understanding the heterogeneity of polygonal 
tundra ecosystems, representing that heterogeneity in  ESMs, and developing benchmarks to testing land models at 
high latitudes. To advance benchmarking of critically important processes with potentially large climate–carbon cycle 
feedbacks, collaborative research and synthesis activities should be focused on the following: 

» Leading or strongly contributing to an independent research working group addressing synthesis of existing 
research and assessment of high latitude terrestrial processes afecting permafrost stability and feedbacks and 
developing potential emergent constraints in similar fashion to the Permafrost Carbon Network (PCN; 
http://www.permafrostcarbon.org/) 

» Developing meta-analyses and synthesizing data to create high latitude benchmarks from in situ feld 
measurements and experiments and remote sensing data in direct collaboration with researchers from DOE’s 
NGEE Arctic, NASA’s ABoVE (Xu et al., 2016), and NSF’s Arctic science, observational, and monitoring projects 

» Improving and harmonizing mapping of SOM and other soil properties in boreal peatlands and permafrost 
regions (Mishra et al., 2013; 2016) 

http://www.permafrostcarbon.org
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» Developing and improving benchmarks of the coupled physical–biogeochemical dynamics of energy, moisture, 
nutrient, and carbon exchange across the permafrost–organic layer–snow–atmosphere system, and across 
heterogeneous landscape features that characterize patterned ground, to test models that increasingly represent the 
complex feedbacks that result from these coupled processes 

» Applying statistical and machine learning methods to remote sensed and in situ data to understand the 
representativeness of measurements and intelligently scale sparse, difcult-to-obtain observations across the Arctic 
(Hofman et al., 2013; Kumar et al., 2016) 

» Implementing a model–data integration framework that addresses key indicators of high latitude ecosystem 
change as part of NASA's ABoVE program 

Synthesis activities involving modelers, Arctic ecosystem ecologists, soil biogeochemists, hydrologists, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
datasets and evaluating ESM fdelity for high latitude processes related to vegetation, soil biogeochemistry, and 
the physical snow-soil-hydrological system. In particular, functional relationships between biological, chemical, 
and physical variables and emergent characteristics (e.g., active layer thickness) should be examined to improve 
understanding of the process interactions and assess the credibility of model responses. Additional details are 
contained in Appendixes A.4, C.4, B.4, C.1, and C.6. 

4.2.2 Tropical Processes 

Tropical ecosystems present many processes that overlap with those in other biomes but also have additional 
complexity that makes modeling and benchmarking a distinct challenge from that of other regions. Tese include 
challenges related to high biodiversity, its representation in simulations, and its role in bufering ecosystem responses 
to perturbations. Advanced modeling and benchmarking have revealed challenges in representing carbon metabolism 
and the wide variety of above and belowground traits as they relate to water acquisition and use. Benchmarking has 
exposed these challenges through comparison to drought experiments and atmospheric constraints, with previous and 
current MIPs providing insights into the advantages and disadvantages of various numerical representations. While 
advances have been made, most work has pointed to the critical need for more extensive benchmarking of a range of 
processes at a range of scales, along with associated UQ and new model development. 

Representing these processes is particularly crucial since tropical forests are predicted by the CMIP5 generation 
of ESMs to be particularly important for both the carbon–climate and carbon–concentration feedbacks. Tis 
importance led to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the 
representations of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling 
approaches for representing these processes. To advance benchmarking of tropical ecosystem processes important to 
climate–carbon cycle feedbacks, collaborative research and synthesis activities should be focused on the following: 

» Synthesizing spatially distributed inventories of size distributions, recruitment, growth, mortality, litterfall, and 
other ecosystem processes from the RAINFOR, CTFS-ForestGEO, AmeriFlux and FLUXNET, and GEM 
networks in direct collaboration with the NGEE Tropics project 

» Collecting and developing benchmarking datasets for perturbation experiments and extremes in the tropics, 
including drought (e.g., Drought-Net), increased atmospheric CO2 (e.g., Amazon FACE), nutrients (e.g., N, P), 
and increased temperature 

» Modeling climate change to search for carbon cycle tipping points and possible emergent constraints associated 
with tropical ecosystems 

» Taking advantage of naturally occurring events, (e.g., El Niño-induced tropical drought) to synthesize 
observational data for comparison with ecological forecast and retrospective modeling 

» Combining inventory estimates, in situ process measurements, fux data, and remote sensing to characterize plant 
traits and physiological processes at larger scales and for regions with poor spatial coverage (e.g., western Amazon, 
tropical Africa, and Indo-Pacifc) through statistical and machine learning upscaling methods 

Research teams involving modelers, tropical ecosystem ecologists, soil biogeochemists, hydrologists, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
improved inventory datasets and creating benchmarks for new demographic models for growth and mortality, tree 
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height and biomass, turnover of litter and stemwood, sap fow, tissue water potential and root water uptake, and 
nutrient constraints on carbon cycling. Additional details are contained in Appendixes C.5, B.6, B.5, C.7, B.2, C.2, 
B.1, and C.6. 

4.2.3 Remote Sensing 

Te large extent and high diversity of vegetation comprising Earth’s biomes present a signifcant challenge for 
local to global-scale terrestrial ecosystem process modeling eforts, including benchmarking and evaluation of 
model projections. To provide the knowledge and understanding necessary to improve model parameterizations, 
representation and evaluation of alternative model structures and observations are needed at the relevant spatial and 
temporal scales for controlling processes. Te general goal of remote sensing from leaf to global scales is to provide 
critical information on ecosystem dynamics (e.g., seasonality, response to perturbations), and states (e.g., composition, 
structure, biomass), as well as to scale, map, and monitor important ecosystem properties and processes across 
space and through time. Compared with other observational and model evaluation datasets (e.g., inventory, eddy 
covariance, manipulation, and global change experiments), remote sensing data provide the synoptic, continuous, and 
temporally frequent observations needed for site to global model benchmarking. Moreover, the relative magnitude 
of remote sensing datasets of various types and temporal extents has helped to usher in the current data-rich era in 
ecology and global modeling, providing large volumes of information across scales that could be leveraged within data 
assimilation frameworks for model calibration and development activities. 

Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally 
and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically 
active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., 
Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products 
such as surface albedo (Schaaf et al., 2002), to process-level observations, including evapotranspiration (Mu et al., 
2011), photosynthesis (e.g., Running et al., 2004; Ryu et al., 2011; Guanter et al., 2014; Serbin et al., 2015), and 
plant functional traits (e.g., Asner et al., 2015; Singh et al., 2015). Calibration of algorithms for the retrieval of 
measurements using remote sensing observations vary in approach and complexity but generally require some degree 
of the physical relationship as well as independent information from ground or other observations for evaluation 
prior to any scientifc or modeling use. In addition to other smaller campaigns, past and ongoing global change 
manipulations (e.g., DOE’s FACE and SPRUCE), feld experiments, and large-scale projects such as the DOE’s 
NGEE Arctic and Tropics projects, as well as NASA’s ABoVE, provide ample opportunities to refne remote sensing 
methods and products for use within ILAMB and elsewhere (Schmid et al., 2015). To accelerate and standardize the 
use of remote sensing for model benchmarking, collaborative research and synthesis activities should be focused on 
the following: 

» Constructing a roadmap for remote sensing data product generation that takes into account enhanced 
cyberinfrastructure for large-scale remote sensing data (Williams et al., 2016) and new data product development 
for evaluation of process models from site to global scales (Schimel et al., 2015) 

» Developing satellite simulators within ESMs that calculate an observable variable expected from remote sensing 
instruments under the given conditions 

» Leveraging remote sensing eforts in DOE’s NGEE Arctic, NGEE Tropics, and SPRUCE projects (and in 
collaboration with NASA’s ABoVE and NSF’s NEON projects) to develop and test algorithms for image 
processing, calibration, and uncertainty characterization, and to evaluate approaches for data retrieval and scaling 

» Developing community guidelines for appropriate use of remote sensing data as benchmarks and observations for 
data assimilation 

» Fusing data from multiple instruments (e.g., visible, TIR, LiDAR), data streams, or products for new synthetic 
observational datasets for hydrologic states and fuxes, carbon cycle fuxes, and vegetation trait and other properties 

Remote sensing working groups involving modelers, ecosystem ecologists, geographers, remote sensing experts, and 
mathematicians could address the topics above. New collaborative research in these areas should focus on developing 
remote sensing products for plant traits, canopy structure, ecosystem responses to extreme events, solar-induced 
fuorescence, and carbon cycle fuxes (e.g., GPP, NPP, NEE). Additional details are contained in Appendixes C.6, C.1, 
C.3, C.4, C.5, B.2, B.6, and B.3. 



22 

2016 ILAMB WORKSHOP REPORT

 

 

 

 

 

 

 

 

 

4.2.4 Process-specifc and Perturbation Experiments 

To become more robust, Earth system models should undergo structural improvements to represent more real 
world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of Earth system 
processes, it is still challenging to (1) specify which processes are more critical than others in regulating Earth system 
dynamics, such as climate change; and (2) evaluate representation of processes that have been widely incorporated 
but diversely parameterized in diferent models. One promising approach to solving this challenge is using process-
specifc experiments, which can evaluate and improve the model representation of a specifc key process through 
comparison with observations. Key processes to target, for which models are highly parameterized or have major 
structural uncertainties, include decomposition, nitrogen cycling, autotrophic respiration, chlorophyll fuorescence, 
phenological sensitivity to climate, and plant trait correlations and trade-ofs. 

Direct perturbation of environmental properties is one of the most direct ways of assessing ecosystem responses 
to environmental change. Such experiments—which include perturbation of nutrients, species composition, 
precipitation, temperature, atmospheric chemistry, CO2 concentration, or multiples of these factors—have been 
conducted across a wide range of experimental systems. In some cases, the resulting datasets have been synthesized 
and are ready for model benchmarking, while others require efort to synthesize and standardize reporting of results. 
Care is required to avoid scale mismatches and most efectively apply an analog to the experimental perturbation 
within models. In addition, the mechanistic response of the ecosystem to the perturbation must be understood, 
so that models exhibiting the correct response for the wrong reason can be recognized. Performance of model runs 
early in the process of defning an experimental perturbation may be useful in identifying specifc processes and 
assumptions on which models disagree, and they may inform data collection strategies to be most relevant to model 
benchmarking eforts (Medlyn et al., 2016). 

To advance process-level benchmarking of ecosystem models, collaborative research and synthesis activities should be 
focused on the following: 

» Selecting a core set of AmeriFlux and FLUXNET sites that span major biomes to serve as long-term testbeds 
for ILAMB, collecting all associated data and metadata (e.g., meteorological forcing, soil texture, land use 
history, and plant traits) necessary for conducting model simulations, and constructing or synthesizing a series 
of independent benchmark datasets (e.g., net fuxes, biometrics, and experimental data) for diagnosis of model 
process representations 

» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of 
model responses to prescribed perturbations for a northern peatland 

» Collaborating with DOE’s NGEE Arctic project (i.e., small-scale warming and isotopic tracers) to collect data and 
synthesize benchmark datasets 

» Collaborating with DOE’s LBNL TES soil perturbation project to collect data and synthesize benchmark datasets 
for soil organic matter responses to temperature and moisture 

» Synthesize existing nutrient (e.g., Bouskill et al., 2014; Zhu et al., 2016), temperature, and moisture perturbation 
experiments with meta-analyses appropriate for model benchmarking, and concurrently developing guidance for 
performing relevant model analyses 

» Opportunistically using measurements during weather and climate extremes in lieu of perturbation experiments to 
develop benchmarks for vegetation and soil biogeochemical responses 

» Incorporating the FACE Synthesis (Zaehle et al., 2014) protocol and data into ILAMB in collaboration with 
original synthesis participants 

» Collaboration with TRACE, ITEX, and other soil warming experiment teams to develop modeling protocols, 
collect forcing data, and synthesis results for benchmarking 

Synthesis activities involving modelers, ecosystem ecologists, feld and laboratory experimentalists, remote sensing 
experts, and mathematicians could address the topics above. New collaborative research in these areas should focus on 
developing simulation protocols, forcing datasets that correspond to the observed meteorology and any perturbation 
applied, and data for benchmarking ecosystem responses. Additional details are contained in Appendixes C.1, C.3, 
B.5, C.7, B.4, and C.2. 
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5.0 Model Intercomparison Projects 
(MIPs) 

5.1 The Roles of Benchmarking in MIPs 
Model Intercomparison Projects (MIPs) are important activities for assessing the coherence and reliability of Earth 
system models. By adopting a common set of protocols with clearly defned inputs and outputs, model predictions 
can be compared systematically to each other and benchmarked with observations. A number of ongoing and future 
MIPs are directly relevant to the modeling of the terrestrial water, energy, and carbon cycles, and many of these were 
discussed at the ILAMB Workshop. Some are conducted under the auspices of the 6th phase of the Coupled Model 
Intercomparison Project (CMIP6) project, while others are separate activities. Te goal of this section is to summarize 
these MIPs, their diferent scientifc objectives, protocol designs, and the opportunities for land model benchmarking 
that each presents. 

5.2 Descriptions of MIPs and Their Benchmarking 
Needs 

5.2.1 CMIP6 Historical and DECK 

As part of the CMIP6 process, each participating model will conduct a set of runs called the Diagnostic, Evaluation, 
and Characterization of Klima (DECK) experiments (Eyring et al., 2016b). Tese simulations comprise four 
experiments: a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., 
Atmospheric Model Intercomparison Project (AMIP)), a coupled land–atmosphere–ocean preindustrial control, an 
abrupt quadrupling of CO2, and an idealized 1% per year CO2 increase. Furthermore, each model will perform a set 
of historical simulations with the coupled atmosphere–ocean–land models. For the preindustrial control and historical 
simulations, models with active carbon cycles will run these with both prescribed atmospheric CO2 concentrations 
and prescribed emissions, and this ofers a key opportunity to test the ability of the models to predict the evolution 
of atmospheric CO2 over the historical period (Hofman et al., 2014). Furthermore, large-scale dynamics of model-
predicted historical climate variables may be compared with corresponding observations from in situ and remote 
sensing methods. 

5.2.2 C4MIP 

To isolate carbon feedbacks in the Earth system, the Coupled Climate–Carbon Cycle MIP (C4MIP) (Jones et 
al., 2016) will separately force the coupled land–atmosphere–ocean system with CO2 that acts only on plant-
physiological and ocean-solubility processes, and separately only on radiative processes. Tis allows separating the 
carbon–concentration feedback, which acts to stabilize the climate system, from the carbon–climate feedback, which 
acts to destabilize the climate system. Furthermore, fully-coupled future ESM experiments are included, in which 
CO2 emissions rather than concentrations are used to force the model and CO2 is allowed to evolve in time. Previous 
versions of the C4MIP experiments (Friedlingstein et al., 2006; 2014a) demonstrated a poor ability of ESMs to agree 

KEY RECOMMENDATIONS 
» Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specifc 

processes through emergent constraint and traceability approaches. 

» Benchmark across coupling and complexity hierarchies—from offine land-only simulations to fully 
coupled ESMs—to attribute model biases and uncertainties to specifc domains and identify feedbacks 
between domains. 

» Develop paired site datasets for benchmarking mode representations of subgrid scale heterogeneity. 
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on the basic trajectory of terrestrial carbon budgets in response to global change, and this lack of agreement has 
provided a strong impetus for better benchmarking and validating terrestrial carbon cycle models over the historical 
period to constrain future trajectories. Furthermore, the CMIP6 iteration of C4MIP has identifed key uncertainties 
that were poorly represented in prior generation ESMs, including nutrient cycles, permafrost-related processes, and 
the use of carbon isotopes as a possible diagnostic tool for reducing uncertainty in carbon cycle processes. 

5.2.3 LS3MIP 

Te Land Surface, Snow and Soil Moisture Model Intercomparison Program (LS3MIP) (van den Hurk et al., 2016) 
contains a series of coupled and ofine experiments to isolate the roles of terrestrial energy, water, and carbon cycles in 
leading to inter-model diferences and biases. Included in the LS3MIP protocol are a series of ofine experiments, in 
which the land models will be forced with a common set of meteorological drivers: Tier 1 experiments will be driven 
by GSWP3 (Kim et al., in preparation); Tier 2 experiments will also include WATCH (Weedon et al., 2011), CRU-
NCEP (Viovy and Ciais, 2011), and Princeton (Shefeld et al., 2006) drivers. Tis will allow both the separation 
of terrestrial model performance from atmospheric model performance and the role of the uncertainty of historical 
meteorology on land model performance. In addition, LS3MIP experiments include a set of future land-only 
time-slice simulations driven by common model-produced meteorology; and prescribed land-surface experiments, 
following the GLACE protocols (Koster et al., 2004; Seneviratne et al., 2013) for evaluating land-surface feedbacks to 
climate. Crucial to all of these experiments is accurate knowledge of the soil moisture and snow felds, and moisture 
and energy fuxes, for diagnosing biases in the land-only model experiments and accurate prescriptions of the land-
surface felds in the prescribed land-surface experiments. 

5.2.4 LUMIP 

Te Land Use Model Intercomparison Project (LUMIP) is focused on understanding the complex roles of land use 
and land cover change (LULCC) as forcing agents in the Earth system. LUMIP includes a series of experiments 
to better identify and attribute physical and biogeochemical efects of land use, including ofine and coupled 
experiments that are performed with and without land-use change, and a detailed reporting specifcation of subgrid 
land model states and fuxes in other CMIP6 experimental runs. Key to benchmarking land use efects are paired 
observations subject to the similar meteorology but including diferent land uses and histories, and comparison of 
these paired sites with sub-gridscale information on land surface heterogeneity due to land use within land models. 

5.2.5 MsTMIP 

Te Multi-scale Synthesis & Terrestrial Model Intercomparison Project (MsTMIP) is designed to evaluate land model 
skill as driven by common meteorology, spinup, land surface, and other drivers. Experiments include a sequentially-
added forcing design, including drivers of climate, CO2 concentrations, land cover, and nitrogen deposition. 
MsTMIP is not a CMIP6 project and thus includes participation of models that are run only ofine. Phase 1 
MsTMIP experiments were focused on the historical period, and Phase 2 consists of future experiments. Phase 2 of 
MsTMIP will employ a novel computational infrastructure, the JPL “model farm,” in which all of the participating 
models are run on a single machine to ensure that they are treated identically with respect to inputs, outputs, 
and protocols. 

5.2.6 PLUME-MIP 

Processes Linked to Uncertainties Modelling Ecosystems (PLUME-MIP) also uses a set of ofine climate-driven 
land models to attribute changes in modeled carbon cycle responses to global change to its underlying drivers. Te 
novel aspect of this MIP is the use of a recently developed traceability framework (Xia et al., 2013) to disaggregate 
the diferences between models into underlying drivers, such as changes in productivity and changes in turnover 
of various pools (Ahlström et al., 2015; Koven et al., 2015). To accomplish this disaggregation, a new set of model 
diagnostics is required, in particular to diagnose changes to turnover times under simultaneously changing inputs and 
model pool transfer rates (Rasmussen et al., 2016). 



25 

  
 

 

5.3 New Metrics, Approaches, and Model 
Output Requirements 

A variety of benchmarking metrics approaches have been integrated into the frst version of ILAMB to allow testing 
of models at multiple spatial, temporal, and complexity scales. Tese include: (1) site-level comparison of water and 
energy fuxes between model gridcells and fux towers; (2) global- and regional-scale comparison of gridded data 
products from remote sensing, point-based upscaling, or data assimilation approaches with corresponding felds from 
ofine and coupled land models; (3) comparison of Earth system-integrative measures such as atmospheric CO2 felds 
between observations and models. 

Tese multiscale approaches are useful for covering the broad range of scales that encompass observational networks 
and over which the relevant processes represented in ESMs operate. However, model confgurations used in the frst 
generation of ILAMB span only three confgurations: (1) ofine global model runs forced by bias-corrected historical 
reanalysis data and historical land use data; (2) coupled global atmosphere–ocean–land model runs forced by time-
varying land use and trace gas concentrations; and (3) coupled global atmosphere–ocean–land model runs forced by 
time-varying land use and fossil fuel emissions, with CO2 transport either predicted by the atmospheric model or 
calculated from an ofine transport model. Only gridcell-mean properties were tested, and site-level data was based 
on extracting individual gridcells from global runs. 

Te larger diversity of model couplings and experimental protocols in the current and upcoming generation of 
MIPs suggests that a more comprehensive strategy is needed for both model–data benchmarkings and model–model 
comparisons to best utilize the information in these MIPS. Benchmarking approaches require a high degree of 
correspondence between the periods of observation and model scenarios, and the ability to benchmark models is 
always contingent on the fdelity with which the inputs required to simulate the observations correspond to reality; 
however, this correspondence may span a wide diversity of coupling complexity. Possible couplings include (1) 
site-level comparisons where the model is driven by site-level observations; (2) ofine global models forced by a 
variety of meteorology datasets; (3) prescribed land-surface experiments as in LS3MIP, where certain land states 
are initialized to observations in a coupled land–atmosphere framework; (4) AMIP runs where atmospheric model 
uncertainty is added but sea surface temperatures (SSTs) are constrained to historical dynamics; (5) fully physically 
coupled runs with atmospheric and ocean model dynamics present; and (6) physically and biogeochemically coupled 
simulations. Each of these experimental confgurations allows potentially diferent comparisons between models and 
datasets to be made to benchmark the ESMs across both a wide range of variables and a scale of complexity in Earth 
system components. To efectively leverage these diferent MIPs and allow benchmarking approaches to span these 
complexity hierarchies, it would be ideal to develop within ILAMB the capability to span across diferent coupling 
strategies to track which aspects of a given ESM are benchmarked by diferent comparisons and assign metrics that 
take a system-centered view of ESMs. 

New models outputs will be required for efectively using many of these MIP activities as benchmarking tools. 
Among the new outputs are model subgrid information, as specifed in the LUMIP protocol. Tis will enable 
benchmarking with consideration that site-level observations correspond only to a subset of a model gridcell, and 
of LULCC-related heterogeneity in ESMs. Further, whereas benchmarking with observational datasets can only 
occur for model variables that correspond directly to observable quantities, non-observable model outputs, such as 
turnover times and disequilibrium fuxes as identifed through a traceability framework, may still be of great use in 
understanding and diagnosing model behaviors. Furthermore, better instrumenting models to output quantities such 
as isotopic pools and fuxes, or ecosystem structural information such as tree size distributions (which allow deeper 
model introspection and process-resolved benchmarking), will be crucial to test increasingly complicated ESMs. 

5.4 Available Observations and Data Gaps 
ILAMB as it is currently built is able to use a wide variety of global-scale and regional-scale gridded observations, site-
specifc observations, and integrative observations. Increased use of each of these types of observations would allow 
a more robust model benchmarking framework. For ofine models and MIPS, key required observations are better 
meteorological driving datasets for the models. Tese include both global-scale bias-corrected reanalysis products and 
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site-scale driving data to allow better comparisons of models with site-scale data. Furthermore, driving data of other 
anthropogenic forcings, such as LULCC, nutrient deposition, aerosol efects, and other processes, have considerable 
uncertainty that propagates through models and complicates the interpretation of model-benchmark diferences. 
Observations of subgrid scale heterogeneity, for example through the use of remote sensing approaches and paired 
site-scale observations, will enable better testing of subgrid scale approaches in models, which is crucial as models 
evolve to have numerous sources of heterogeneity, including topographic position and land-use histories. Moving 
beyond the mean gridcell value of a given variable will require observations that maintain the full distribution of a 
given property across a gridcell-sized domain rather than just reporting mean values at the scale of gridcells. 

5.5 Expected results from MIPs and ILAMB 
Te key goal of benchmarking activities is to reduce the uncertainty associated with directly testable model 
predictions. Although there will always remain an irreducible uncertainty arising from issues such as equifnality, 
uncertainty in future drivers, and uncertainty in current observations, there is currently a wide divergence in 
model predictions for things that can be directly and robustly observed that is contributing to the poor predictive 
capability of terrestrial models (e.g., Hofman et al., 2014). New MIP activities, and the associated benchmarking 
opportunities that they represent, ofer promise that we as a community can build models that are far more 
constrained by observations such that the remaining uncertainty will be due to genuinely unknown rather than 
simply untested processes. 
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6.0 Model Development and 
Evaluation Testbeds 

Land surface model components of ESMs are experiencing dramatic changes as new process representations are added 
and software infrastructures are altered to support more detailed demographic and plant trait formulations. Moreover, 
alternative parameterizations for major submodel components (e.g., soil biogeochemistry) are being introduced into 
land models to test competing model structures and parameterizations at diferent spatial and temporal scales. To 
support this degree of rapid model development, a land model testbed (LMT) capability is needed for calibration 
and evaluation of process-level submodels at site, regional, and global scales. A well-designed LMT would provide 
infrastructure similar to that of today’s model farms for executing models (e.g., the JPL Model Farm described in 
Section 5.2.6 and the PEcAn framework described in Appendix E.4), but provide many more features for rigorous 
benchmarking at varying degrees of model complexity. Tere is a risk that model development adds parameters and 
complexity that do nothing to reduce model error and bias. Tis risk can be overcome by consistently testing simple 
models against data, and determining the information content provided by more complex parameterizations (Li et al., 
2014) facilitated by a LMT deployed on supercomputing computational resources. 

One of the key fndings of this report is the need to select a core set of AmeriFlux and FLUXNET sites spanning 
major biomes to serve as the “gold standard” targets of long-term testbeds for ILAMB. A LMT should contain the 
collection of all associated data and metadata (e.g., meteorological forcing, soil texture, land use history, and plant 
traits) necessary for conducting model simulations, and have encoded the series of independent benchmark datasets 
(e.g., net fuxes, biometrics, and experimental data) for diagnosis of model process representations. Eforts to improve 
the code modularity in ALM and CLM are positioning those models to be able to take advantage of a well-crafted 
LMT, which must have access to individual submodels and simple input/output mechanisms for exchange of data not 
typically saved in model history fles. For example, residence times for all pools, allocation and turnover of foliage, 
microbial pool dynamics, respiration of all living pools, trait correlations, N (including biological fxation) and P 
dynamics are needed for a detailed analysis. Tis biogeochemical data can then be used to evaluate model dynamics 
across pools and timescales (Tomas et al., 2013). A LMT could be incorporated into existing automated nightly or 
weekly model testing to add scientifc functionality testing to routine compile, runtime, and restart testing. 

In an efort to consider how a LMT may be useful for supporting rapid development of the ACME Land Model 
(ALM), a table of evaluation variables and benchmark datasets was organized. Table 6.1 contains this sample list 
of variables and corresponding datasets designed to prioritize incorporation and synthesis of observational data for 
evaluating the ALM. For each dataset, the citation and data source are listed (when available), and a decision was 
made about whether the data would be useful as model input or for evaluation or both. Datasets presently available 
for use are listed as “Ready” and those requiring collection, processing, and synthesis are listed as “Synthesis”. As 
ILAMB is expanded, a database recording the provenance of data should be created and used to track the capabilities 
of the ILAMB package, and such a database could be part of the supporting infrastructure provided by a LMT. 

KEY RECOMMENDATIONS 
» Design and build a land model testbed (LMT) for execution, calibration, and evaluation of alternative 

model formulations and process representations to support rapid model development and testing. 

» An initial LMT should be designed around a small number of AmeriFlux and FLUXNET “super sites” 
for which single point simulations can be executed and evaluated quickly in parallel. 

» Eventually a LMT capability should be incorporated into routine model development testing. 
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Table 6.1. Listed here are example datasets identifed for benchmarking the ACME Land Model. 

Data Set Reference Source 
Input or 

Evaluation Ready or Synthesis 

Soil Nutrients and Age 

Hedley P database Yang and Post (2011) http://daac.ornl.gov/ 
cgi-bin/dsviewer. 
pl?ds_id=1223 

Input Ready 

Global soil 
respiration database 

Bond-Lamberty and 
Thomson (2010) 

https://github.com/ 
bpbond/srdb 

Evaluation Ready 

Microbial P database Xu et al. (2013); 
Hartman et al (2013) 

Evaluation Ready 

Vertical soil P profle Input Synthesis 

Radiocarbon 
database 

He et al. (2016) Evaluation Ready 

Soil nitrifcation, 
denitrifcation 

Ojima et al. (2000) https://www.nrel. 
colostate.edu/ 
projects/tragnet 

Evaluation Ready 

Soil N deposition and 
leaching 

Suddick and 
Davidson (2012) 

Evaluation Ready 

Sorption-desorption 
for P by soil order 

Agriculture literature Evaluation Synthesis 

Vegetation Measurements 

Leaf N and P Kattge et al. (2011) TRY database Evaluation Ready 

Fine root N and P Yuan et al. (2011); 
Gordon and Jackson 
(2000) 

Evaluation Ready 

Carbon stocks (MgC/ 
ha) tree, root, CWD/ 
dead wood 

Forest Carbon 
Database (CiFOR) 

Evaluation Ready 

Fire (burned area) GFED3 (annual 
mean, seasonal 
cycle, interannual 
variability) 

Evaluation Ready 

Wood harvest Hurtt (annual mean) Input Ready 

Land cover MODIS PFT fraction Input Ready 

Live biomass Global: Saatchi et al. 
(2011); Amazonia: 
Malhi et al. (2006) 

Evaluation Ready 

Vegetation Demography 

Demographic data 
(DBH census, basal 
area, abundance, 
species name) 

http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO Input and Evaluation Synthesis 

Basal area by 
diameter class 

http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO, LTER, 
BOREAS, INPA 

Evaluation Synthesis 
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Data Set Reference Source 
Input or 

Evaluation Ready or Synthesis 

Basal area by wood 
density class 

http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO, LTER, 
BOREAS, INPA 

Evaluation Synthesis 

Basal area by leaf N 
content 

http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO, LTER, 
BOREAS, INPA 

Evaluation Synthesis 

Seasonal LAI http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO, LTER, 
BOREAS, INPA 

Evaluation Synthesis 

Mean mortality 
rate (with modes of 
death captured in 
RAINFOR database) 

http://ctfs.arnarb. 
harvard.edu/Public/ 
pdfs/Condit_1998_ 
Census 
PlotsmethodsBook. 
pdf 

ForestGEO, LTER, 
RAINFOR 

Evaluation Synthesis 

Disturbance and 
mortality 

Midrexler et al. 
(2009) 

MODIS Global 
Disturbance Index 
(MGDI) 

Input and Evaluation Synthesis 

Hydrology 

Soil moisture De Juer, SMAP Evaluation Synthesis 

Water storage 
anomaly 

GRACE Evaluation Ready 

River fow/runoff Syed/Famiglietti, 
GRDC, Dai, GFDL, 
GSCD 

Evaluation Ready 

River temperature Evaluation Synthesis 

Snow cover AVHRR, GlobSnow Evaluation Ready 

Snow depth CMC (North America) Evaluation Ready 

Snow water 
equivalent 

North America: Ghan 
et al (2006) 

National Operational 
Hydrologic Remote 
Sensing Center 

Evaluation Ready 

Surface Energy Budget 

Surface skin 
temperature 

MODIS LST, GOES LST Evaluation Ready 

NLDAS-2 surface 
air temperature, 
downward SW and 
LW 

CONUS: Cosgrove et 
al. (2003) 

http://ldas.gsfc.nasa. 
gov/index.php 

Evaluation Ready 

CRU surface air 
temperature 

Harris et al. (20013) http://badc.nerc. 
ac.uk/view/badc. 
nerc.ac.uk__ATOM__ 
dataent_ 
1256223773328276 

Evaluation Ready 

Net radiation, LE, H Lasslop et al. (2010) Fluxnet Evaluation Ready 

Albedo MODIS, CERES Evaluation Ready 

Radiative fuxes CERES, SURFRAD, 
ARM 

Evaluation Ready 
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Data Set Reference Source 
Input or 

Evaluation Ready or Synthesis 

CERES surface 
SW, LW, and net 
radiation 

Kato et al. (2013) http://ceres.larc. 
nasa.gov/order_ 
data.php 

Evaluation Ready 

WRMC BSRC surface 
SW, LW, and net 
radiation 

Konig-Langl et al. 
(203) 

Evaluation Ready 

Carbon Fluxes 

Gross primary 
production 

Lasslop et al. (2010); 
Jung et al. (2010) 

FLUXNET; MPI-BGC 
MTE product 

Evaluation Ready 

Net ecosystem 
exchange 

Lasslop et al. (2010) FLUXNET Evaluation Ready 

Litterfall, Litter Content, Litter Decomposition 

Litterfall and litter 
carbon and nutrients 

Holland et al. (2014) Evaluation Ready 

Litterfall http://www.ctfs. 
si.edu/data/// 
documents/Litter_ 
Protocol_20100317. 
pdf 

ForestGEO Evaluation Synthesis 

LIDET for N Parton et al. (2007) http:// 
andrewsforest. 
oregonstate.edu/ 
research/intersite/ 
lidet.htm 

Evaluation Ready 

CIDET for N and P Evaluation Ready 

Tropical litter 
decomposition 

Manzoni et al. (2010) Evaluation Synthesis 

Functional Responses 

NPP vs. N availability Thomas et al. (2010) Evaluation Ready 

NPP vs. P availability Quesada et al. 
(2012); Aragão et al. 
(2009) 

Evaluation Ready 

Aboveground 
biomass C vs. 
aboveground NPP 

Keeling and Phillips 
(2007) 

Evaluation Ready 

Manipulation Experiments 

FACE synthesis for 
NPP 

Zaehle et al. (2014) Evaluation Ready 

Ecosystem 
fertilization 

LeBauer and 
Treseder (2008); 
Elser et al. (2007); 
Wright et al. (2014); 
Vitousek et al. (2004) 

Evaluation Ready 

Decomposition McGroddy et al. 
(2004) 

Evaluation Ready 

Soil incubation Cleveland and 
Townsend (2006) 

Evaluation Ready 

Soil warming Rustad et al. (2000); 
Melillo et al. (2011, 
2002) 

Evaluation Ready 

CO  effect on 2

phosphatase 
Evaluation Synthesis 

EucFAC, Amazon 
FACE 

Evaluation Synthesis 

Tropical warming Evaluation Synthesis 
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7.0 Traceability and Uncertainty 
Quantifcation Frameworks 

In order to understand and explore the uncertainty around predictions made by terrestrial models, it is crucial 
to improve methods and datasets to quantify the structural and parametric sources of this uncertainty. Two key 
developments are required to do this: (1) the development of reduced order models to simplify and systematize the 
relationships within full models, and (2) development of UQ approaches to understand parametric and structural 
uncertainty. One such reduced-order approach is the traceability framework of Luo and collaborators, which seeks 
to defne a common matrix structure underpinning carbon cycle models, such that both structural and parametric 
uncertainty can be explored via the values of turnover times, carbon fows, and the correlation structure between 
these. Other UQ approaches include the identifcation of parametric uncertainty that most strongly afects model 
outcomes, so as to focus research eforts on defning these, as well as methods to calibrate model parameters and 
discriminate between alternate model structures. 

7.1 Traceability Framework 
To evaluate model fdelity and understand the sources of uncertainty that lie behind carbon cycle projections, the 
modeling community needs to develop better observational benchmarks of model performance, which has been 
the focus of ILAMB and related eforts. A key requirement for increased understanding is the ability to tie specifc 
biases in model predictions to underlying process representations. One way to do so is through the development of 
diagnostic approaches that simplify and generalize model structures into component parts. A promising approach 
is to consider the carbon cycle at a given location as a cascade in which carbon enters the ecosystem only through 
leaf-level photosynthesis, and then is transferred from the leaves into the other tissues that comprise a plant, which 
ultimately grows, dies, and decays in the soil. Tis common framework allows one to generalize carbon cycle models 

KEY RECOMMENDATIONS 
» Integrate and report model diagnostics that allow the emulation of carbon cycle models as a matrix 

of carbon fows and turnover times, in order to attribute uncertainty in carbon responses to specifc 
ecosystem components. 

» Apply Bayesian UQ approaches that effciently utilize leadership-class computing facilities to quantitatively 
identify uncertainties in LSM output. 

» Use UQ results to guide data collection activities and target critical model improvement activities, 
including new or revised process representations. 

» Improve the fdelity of emulators and their use in UQ methods. 

» Emphasize the role of inverse modeling and data assimilation to update both model parameters 
and states as part of Bayesian UQ strategies, and as such, the importance of observational data with 
associated uncertainties. 

» Standardize collection and distribution of observational data. Standardization implies a common data 
format as well as metadata such as measurement errors and procedures used to compute them. If the 
data have gaps which were flled in/imputed with a model, provide the model or, at a minimum, the 
uncertainty bars in the imputed data. 

» Incorporate more trait, remote sensing, and other data to provide constraints on model parameter 
distributions and to enable evaluation of model constraints given existing data sources. 

» Suggest a simple and clear web-based graphical user interface (GUI) that provides access to models, UQ, 
and ILAMB benchmarking tools to facilitate a broader adoption of the approaches and to allow non-
modelers but process/domain experts to conduct UQ and data assimilation experiments. 

» Leverage several UQ frameworks that have important and complementary tools. Use an improved 
cyberinfrastructure to link these tools within a broader community-wide model UQ and data integration 
framework focused on improved land surface model (LSM)/terrestrial biosphere model (TBM) projections. 
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into a common structure, which can be well represented by the matrix equation (Luo et al., 2003; Luo and Weng, 
2011; Luo et al., 2015, 2016; Sierra et al., 2015) as: 

X ’(t) = B u(t) – A ξ(t) K X(t), (1) 

where X ’(t) is a vector of net carbon (C) pool changes at time t, X(t) is a vector of pool sizes, B is a vector of 
partitioning coefcients from C input to each of the eight pools, u(t) is C input rate, A is a matrix of transfer 
coefcients to quantify C transfer along the pathways, K is a diagonal matrix of exit rates (mortality for plant 
pools and decomposition coefcients of litter and soil pools) from donor pools, and ξ(t) is a diagonal matrix of 
environmental scalars to represent responses of C cycle to changes in temperature, moisture, litter quality, nutrients, 
and soil texture. Te equation describes net C pool change, as a result of C input, distributed to diferent plant pools 
via partitioning coefcients, minus C loss through transfer of C, in individual pools. 

Overall, this equation can conceptually express all of the soil C transformation processes and summarize structures 
of classic SOC models, such as the CENTURY (Parton et al., 1987, 1988, 1993) and RothC models (Jenkinson et 
al., 1987), and—despite the fact the various ESMs may difer in many parameters and processes that determine the 
terms in this equation—embedded in ESMs (Ciais et al., 2013). Tousands of datasets published in the literature 
from litter decomposition and soil incubation studies have been used to obtain frst-order decay parameters that can 
be used in ESMs (Zhang et al., 2008; Schädel et al., 2013, 2014). Te scalar function, ξ(t), in Equation 1 represents 
the environmental modifer for decomposition and transfer rates with respect to changes in temperature, moisture, 
litter quality, and soil texture. Empirical studies have also indicated that temperature, moisture, litter quality, and soil 
texture are primary factors that control soil C decomposition and stabilization (Burke et al., 1989; Adair et al., 2008; 
Zhang et al., 2008; Xu et al., 2012). 

Equation 1 not only summarizes most of the land carbon cycle models embedded in most of the Earth system models 
(ESMs) but also contains several mutually independent components. Traceability analysis decomposes the complex 
terrestrial C cycle into a few traceable components (Xia et al., 2013, 2015a). Traceability analysis helps identify 
sources of uncertainty in modeled steady-state ecosystem carbon storage due to (1) C input as afected by phenology, 
physiology, and C use efciency (Xia et al., 2015a); (2) edaphic and vegetation characteristics as related to baseline 
C residence time; (3) climate scalars; and (4) environmental variables among models (Figure 7.1). Te traceability 
framework has been applied to assess infuences of external variables being represented as parameters, boundary 
conditions, and diagnostic variables in models so as to disentangle complex representations of external variables in 
infuencing simulated C dynamics in ESMs (Xia et al., 2013). 

As an example of how the traceability approach may lead to greater understanding of model behavior, Rafque et 
al. (2016) applied the traceability framework to two global land models (CABLE and CLM-CASA’) to diagnose 
causes of their diferences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, the 

Figure 7.1. Schematic diagram 
of the traceability framework. 
The framework traces modeled 
ecosystem C storage capacity 
(Xss) to a product of net primary 
productivity (NPP) and ecosystem 
residence time (τE). The latter 
τE can be further traced to (i) 
baseline C residence times (τ´ E), 
which are usually present in a 
model according to vegetation 
characteristics and soil types, 
(ii) environmental scalars (ξ), 
including temperature and water 
scalars, and (iii) environmental 
forcing. NPP can be traced to 
C use effciency (CUE), C uptake 
period and the seasonal maximum 
of gross primary productivity 
(GPP). Adopted from Xia et al. 
(2013, 2015). 
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CLM-CASA’ model predicts ~31% larger carbon storage capacity than the CABLE model. Since ecosystem carbon 
storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted 
diference in the storage capacity between the two models results from diferences in either NPP or τE or both. Tis 
analysis showed that CLM-CASA’ simulates 37% higher NPP than CABLE does because of the parameter setting 
that gives CLM-CASA’ higher rates of carboxylation (Vcmax) than CABLE. On the other hand, ecosystem residence 
time (τE) was longer in CABLE than CLM-CASA’. Because τE is determined by baseline carbon residence time (τ´ E) 
and environmental scalars, the diference in τE is caused by both longer τ´ E and stronger temperature limitation of soil 
carbon decomposition (i.e., smaller temperature scalar) in CABLE than CLM-CASA’. Te longer τ´ E in CABLE was 
mainly determined by its longer τ´ E of woody biomass and higher proportion of NPP allocated to woody biomass 
than CLM-CASA’. Comparatively, environmental scalars have relatively smaller infuences than NPP and τ´ E in 
causing diferences in predicted carbon storage capacity between the two models. Overall, the traceability framework 
ofers an efective approach to identify sources of uncertainty among models. 

One key issue going forward is that a variety of current and emerging model structures have fundamentally nonlinear 
dynamics, which may be less conducive to the approach of constructing linear emulators. In particular, both the 
vegetation components, through the development of cohort-based models (e.g., Moorcroft et al., 2001; Weng et al., 
2015), and the soil components, through the development of microbial models (e.g., Wieder et al., 2015c; Sulman et 
al., 2014) have fundamentally diferent dynamics because the turnover times become an emergent, nonlinear property 
that must be diagnosed rather than one that can be calculated from the model. Te applicability of the traceability 
method on this class of models remains a key unresolved question to be explored. 

Model intercomparison projects (MIPs) all illustrate great spreads in projected land C sink dynamics across models 
(Todd-Brown et al., 2013; Tian et al., 2015). It has been extremely challenging to attribute the uncertainty to sources. 
For example, the CMIP5 protocol did not allow the calculation of all terms required to perform this traceability 
analysis. Nonetheless, using the available output does allow a frst-order separation of the dominant terms of 
productivity and turnover, which shows an interesting pattern: inter-model spread in the initial carbon stocks was 
primarily driven by diferences in turnover times, whereas inter-model spread in transient changes was mostly due 
to changes in productivity (Koven et al., 2015). Placing simulation results of a variety of C cycle models within 
one common parameter space can measure how much the model diferences are in common metrics. Te measured 
diferences can be further attributed to sources in model structure, parameter, and forcing felds with traceability 
analysis (Xia et al., 2013; Rafque et al., 2016; Ahlström et al., 2015; Chen et al., 2016). Te traceability analysis also 
can be used to evaluate the efectiveness of newly incorporated modules into existing models, such as adding the 
N module on simulated C dynamics (Xia et al., 2013). 

It will be fruitful to explore how new techniques stemming from the global analysis, such as physical emulators (i.e., 
matrix expression of global carbon cycle models) and traceability, can enhance benchmark analysis. Furthermore, 
such emulators may be of use in uncertainty quantifcation eforts, as the reduced order form of the traceability 
framework may allow for both computationally-efcient process-based emulators that can be run over large numbers 
of ensembles, as well as efcient ways of fnding steady-state initial conditions to full models when varying parameters 
for UQ methods. 

7.2 Scientifc Driver for UQ of LSM 
Quantifying the uncertainty in model outputs due to parameters, initial conditions, or model drivers is crucial to 
robust benchmarking eforts. In particular, inverse modeling and uncertainty propagation are two areas of UQ 
that should be integrated into the ILAMB framework. LSMs typically contain many parameters and drivers that 
must frst be constrained to obtain meaningful benchmark results. Parameter tuning, part of a larger framework of 
model–data integration, uses observational data and expert knowledge to identify appropriate model parameters. 
Te use of Bayesian approaches to inverse modeling or calibration (otherwise known as parameter data assimilation, 
PDA) will further allow determine statistical descriptions of model parameters and potentially reduce parametric 
uncertainty bounds. Using the improved quantitative description of the parametric uncertainties within an 
uncertainty propagation analysis then produces meaningful statistical descriptions of the benchmarked metrics 
for a particular LSM. In particular, it is possible to quantify the robustness of a particular LSM in the presence 
of model uncertainties. 
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Moreover, model–data integration activities also include state-variable data assimilation (SDA). In contrast to model 
calibration or PDA, SDA focuses on updating model states by comparing a model forecast to an observation of that 
state which serves to move the model closer to the observation weighted by the uncertainties in both the model and 
data. Following the SDA step, the best estimate of the state of the system is used as the prior for the next model 
forecast, and the uncertainty in the model projection is reduced based on the confdence in the data and model 
projection. SDA is particularly useful for capturing processes and perturbations that may not be explicitly captured 
by a model (e.g., windthrow) and serves to move the model toward the observation, which in turn updates associated 
model states to better refect the observed state. SDA together with PDA can be used to test model predictive capacity 
and evaluate alternative model process representations. 

Advanced UQ tools are also important in other aspects of benchmarking, including sensitivity analysis and model 
diagnostics, especially when the number of model parameters is increasing in tandem with model complexity. Model 
UQ and variance decomposition can be used to guide data collection and model improvement activities based on 
the decomposed variance of a particular model forecast. By ordering the dominant drivers of model uncertainty in 
projections of carbon, water, and energy fuxes and storage model UQ and variance decomposition approaches help to 
focus on the high-priority model needs frst. In addition, UQ activities within ILAMB should be conducted regularly 
and iteratively to identify model improvements based on previous UQ results and re-prioritize critical new foci based 
on the latest updated results. For example, UQ can help identify a critical observational need which then reduces the 
uncertainty of the model. Te next UQ cycle would then identify a new area of focus, given that the previous priority 
is now sufciently constrained. Finally, it is critical that UQ tools provide both univariate and multivariate approaches 
to evaluate the covariance among model parameters and drivers. 

Applications of UQ techniques are typically constrained by the computational cost of an LSM. At present, advanced 
UQ techniques, such as Monte Carlo (MC) based methods, can only be used with site-specifc models that are 
computationally inexpensive. At regional and global scales, only scenario-based UQ analyses are computationally 
tractable. Scenarios are, however, too sparse to draw rigorous conclusions and support decisions with quantifed risk/ 
uncertainty bounds. Efcient linear approximation techniques (e.g., maximum likelihood estimation with Gaussian 
assumption) are often not very useful because LSM responses of perturbed-parameter studies are strongly nonlinear. 
With the availability of spatially-distributed observational data (e.g., global remote sensing data, Appendix C.6) there 
is an increasing need to apply advanced UQ techniques at the regional and global scales that can also leverage diverse 
datasets. Tis requires new approaches that can approximate the full results using dimensionality reduction, which 
could be based on climate, vegetation, topographic, or other clustering approaches. 

In addition, there have emerged many recent advances in Markov Chain Monte Carlo (MCMC) methods and 
particle-based MC methods that we can explore and customize to LSMs. Some new efcient methods include 
implicit particle flter (Chorin and Tu, 2009); stochastic Newton MCMC method (Martin et al., 2012); and MCMC 
methods that utilize Gibbs samplers (Kuczera et al., 2010), diferential evolution samplers (Laloy and Vrugt, 2012), 
afne invariant ensemble samplers (Goodman and Weare, 2010), and surrogate-based samplers (Goodwin, 2015; Ray 
et al., 2015). Tese methods have varying degrees of parallelism that afect their efcient deployments on leadership-
class supercomputing facilities. It is unlikely that one method will be suitable under all benchmarking scenarios and 
for all LSMs. Tere is thus a need to identify how the various methods can be applied efciently under the diferent 
benchmarking scenarios that will be encountered in regional ILAMB UQ activities. 

Te number of parameters in an LSM can be large, and this poses another UQ challenge. However, chosen 
benchmarking metrics are usually impacted only by a small subset of the parameters and drivers that are used within 
LSMs. Dimensionality reduction can be achieved by identifying a reduced set of salient or relevant contributors 
through a sensitivity analysis (SA). Global SA requires large perturbed-parameter ensembles (especially for high-
dimensional global SA), and the challenge lies in computational resources, data bookkeeping, provenance, and 
a cyberinfrastructure capable of managing the distributed resources. Tis can be partly addressed by using sparse 
grid methods; e.g., Smolyak grids and Curtis-Clenshaw quadratures. However, their use is not widespread in the 
LSM community. 

Emulators or surrogate models are fast-running proxies of LSMs that can be used in studies where LSMs need to 
be invoked repeatedly (e.g., parameter or data assimilation). Emulators are typically constructed through statistical 
methods (e.g., Gaussian process regression, and polynomial chaos expansion), machine learning approaches (e.g. 
random forests, support vector machine regression, deep neural networks, and gradient boosting machines), and 
model reduction techniques (proper orthogonal decomposition method, reduced basis method, and discrete empirical 
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interpolation method). Te use of emulators (typically generated through large ensemble simulations of the full LSM) 
can help to reduce overall computational costs of large-scale UQ and benchmarking, in particular for regional-scale 
LSMs. However, emulators must frst be trained using outputs from large ensemble simulations of the full LSM. Te 
number of simulations required is typically reduced by utilizing efcient space-flling sampling techniques (e.g., Latin 
hypercubes, and sparse collocation method) or constraining the parameter space through a global SA or dimensional 
reduction algorithms. While the use of emulators in UQ analysis is promising, there are several challenges that must 
frst be addressed. First, LSM responses may be too complex to allow accurate emulators to be built. While there 
are many successful attempts at constructing emulators for scalar responses, methods for feld responses (as one 
might expect in regional LSM runs) are not well studied. Second, approximation errors inherent in emulators need 
to be accounted for in the UQ methods. Alternatively, we can attempt to identify an optimal pairing of emulator 
and MC method that will achieve the desired improvement in accuracy and efciency. For example, the implicit 
particle flter efciently constrains the efective parameter space, allowing accurate emulators to be efciently built 
with fewer samples. Finally, streamlined construction of emulators is a necessity for practical UQ and large-scale data 
assimilation, which are hampered by the complexity of LSM structures and responses. 

7.3 Observational Data Needs 
As a community we have entered into a data-rich era with numerous observational datasets collected at site to regional 
and global scales (Luo et al., 2011). Tese include leaf-level datasets, inventory data, tower observations, and remote 
sensing. However, in many cases these data are not easily available, well documented, web-accessible, standardized, 
provided with error estimates, or stored in an archival format. Many key datasets are “long tail” data found in student 
theses, hard copy, researcher hard drives, or other sources that are challenging to bring forward to the benchmarking 
and modeling community. New technologies and open-science initiatives are quickly eliminating these access 
problems with contemporary data, but a general investment in improved data retrieval and standardization is needed 
regardless of the observation of interest. In particular, proper documentation of datasets is critical for the appropriate 
use of any observation and to avoid erroneous benchmarking or comparisons. Moreover, data standardization is 
critical, and knowledge of data collection, instrumentation, post-processing, etc., is necessary to provide comparable 
data from multiple sources with uncertainties. Web-accessible tools should be prioritized to foster transparency such 
that the larger community can utilize and evaluate these synthetic observations, which serve to iteratively improve 
the datasets and curate standard products used across research groups, thereby serving to enhance reproducibility and 
direct comparisons across scales. 

Te following is a list of specifc data requirements for maximizing the use of observations in model uncertainty 
quantifcation eforts: 

» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of 
model responses to prescribed perturbations for a northern peatland 

» Include estimates of measurement errors in any data that is distributed. Tis should also mention distribution of 
the errors. 

» Access to scripts/codes for gap-flling, or generate gap-flled data and documentation of the gap-flling algorithm. 

» Metadata: how it was collected (instrument), how the measurement error estimates were computed (assumptions, 
etc.), what missing data has been flled in, and how that was done, etc. 

» Include data and associated metadata in the same fle/package. 

» Standardized, documented, and web-accessible meteorology driver data available at multiple temporal resolutions 
able to drive the models within ILAMB 

» Web-accessible orbital and suborbital remote sensing datasets useful for model evaluation, calibration, and 
benchmarking, including LiDAR, microwave, hyperspectral, and thermal (Appendix C.6; Schmid et al., 
2015). Tis includes new fusion products designed to test model outputs and functional responses within a 
UQ framework 

» “Sensor simulator” to provide direct comparison between internal model structure and canopy radiative transfer 
and low-level observations from suborbital and orbital remote sensing platforms. By comparing direct observations 
(i.e., surface refectance) as well as derived products (e.g., LAI), the uncertainty in model structure can be 
evaluated and can as well as facilitate direct data assimilation to improve model fdelity. 
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7.4 Algorithm Needs 
Te main algorithms needed can be classifed into fve categories: sensitivity analysis algorithms, inverse modeling 
algorithms, data assimilation algorithms, Monte Carlo-based algorithms, and training algorithms for emulators. Tere 
are potential overlaps in these categories. Existing packages for these algorithms exist in R (e.g., abc), Python (e.g., 
Sciki-Learn [https://www.scikitlearn.org/stable/], pyMC), MATLAB (e.g., UQLab [https://www.uqlab.com/]), 
and C++ (e.g., DAKOTA, UQTK). 

Most of the scripting languages contain packages that implement diferent deterministic and Bayesian calibration 
methods. Bayesian calibration develops estimates of LSM parameters as probability density functions (PDF); they 
are usually much narrower than the bounds that constitute prior beliefs regarding their values. Many new Bayesian 
methods are implemented in R and Python. When Gaussian assumptions regarding the PDF are acceptable, 
scalable ensemble Kalman flters (e.g., OpenDA [https://www.openda.org/]) are routinely used. However, if 
distributional assumptions are not to be imposed, Markov chain Monte Carlo (MCMC) and particle flters (PF) are 
required to solve the calibration problem. New MCMC-based algorithms are available in Python, for example the 
Diferential Evolutionary Monte Carlo method (in spotpy), and the afne invariant Monte Carlo method (in emcee). 
Approximate methods for Bayesian calibration (e.g., Approximate Bayesian Computation [Csilléry et al., 2010]) that 
could employ LSMs (not emulators) are available in R (Csilléry et al., 2012). Bayesian calibration of LSMs is still in 
its infancy; the thrust seems to be in assessing whether parameter-estimates-as-PDFs confer much beneft in terms of 
predictive skill. 

Approaches for constructing emulators through statistical, regression and machine learning techniques exist mostly in 
R and Python (e.g., Scikit-Learn). DAKOTA (https://dakota.sandia.gov/) and UQTK (https://www.sandia.gov/ 
UQToolkit); however, Karhunen-Loeve (KL) approximations of multivariate Gaussian random felds are potentially 
suitable for feld-scale emulation, although it is unclear how the large eigensolves required for KL decompositions 
of regional LSM runs can be efciently performed by serial UQ software. Random feld models for non-stationary 
random felds (e.g., wavelet based) are not supported by any UQ package. Despite the availability of multiple, well-
implemented packages, there is currently no framework that allows streamlined construction of emulators that take 
into account the complexity of LSM structures and responses. To make advances in the application of UQ techniques 
for LSM, the following priorities should be pursued: 

» Access to scalable packages for EnKF, MCMC, approximate Bayesian computation 

» Automatic packages for constructing surrogate models based on Gaussian process, neural nets, deep learning, 
random forests, support vector machine regression, and non-parametric methods 

» New parsimonious parameterizations for spatially variable felds; e.g., fux, permeability, and sparsity-enforcing 
inference methods such as Bayesian compressive sensing 

» A connected cyberinfrastructure to link multiple existing tools, frameworks, and approaches within ILAMB to 
provide synthetic workfows that provide advanced UQ and assimilation algorithms and approaches 

7.5 Computational, Visualization, and Data 
Analysis Needs 

Perturbed parameter ensembles result in large datasets, and UQ is assisted substantially by a combination of physical 
intuition (i.e., expert knowledge) and data patterns observed in the ensembles. Exploratory data analyses of the 
ensembles is a necessity for efcient UQ analyses, but existing visualizations tools for large data (e.g., Ensight, 
Paraview) are geared toward interrogation of individual datasets, not ensembles. Large data analysis tools such as 
Spark [Spark] can script/automate much of the preliminary data processing required in exploratory data analysis 
but lack any visualization capabilities. A scripting and visualization capability such as R, Python, or Matlab, but 
customized to ensemble analysis, would be helpful. Te following objectives should be considered to overcome 
computational and visualization challenges: 

» Parallelization of LSMs: task-based parallelization of LSM, distributing each site or ensemble member on each 
core of a graphics processing unit (GPU) to speed calculations 

https://www.sandia.gov
https://dakota.sandia.gov
https://www.openda.org
https://www.uqlab.com
https://www.scikitlearn.org/stable
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» Data analysis and visualization: possibility to combine big-data analysis software (e.g., Spark) with visualization 
capabilities (e.g., like the statistical scripting language R) to enable detailed diagnostic fgures. In addition, 
packages such as R-Shiny provide interactive data wrangling and plotting for big data. Possibility of having Big 
Data analytics clusters to be co-located with HPC platforms? 

» Web-accessible GUI to run models and model UQ tools within ILAMB. Tis will facilitate more direct 
connection between modeler, measurers, and domain experts. 

» Leverage existing tools for interactive data analysis (e.g., R-Shiny) to improve interaction and real-time analysis 
of model benchmarking results. Provide web-accessible tools for analysis and visualization capable of generating 
publication-ready graphics 
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8.0 Computational Needs 
and Requirements 

Comprehensive analysis of ESM output at increasing resolutions is already challenging the computational 
infrastructure commonly used by modelers and analysts. As observational data sets continue to grow in temporal 
length and spatial resolution, data storage and processing capacities will limit their use in model benchmarking 
without appropriate investments in data management and computational infrastructure. Scalable algorithms and 
machine learning techniques should be developed for evaluating and benchmarking high resolution and long time 
series ESM results. 

Combining integrating, and synthesizing data across Earth science disciplines ofers new opportunities for scientifc 
discovery that are only starting to be realized (Hofman et al., 2011). Te rise of data-intensive scientifc pursuits, 
in Earth sciences and other disciplines, has led some visionaries to proclaim it the fourth paradigm of discovery 
alongside the traditional experimental, theoretical, and computational archetypes (Hey et al., 2009). Te promise 
of scientifc advances in predictive understanding of environmental change has stimulated an enormous increase in 
the volume of both model and observational data. ESM simulations, especially for community modeling activities 
like CMIP, can generate tens of terabytes to several petabytes of output in raw form (Overpeck et al., 2011). Satellite 
remote sensing data tend to be very large and their size has grown as spatial and temporal resolutions have increased; 
however, small ecological data sets, often the most useful for synthesis, may be the most difcult to preserve, 
distribute, and use (Reichman et al., 2011). Research organizations must address these data collection, curation, 
archiving, discovery, and distribution challenges, and plans for creating a Virtual Laboratory infrastructure promise 
solutions that could enable new knowledge discovery (Williams et al., 2016). 

Today’s large and complex Earth science data often cannot be synthesized and analyzed using traditional methods 
or on individual workstations. As a result, data mining, machine learning, and high performance visualization 
approaches are increasingly flling this void and can often be deployed only on parallel clusters or supercomputers 
(Hofman et al., 2011). However, supercomputer architectures designed for compute-intensive simulations, usually 
containing large numbers of cores with high speed interconnects between nodes, are not typically optimal for large 
scale analytics. Instead, such applications demand large and fast on-node memory, high bandwidth input/output 
(I/O), and fast access to large local disk volumes. To realize the promise of new scientifc discovery from very large, 
long time series Earth science data, a distinct balance of increasing computational, storage, and bandwidth capacity 
from high performance computing resources is required. Scientifc computing enterprises should be advised to 
strike the right balance of these resources for their application communities as they plan their expansion to exascale 
computing (Lucas et al., 2014). 

As described above, UQ presents signifcant computational challenges that lead to development of reduced 
complexity and surrogate models that may fail to reproduce model behavior in unpredictable ways. Methods that 
can exploit leadership-class computing should be developed to address these challenges. Facilities supporting large 
scale data management and server-side manipulation and computation (e.g., Google Earth Engine) will become 
increasingly important as growing data volumes eliminate the possibility of transporting data to a researcher’s site for 
analysis. Data assimilation, in situ visualization, and benchmarking should function independent of the locations of 

KEY RECOMMENDATIONS 
» Scalable algorithms and machine learning techniques should be developed for evaluating and benchmarking high 

resolution and long time series ESM results. 

» Research organizations should develop cyber infrastructure to support large scale data collection, curation, archival, 
discovery, and distribution, and it should support automated model–data comparisons and online data assimilation 
for parameter estimation through supercomputing facilities. 

» Scientifc computing facilities should strike a balance between resources for compute-intensive vs. data-intensive 
applications as they plan their expansion to exascale computing. 

» New development for ILAMB should include improved support for remote retrieval and version tracking for 
observational data. 
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the data streams or observational data products needed to drive the simulation or evaluate its results. Realizing this 
vision requires investment in both cyber infrastructure for simulations and data storage and retrieval (e.g., obs4MIPs) 
and the software components of models and benchmarking packages. New development for ILAMB should include 
improved support for remote retrieval and version tracking for observational data. 



40 

2016 ILAMB WORKSHOP REPORT

 

 

 

 
 
 
 
 

 

 
 
 
 

 
 
 

 

 

 

9.0 Conclusions and Next Steps 

ADVANCING BENCHMARKING SCIENCE 
» A combination of small, targeted working groups, and larger, but less frequent meetings with the full community 

can increase visibility, participation, and science impact of ILAMB over the next several years. 

» Supporting the 6th Phase of the Coupled Model Intercomparison Project (CMIP6) is one of the most critical ILAMB 
goals for the next 3–4 years. 

» In the next 10 years, the community needs a synthesis center that will lower the barrier to information fow 
between measurement and modeling communities, with ILAMB serving as a core capability. 

9.1 Workshop Conclusions 
Te May 2016 ILAMB Workshop was very successful in bringing the international community together to identify 
scientifc challenges and priorities for future research. Te workshop demonstrated that there is a vibrant community 
of scientists, spanning many disciplines, who are committed to reducing barriers for information fow between the 
measurement and modeling communities. Te integration of ILAMB packages into the workfow of several major 
modeling centers highlights the growing importance of this efort for the science of Earth system prediction. 

A variety of Benchmarking Approaches have been adopted to evaluate model accuracy through comparison with 
observations, including the following: 

› Statistical comparisons (bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor 
diagrams and scores) 

› Functional relationship metrics or variable-to-variable comparisons 

› Emergent constraints 

› Reduced complexity models and traceability analyses 

› Formal uncertainty quantifcation (UQ) methods 

› Meta-analyses of perturbation and sensitivity experiments. 

While many of these statistical measures are not independent, each provides slightly diferent information about 
contemporary model performance with respect to observational data and about implications for future projections 
from ESMs. Reduced complexity models, traceability analysis, and UQ methods could be combined into useful 
frameworks to achieve the following goals: 

› Integrate and report carbon cycle model diagnostics as a matrix of fows and turnover times to attribute responses 
to specifc ecosystem components 

› Apply Bayesian UQ approaches that utilize leadership-class computing facilities to quantify model uncertainties 

› Employ UQ results to guide data collection activities and target process representations needing improvement 

› Investigate integration of emerging UQ frameworks with future ILAMB package releases. 

› Developing metrics that make appropriate use of observational data remains a scientifc challenge because of 
the following: 

› Spatial and temporal mismatch between models and measurements 

› Poorly characterized uncertainties in observational data products 

› Biases in reanalysis and forcing data 
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› Model simplifcations 

› Structural and parametric uncertainties. 

In the near-term, an important step will be to target specifc areas within the felds of ecosystem ecology and 
hydrology for synthesis and further detailed ILAMB metrics development. Recommendations identifed for next-
generation Benchmarking Challenges and Priorities included the following: 

› Develop supersite benchmarks integrated with AmeriFlux and FLUXNET 

› Create benchmarks for soil carbon turnover and vertical distribution and transport 

› Develop benchmark metrics for extreme event statistics and responses of ecosystems 

› Synthesize data for vegetation recruitment, growth, mortality, and canopy structure 

› Create benchmarks focused on critical high latitude and tropical forest ecosystems 

› Leverage observational projects and create a roadmap for remote sensing methods. 

Small, targeted working groups should be formed to research and publish analyses supporting these priorities. Other 
priority areas that the community identifed as important included photosynthesis, aboveground biomass and litter, 
permafrost processes, atmospheric radiation measurements, the three-dimensional structure of atmospheric CO2, and 
the use of radiocarbon as a constraint on soil processes. 

Specifc Enabling Capabilities identifed as required to address the next generation Benchmarking Challenges and 
Priorities included the following: 

› Model development of new process representations and new output variables 

› Deployment of land model testbeds (LMTs) 

› Directed feld measurements and monitoring activities 

› Perturbation experiments and laboratory studies 

› Standardize collection, processing, archiving, and distribution of observational data in Federated data centers 

› Advanced computational resources and infrastructure. 

New model development and verifcation activities could be more rapidly advanced through frequent and systematic 
simulation and testing. In particular, priority capabilities identifed included the following: 

› LMTs for automated execution, calibration, and evaluation of alternative or competing model formulations 

› In situ diagnostics to summarize simulation results and avoid output of large data sets, which can greatly reduce 
computational efciency 

› Initial LMT development that implements AmeriFlux and FLUXNET supersite evaluation of single-point 
ofine simulations 

› LMT capabilities incorporated into existing routine model testing (e.g., nightly or weekly automated 
integration testing). 

Computational needs and requirements identifed for model development, testing, and advanced benchmarking 
included the following: 

› Scalable algorithms and machine learning techniques for evaluating and benchmarking high resolution and long 
time series ESM results 

› Cyber infrastructure to support large scale data collection, curation, archiving, and distribution, supporting 
automated model–data comparisons and online data assimilation for parameter estimation through 
supercomputing facilities 



42 

2016 ILAMB WORKSHOP REPORT

 

 

 

 

 

 

 

› A balance between resources for compute-intensive vs. data-intensive application as scientifc computing facilities 
plan their expansion to exascale computing 

› New development for ILAMB that includes improved support for remote retrieval and version tracking for 
observation data through repositories like obs4MIPs. 

Additional feld measurements and monitoring activities, as well as perturbation experiments and lab studies, could 
provide valuable observational data for constraining models. High priority measurement needs identifed for 
developing benchmarks and improving ESMs included the following: 

› Long-term energy, carbon, and water fux measurements at AmeriFlux and FLUXNET sites with standardized 
instrumentation and methods, and additional frequent or continuous ancillary in situ measurements of soil 
moisture, sap fow, tree height and diameter, litterfall, and soil nutrients 

› High latitude and tundra soil core measurements of carbon and nutrient distributions, including isotopes and 
soil ice/water content, and observations of vegetation growth and expansion of woody vegetation 

› Characterization of tropical ecosystem traits and canopy structure and chemistry; observations of tropical 
ecosystem responses to drought, increased temperatures, and elevated atmospheric CO2; and measurements of 
nutrient cycling and hydrology in tropical forests, focusing on strong land–atmosphere interactions 

› Remote sensing algorithms and processing infrastructure for generating data products useful for large-scale 
ecosystem characterization and monitoring, scaling up in situ measurements, and informing future measurement 
site selection. 

9.2 Long-term Vision for Model Benchmarking 
A productive approach for achieving breakthroughs in the areas described above would be to organize small 
working groups that bring together key individuals at the cutting edge of the target discipline along with ILAMB 
developers. Priorities for these synthesis activities are identifed in Section 4. Over the course of several meetings, 
the teams would have a goal of creating new metrics. Te teams also would use the ILAMB system to create fgures 
and tables highlighting these metrics for a synthesis paper, for which all the contributing participants would share 
in co-authorship. Te community also expressed enthusiasm in bringing the full community together for larger 
meetings, and there was consensus that this would be complementary to the smaller targeted working groups, 
especially if the larger meetings were organized on a 3–5 year cycle. 

On a 3-year horizon (FY 2017–2020), the 6th phase of the Coupled Model Intercomparison Project (CMIP6) will 
be nearly complete, generating a vast archive of model simulation output from its suite of core DECK simulations 
and numerous associated MIPs (Section 5). Te combined CMIP6 collection will provide information essential for 
governments around the world to limit the magnitude and impact of climate change. In this context, supporting 
CMIP6 must be a central ILAMB goal over the next three years, and it is expected to generate many unique 
challenges. For example, C4MIP, LS3MIP, and LUMIP, as described in Section 5, all have unique objectives, 
simulation characteristics, and variable requests. Participants in these MIPs are interested in the ability of models to 
predict land surface changes on vastly diferent time scales and across a widely varying set of processes. 

To successfully support these MIPs, further development and a unique tailoring of the ILAMB system for individual 
MIPs may be necessary. Within each MIP, ILAMB may help to identify robust responses that occur across multiple 
models as well as persistent biases. Using the DECK simulations and other closely related simulations, ILAMB also may 
be helpful in documenting improvements in the representation of the land surface and atmospheric processes over time, 
from CMIP5 to CMIP6. Tis information will be of broad interest to Earth system scientists, policy makers, funding 
agencies, and the general public. Another important goal will be to use the emergent constraints that are currently 
being integrated within the ILAMB system to constrain future predictions of carbon dioxide and other biogeochemical 
variables. In doing so, ILAMB participants may be able to enhance the value of CMIP6 for the Intergovernmental Panel 
on Climate Change 6th Assessment Report, and other international and national synthesis eforts. 
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Another necessary step is to create a closer coupling between obs4MIPs (Teixeira et al., 2014; Ferraro et al., 2015) and 
ILAMB. Tis can be achieved by integrating ILAMB datasets into the obs4MIPs online repository and converting 
existing ILAMB datasets to follow well-established netCDF Climate and Forecast (CF) conventions (Eaton et al., 
2011). Whereas obs4MIPs currently includes many datasets valuable for constraining the physical climate system, 
many ecosystem variables have not yet been integrated into this system. Tis step will make it easier for ILAMB 
developers to build new modules, and it will increase the transparency and traceability of the system as it evolves. 

Over a 5–10 year time horizon, the ILAMB system could serve as a core capability within a US or international 
center dedicated to increasing information fow between international measurement and Earth system modeling 
communities. Other important capabilities, complementing ILAMB, would include the ability of the center to solicit 
small synthesis proposals from the community for new working groups, host MIP-related activities, and support 
expanded Earth system model use and access by a broader cross section of scientists within disciplines of ecosystem 
ecology, biogeochemistry, and hydrology. 
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Appendix A. Benchmarking Tools 
A.1 PALS/PLUMBER 

Gab Abramowitz and Martin Best 
Te Protocol for the Analysis for Land Surface models (PALS; Abramowitz, 2012) is an online web application for 
the automated evaluation and benchmarking of land surface model (LSM) simulations. PALS hosts a collection of 
“experiments,” each of which contains a collection of data sets required to force (if running ofine) and evaluate a 
LSM at the particular spatial resolution or location prescribed by the experiment. Users create model profles within 
the PALS system, and then upload their LSM simulation and associate it with one of their model profles and the 
appropriate experiment. Once uploaded, the analysis script associated with the experiment automatically analyzes the 
uploaded model output, comparing it to evaluation data sets and/or model outputs from other users that are already 
associated with the experiment. Results of the analysis are available to all users with access to the experiment. 

Tere are several motivations for creating this type of system. Running model intercomparison projects (MIPs) in this 
environment means the following: 

» Analyses are transparent to all involved because analysis scripts are downloadable and editable. Standardization of 
evaluation can therefore be a community-based efort. 

» Contributions to MIPs can be ongoing, without additional analysis efort. 

» Additional analyses can be performed by anyone with access to the experiment. 

» Te entire history of MIPs on the PALS system remain “live” and available. 

» A version history of data sets, analysis scripts, and experiment metadata are accessible to all experiment users. 

» Ancillary data associated with models and model outputs can potentially be data-mined as part of the analysis. 

» Ancillary data associated with models and model outputs improves provenance information and reproducibility. 

Tis makes achieving the broader goals of a MIP, such as understanding why some models perform better than others, 
or whether or not models share particular weaknesses, more attainable. 

Another obvious use of such a system is for model development. PALS’ implementation of “workspaces” to limit 
access to experiments to a subset of users means that development teams can use this type of system for fast, repeated 
analysis of model developments to share online with co-developers, as follows: 

» Te automated nature of analysis allows continuous integration testing for scientifc model development through 
application programming interface (API) access (e.g., using Jenkins). 

» Equity: access to the evaluation system is not contingent upon the ability to successfully install an analysis package 
or local computing resources. Tis increases the potential for international standardization of model evaluation 
and avoids duplication of analysis infrastructure. 

» As noted above, ancillary data associated with model versions and model outputs improves provenance 
information and reproducibility and opens up the potential to data-mine ancillary data. 

» Te ability to nominate benchmarks for each analysis—other model outputs already associated with a particular 
experiment—makes comparing against diferent model versions easier. 

Success of this type of system is clearly dependent upon the adoption of model input/output standards. PALS 
currently supports the Assistance for Land-surface Modeling Activities (ALMA) NetCDF standard to which many 
land surface modeling groups adhere. Work is underway to ensure full Climate and Forecast convention for NetCDF 
fles (CF-NetCDF) compliance and Coupled Model Intercomparison Project (CMIP) interoperability in the next 
version of the ALMA standard. 

In its frst phase, PALS focused solely on single site (fux tower) analysis. It attracted about 230 users from more than 
60 institutions in 20 countries, of which about 20% were active users. Tis version of PALS has not been available 
since late 2014 after a Struts vulnerability forced us to take it ofine. However, while limited in scope, this resulted in 
two successful MIPs: PLUMBER (Best et al., 2015; Haughton et al., 2016) and SavMIP (Whitley et al., 2016). 
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For PLUMBER, land surface models were benchmarked for 20 observational FLUXNET sites ranging in 
geographical locations, climates, and land cover. Both simple physical models and empirical relationships were used to 
provide benchmarks for the sensible and latent heat fuxes in this study. Te land surface models were not evaluated 
against each other but were individually ranked in comparison to the benchmarks. 

Te results showed that for standard statistical metrics, all of the land surface models had a similar performance 
relative to the benchmarks. Te models had a better overall ranking compared to the simple physical models but were 
out-performed for both surface fuxes by a three variable piecewise linear regression. In addition, for the sensible heat 
fux, the models were outperformed by a single variable regression between the fux and the downward shortwave 
radiation. Tis demonstrates that further improvements can be made to the models without introducing additional 
complexity, but rather by making better use of the information contained in the forcing data. 

Furthermore, assessing the performance of the model relative to the benchmarks for alternative statistical metrics 
based upon distributions showed that the models had difering overall rankings compared to the benchmarks. Tis 
suggests that previous development eforts among the international community have focused on optimizing for 
standard statistical metrics, but this does not necessarily result in overall better performance. 

Figure A.1.1. Common statistics for each model are shown by average ranking from the PLUMBER benchmarking 
activity. 

Te second phase of PALS aims to broaden its focus and introduce new features. First, the system will not be 
specifcally tailored to LSMs, so it will likely launch as http://modelevaluation.org/. All the existing PALS site-based 
LSM experiments, and additional global and regional LSM experiments, will still be available. 

Next, experiment owners will be able to control the operation of the master analysis script. Tis means that as long 
as the JavaScript Object Notation (JSON)-based input/output requirements of the master analysis script are met, 
any analysis package can be used to perform the analyses for a given experiment. Tis means that incorporating 
evaluation packages such as ILAMB or Land surface Verifcation Toolkit (LVT) into the http://modelevaluation.org/ 
environment is possible. 

We are also building this system to avoid the bottleneck that uploading large model outputs inevitably creates. By 
using a distributed architecture, where the “worker” nodes that actually perform the analysis (e.g., using Python or R) 
can be co-located with or at centers producing large model outputs, “uploading” a model output to this system need 
not involve the transfer of large fles. Instead, the central web server optimally manages a collection of worker nodes 
to minimize analysis time. Once results are complete, analysis images and summary data are then sent to the central 
web server for display to users. 

http://modelevaluation.org
http://modelevaluation.org
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An initial working version of the second phase system is running and undergoing testing. All code is available 
in a collection of open source GitHub repositories. Any suggestions, contributions or collaborations are 
actively encouraged. 

A.2 PCMDI Metrics Package (PMP) 
Peter Gleckler 

A more routine benchmarking and evaluation of models is envisaged to be a central part of the sixth phase of the 
Coupled Model Intercomparison Project (CMIP6). One purpose of the Diagnostic, Evaluation and Characterization 
of Klima (DECK) and CMIP historical simulations is to provide a basis for documenting model simulation 
characteristics (Meehl et al., 2014). In addition to scientifcally targeted tools under development like the ILAMB 
package, two capabilities (Eyring et al., 2016a; Gleckler et al., 2016) will more broadly characterize CMIP DECK 
and historical simulations as new model experiments are published on the Earth System Grid Federation (ESGF). 
Te foundation that will enable this to be efcient and systematic is the community-based experimental protocols 
and conventions of CMIP, including their extension to obs4MIPs, which serves observations in parallel to the CMIP 
output on ESGF. Here we summarize some aspects of one of these capabilities—the Program for Climate Model 
Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP; Gleckler et al., 2016). 

Te PMP is built on US Department of Energy (DOE)-supported tools (Williams et al., 2014) and emphasizes the 
implementation of a diverse suite of summary statistics to objectively gauge the level of agreement between model 
simulations and observations. Te PMP software is open source, has a wide range of functionality, and is being 
developed as a community tool with the involvement of several institutions. Collectively, the PMP, Earth System 
Model Evaluation Tool (ESMValTool), and ILAMB packages ofer valuable capabilities that will be crucial for the 
systematic benchmarking of the wide variety of models and model versions contributed to CMIP6. Tis evaluation 
activity can, compared with early phases of CMIP, more quickly and openly relay to analysts and modeling centers 
the strengths and weaknesses of the simulations including the extent to which long-standing model errors remain 
evident in newer models. In addition to being strongly integrated with the data conventions of CMIP,  obs4MIPs 
and the ESGF, a priority for the PMP is to make all aspects of the analysis as traceable and reproducible as possible.  
All results from the PMP include a trail of the codes and 
dataset versions used to generate them. 

We illustrate the type of summary statistics available 
via the PMP with three examples. Te frst (Figure 
A.2.1) is based on a recent paper (Ivanova et al., 2016) 
that examines how well simulated sea-ice agrees with 
measurements on sector scales and demonstrates that the 
classical measure of total sea-ice area is often misleading 
because of compensating errors. Te second (Figure 
A.2.2) is also based on a recent paper (Covey et al., 2016) 
that highlights the amplitude and phase of the diurnal 
cycle of precipitation. A third example is given by a 
simple “portrait plot” comparing diferent versions of the 
same model (Gleckler et al., 2016) in Atmospheric Model 
Intercomparison Project (AMIP) mode. 

Te PMP is under rapid development with a priority 
of providing a diverse suite of summary statistics for 
all historical and DECK simulations to researchers 
and modeler developers soon after each simulation is 
published on the ESGF. Te package is designed to enable 
community contributions. All the PMP code is hosted at 
https://github.com/PCMDI/pcmdi_metrics. 

Figure A.2.1. Model ranking using mean-square 
error (MSE) of the total sea-ice area annual cycle: (a) 
Arctic scatter plot of decomposed and global errors; 
(b) Antarctic scatter plot of decomposed and global 
errors; (c) Arctic scatter plot of decomposed and global 
errors model ranking; and (d) Antarctic scatter plot of 
decomposed and global errors model ranking. 

https://github.com/PCMDI/pcmdi_metrics
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Figure A.2.2. Harmonic dial plots of the amplitude and 
phase of Fourier components, after vector averaging 
over land and ocean areas separately, for Tropical Rainfall 
Measurement Mission (TRMM) 3B42 observations (black 
lines and dots), for the four highest-resolution CMIP5 
models (colored lines and dots), and for the other 17 
Atmospheric Model Intercomparison Project (AMIP) 
models from CMIP5 with only July results shown for 
clarity (gray dots). For TRMM and the highest-resolution 
models, solid lines mark January results, whereas dashed 
lines mark July results. 

Figure A.2.3. Figure A2.3: Relative error measures of 
different developmental tests of the Geophysical Fluid 
Dynamics Laboratory (GFDL) model in AMIP mode. 
The error measure is a spatial root-mean-square error 
(RMSE) that treats each variable separately. The color 
scale portrays this as a relative error by normalizing the 
result by the median error of all model results (Gleckler 
et al., 2008). For example, a value of 0.20 indicates that a 
model’s RMSE is 20% larger than the median error for that 
variable across all simulations, whereas a value of –0.20 
means the error is 20% smaller than the median error. 
Credit: Erik Mason/GFDL. 

A.3 ESMValTool 
Veronika Eyring 

A community diagnostics and performance metrics 
tool for the evaluation of Earth system models (ESMs) 
has been developed that allows for routine comparison 
of single or multiple models, either against predecessor 
versions or against observations. Te priority of 
the efort so far has been to target specifc scientifc 
themes focusing on selected essential climate variables 
(ECVs), a range of known systematic biases common 
to ESMs, such as coupled tropical climate variability, 
monsoons, Southern Ocean processes, continental 
dry biases, and soil hydrology–climate interactions, as 
well as atmospheric CO2 budgets, tropospheric and 
stratospheric ozone, and tropospheric aerosols. Te 
tool is being developed in such a way that additional 
analyses can easily be added. A set of standard 
namelists for each scientifc topic reproduces specifc 
sets of diagnostics or performance metrics that have 
demonstrated their importance in ESM evaluation 
in the peer-reviewed literature. Te Earth System 
Model Evaluation Tool (ESMValTool; doi:10.17874/ 
ac8548f0315; Eyring et al., 2016a) is a community 
efort open to both users and developers encouraging 
open exchange of diagnostic source code and 
evaluation results from the CMIP ensemble. Tis will 
facilitate and improve ESM evaluation beyond the state 
of the art and aims at supporting such activities within 
CMIP and at individual modeling centers. Ultimately, 
we envisage running the ESMValTool alongside the 
Earth System Grid Federation (ESGF) as part of a 
more routine evaluation of CMIP model simulations 
while using observations available in standard formats 
(e.g., obs4MIPs) or provided by the user. 

Te ESMValTool consists of a workfow manager and 
a number of diagnostic and graphical output scripts 
(Figure A.3.1). Te workfow manager is written in 
Python, whereas a multilanguage support is provided 
in the diagnostic and graphic routines. ESMValTool 
takes the name of a namelist fle as a single input 
argument, and the namelist fles are text fles written 
using the eXtensible Markup Language (XML) syntax 
to defne the model and observational data to be read, 
the variables to be analyzed, and the diagnostics to be 
applied. A large collection of standard namelists are 
included in ESMValTool (v1.0) for analyzing a wide 
collection of ECVs across atmosphere, ocean, sea ice, 
and land components. For example, one namelist 
can be used to reproduce the fgures from the climate 
model evaluation chapter of IPCC AR5 (Chapter 
9, Flato et al. [2013]) (Figure A.3.2). Another XML 
namelist will produce a plot comparing the RMSE over 
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diferent sub-domains for net biosphere productivity, leaf area index, gross primary productivity, precipitation, and 
near-surface air temperature like that of Anav et al. (2013) (Figure A.3.3). 

Figure A.3.1. Schematic overview of the ESMValTool (v1.0) structure. The primary input to the workfow manager is a 
user-confgurable text namelist fle (orange). Standardized libraries/utilities (purple) available to all diagnostics scripts 
are handled through common interface scripts (blue). The workfow manager runs diagnostic scripts (red) that can be 
written in several freely available scripting languages. The output of the ESMValTool (gray) includes fgures, binary 
fles (NetCDF), and a log fle with a list of relevant references and processed input fles for each diagnostic. 

We aim to move ESM evaluation beyond the state of the art by investing in operational evaluation of physical and 
biogeochemical aspects of ESMs, by using process-oriented evaluation, and by identifying processes most important 
to the magnitude and uncertainty of future projections. Our goal is to support model evaluation in CMIP6 by 
contributing the ESMValTool as one of the standard documentation functions and by running it alongside the ESGF. 
In collaboration with similar eforts, we aim for a routine evaluation that provides a comprehensive documentation 
of broad aspects of model performance and its evolution over time and to make evaluation results available at a time 
scale that was not possible in CMIP5. Te ability to routinely perform such evaluation will drive the quality and 
realism of ESMs forward and will leave more time to develop innovative process-oriented diagnostics – especially 
those related to feedbacks in the climate system that link to the credibility of model projections. 
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Figure A.3.2. Annual-mean surface air temperature (upper row) and precipitation rate (mm day–1) for the period 
1980–2005. The left panels show the multi-model mean and the right panels the bias as the difference between the 
CMIP5 multi-model mean and the climatology from ERA-Interim and the Global Precipitation Climatology Project for 
surface air temperature and precipitation rate, respectively. The multi-model mean near-surface temperature agrees 
with ERA-Interim mostly within ±2°C. Larger biases can be seen in regions with sharp gradients in temperature, for 
example in areas with high topography such as the Himalaya, the sea ice edge in the North Atlantic, and over the 
coastal upwelling regions in the subtropical oceans. Biases in the simulated multi-model mean precipitation include 
too low precipitation along the equator in the western Pacifc and too high precipitation amounts in the tropics 
south of the equator. Similar to Figures 9.2 and 9.4 of Flato et al. (2013) and produced with ESMValTool namelist_ 
fato13ipcc.xml. 
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Figure A.3.3. Relative space–time RMSE calculated from the 1986–2005 climatological seasonal cycle of the CMIP5 
historical simulations over different sub-domains for net biosphere productivity (NBP), leaf area index (LAI), gross 
primary productivity (GPP), precipitation (pr) and near-surface air temperature (tas). The RMSE has been normalized 
with the maximum RMSE to have a skill score ranging between 0 and 1. A score of 0 indicates poor performance of 
models reproducing the phase and amplitude of the reference mean annual cycle, whereas a perfect score is equal 
to 1. The comparison suggests that there is no clearly superior model for all variables. All models have signifcant 
problems in representing some key biogeochemical variables such as NBP and LAI, with the largest errors in the tropics 
mainly because of a too weak seasonality. Similar to Figure 18 of Anav et al. (2013) and produced with ESMValTool 
namelist_anav13jclim.xml. 

A.4 NASA Land Surface Verifcation Toolkit (LVT) 
Sujay Kumar 

Te NASA Land surface Verifcation Toolkit (LVT; http://lis.gsfc.nasa.gov/software/lvt; Kumar et al., 2012) 
is an open-source, formal system for land surface model evaluation and benchmarking. LVT is designed to 
provide an automated, consolidated environment for model evaluation and includes approaches for conducting 
both deterministic and probabilistic verifcation. A key motivation in the development of LVT is the concept of 
“model–data fusion” (MDF; Raupach et al., 2005; Williams et al., 2009), which is the paradigm for combining the 
information from models and observational data, to aid the formulation, characterization, and evaluation of models 
in a structured manner. Te evaluation step is a critical element that is necessary to complete the MDF paradigm. 
LVT was initially developed to augment the land surface modeling and data assimilation framework known as the 
Land Information System (LIS; Kumar et al., 2006). LIS includes several key components of the MDF paradigm, 
including a suite of land surface models, computational tools such as data assimilation, optimization and uncertainty 
estimation. Together, LVT and LIS provide a comprehensive environment to enable the MDF paradigm. 

LVT is implemented using object oriented framework design principles as a modular, extensible, and reusable system. 
Te software is designed with explicit interfaces for incorporating support for observational datasets and evaluation 
metrics. Te interoperable nature of the LVT design allows the reuse of existing features with new components that 
are developed. For example, a newly incorporated support for an observational dataset can take advantage of all 
available analysis metrics without needing any additional implementation. 

http://lis.gsfc.nasa.gov/software/lvt
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 A key design consideration in LVT is the support of observational datasets in their native formats, enabling the 
continued use of the system without requiring additional implementation or data preprocessing. Currently a large 
suite of in situ, remotely sensed, and other model and reanalysis datasets are implemented in LVT. Te spatial and 
temporal scales of these measurements vary signifcantly. LVT handles the geospatial and temporal transformations of 
these datasets from their native formats to enable fexible analysis confgurations. 

In recognition of the need for having a variety of performance evaluation metrics for model evaluation, LVT supports 
a suite of analysis metrics. Aside from the traditional accuracy-based measures, LVT also includes metrics to aid model 
identifcation, such as entropy, complexity, and information content. Tese measures can be used to characterize 
the tradeofs in model performance relative to the information content of the model outputs. Te accuracy-focused 
metrics that quantify model performance using residual-based measures often do not provide insights on the 
robustness of the model under future or unobserved scenarios. Te availability of metrics such as those based on 
information theory helps in mitigating these limitations. In addition to model verifcation, LVT also provides an 
environment for model benchmarking, where benchmark values for each metric are established a priori (Best et al., 
2015). Te development of such benchmarks is facilitated in LVT, using regression and machine learning techniques. 
More recently, application-oriented, end-user focused diagnostic measures have been developed. For example, LVT 
can be used to produce estimates of drought/food risks by analyzing the distribution of soil moisture, streamfow, or 
evaporative fuxes from the land surface model. Finally, LVT also includes uncertainty and ensemble diagnostics based 
on Bayesian approaches that enable the quantifcation of predictive uncertainty in land surface model outputs. 

LVT is an evolving framework and continues to be enhanced with the addition of new analysis capabilities and the 
incorporation of terrestrial hydrological datasets. Te capabilities in LVT provide novel ways to characterize LSM 
performance, enable rapid model evaluation eforts, and are expected to help in the defnition and refnement of a 
formal benchmarking and evaluation process for the land surface modeling community. 

A.5 ABoVE Benchmarking System 
Joshua B. Fisher 

Te Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. 
Tese uncertainties are precipitated by a lack of observational data from the region, afecting the parameterizations 
of cold environment processes in the models. Addressing these uncertainties requires a coordinated efort of data 
collection and integration of the following key indicators of the ABR ecosystem: disturbance, fora / fauna and related 
ecosystem function, carbon pools and biogeochemistry, permafrost, and hydrology. We are developing a model-data 
integration framework for NASA’s Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection for the 
key ABoVE indicators is driven by matching observations and model outputs to the ABoVE indicators. Te data 
are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR 
processes. Te benchmarking system utilizes performance metrics to identify intra-model and inter-model strengths 
and weaknesses, which in turn provides guidance to model development teams for reducing uncertainties in TBM 
simulations of the ABR. Te system is directly connected to the International Land Model Benchmarking (ILAMB) 
system, as an ABR-focused application. 
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Appendix B. 
Metrics for Major Processes 
B.1 Ecosystem Processes and States 

Nancy Y. Kiang and Ben Bond-Lamberty 
Ecosystem processes are the full suite of interactive components of an ecosystem that determine a column mass 
budget and fuxes into and out of the system vertically and horizontally. Ecosystem components are typically 
distinguished in land models into modules for soil biogeochemistry coupled with vegetation dynamics (biophysics, 
phenology, growth, ecology), and with these biological components coupled to surface hydrology and the atmosphere. 
Tus, system processes are (1) the vertical interactions between these components from the ground hydrology to the 
atmosphere (e.g., the exchange of water, litter, nutrients, and sum of energy and gas fuxes) and (2) the horizontal 
exchanges and external forcings that lead to heterogeneous boundary conditions for these column physics (e.g., edge 
efects, transport, disturbance, and dispersal, the latter being covered under the section on Vegetation Dynamics). 

Ecosystem states are the magnitudes of these fuxes and mass storage pools at a point in time, as well as their 
trajectories with respect to time or another driver. Te pools may be categorized according to system components and 
various classifcations of their respective compositions, such as biodiversity, chemical mix, and geometric structure. 

Table B.1.1 provides a summary of ecosystem processes addressed in this section, focusing on processes that couple 
ecosystem components with each other. Table B.1.2 provides a summary of ecosystem state variables that are targets 
for benchmarking, together with data sets that could serve as these benchmarks. Tere is some natural overlap with 
other sections of this report that focus on the ecosystem components. Further details on identifying appropriate 
model ecosystem diagnostics and suitable data for model benchmarking serves a primary goal of improving ecosystem 
process representation. 

Table B.1.1. Ecosystem coupling processes. 

Physics 
Biophysics and 

Biogeochemistry Ecology 

Land–Atmosphere Observed or GCM 
meteorology 

Canopy albedo 

Surface energy balance 

Water vapor conductance 

CO  exchange2

Autotrophic respiration 

Heterotrophic respiration 

Fire emissions 

Anthropogenic forcings 

Vegetation–Soil Canopy air: temperature, 
humidity, CO2 

concentration 

Litterfall mass and quality 
(C:N ratio, lignin content) 

Nitrogen dynamics 

Microbial-vegetation 
nutrient competition 

Hydrology–Soil–Vegetation Layers vs. catchments 

Interception/throughfall 

Root water uptake, 
stomatal conductance 

Multi-pool, multi-layer soil 

(Dissolved organic carbon) 

-Leaching of NO3 

Horizontal Exchange Edge effects in 
meteorology 

General circulation of CO2 

and fre emissions 
Managed land dynamics, 
land use; Natural 
and anthropogenic 
disturbance, fre 
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Table B.1.2. Ecosystem State Model Diagnostics vs. Measurements. 

Equilibrium spin-up 
state 

Preindustrial control 
Partitioning/ 

classifcation of mass 
balances and fuxes. 

Responses/Sensitivities 
Elevated CO2 Uncertainties 

Land–Atmosphere Model CO , surface fuxes2

CO  record: fasks, ice cores2

Products from FLUXNET 

Model mean, seasonal 
timing latitudinal 
gradients 

Airborne fraction 

Vegetation Canopy Vegetation structure 

Net zero fux 

FLUXNET, inventory, 
satellite 

Seasonal timing, net fuxes 

Land use and land cover 
change (LULCC)? 

Soil Model litter layer, SOC, 
soil N 

Soil carbon databases 

Land Use Model 
Intercomparison Project 
(LUMIP) management data 
sets 

dC/dX, dC/dt 

Soil fux databases 

High observational 
uncertainties 

Specifc Points and Recommendations 

Key recommendations to improve evaluation, benchmarking, and process representation of ecosystem processes and 
states in ESMs are as follows: 

» To interpret and compare the performance of models relative to benchmarks, it is necessary to analyze the 
component parts of each model and not merely their emergent behavior. Tere should be more focus on 
comparing process representation and not just diagnostic variables. 

» To create standards for benchmarks, the land modeling community must develop clear guidelines on how diferent 
statistics and visualizations (e.g., bias, RMSE, Taylor diagrams) are used and how they complement each other for 
diferent benchmarking purposes. 

» Observational data often lack quantifed uncertainties. Tese should be required as an essential component of 
data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. 
Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly 
in propagation of uncertainty in model simulations. 

» In model development, it is critical that tests are designed to eliminate confounding factors that would afect 
interpretation of the efects of new model physics. Examples of confounding factors that infuence model 
performance other than a new model update include forcings data sets and boundary conditions, for which 
controls should be selected to identify model improvements versus other factors. 

» To improve model process representation, the observation and modeling communities should communicate 
regularly their perspectives with each other so that (1) the measurement community develops functional 
relationships from data sets that are suitable for use in models and (2) modelers can keep informed of insights 
from new data. Modelers need to provide the observation community with a clear defnition of needs, such as 
through a scaled-based matrix of measurement needs for models. 
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B.1.1 Scientifc Challenges and Opportunities for Model Evaluation 

Accuracy: A number of statistical and visualization approaches have been used to evaluate model performance (e.g., 
bias, RMSE, phase, amplitude, spatial distribution, scores, Taylor diagrams, and functional relationships/perturbation 
sensitivity) (Gleckler et al., 2008; Doney et al., 2009; Luo et al., 2012). To create standards for benchmarks, the 
land modeling community must develop clear guidelines on how diferent statistical measures are used and how they 
complement each other for diferent benchmarking purposes. With regard to known issues with specifc data, the 
ability of both measurements and models to close energy and carbon budgets is advocated as a continued important 
accuracy criterion. 

Uncertainty: Uncertainty in observational data is often lacking and should be demanded as an essential component 
of data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. 
Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly in 
propagation of uncertainty in model simulations. 

Sensitivity: Insight into model behavior can be gained through checking relationships: variable vs. variable, vs. time, 
vs. drivers, turnover/response rates. Because process representations generally directly encode sensitivities found in 
observations, directly examining the diferent models’ physics should be the frst analytical step for evaluating and 
anticipating their diferent behaviors. However, sensitivity between coupled ecosystem components is an area worth 
developing for benchmarking for emergent properties of ecosystems. 

Scaling—temporal: Understanding at which time scale a process has signifcant infuences is vital to representing 
it appropriately in models. To discern these time scales from both observational data as well as model outputs, a 
suggested approach is Fourier transforms of time series and periodicities. Tis has been used, for example to analyze 
patterns of diurnal, seasonal, and interannual cycles. 

Scaling—spatial: In scaling up (e.g., from sampling points at a site, from sites to regions, and regions to the globe), 
land modelers must remain cognizant that each change in scale entails diferent relevant ecosystem processes (cf., 
Moorcroft et al., 2001). From sampling within a feld site, the distribution and variability of point measurements 
with microclimate and individual plant heterogeneities need to be quantifed well to scale up model processes to 
the ecosystem scale (cf., Shao et al., 2013; Keenan et al., 2012; Todd-Brown et al., 2013). Scaling up from site-
based studies to the regional and global scale must account for disturbance efects, anthropogenic forcings, and 
teleconnections that are not observed at the site scale but that operate at the larger scale. At the same time, to account 
for numerical issues, approaches must be developed to downscale or tune column physics at the ESM grid scale for 
processes that operate at the subgrid scale, such as soil moisture and precipitation. 

B.1.2 New Metrics and Benchmarking Approaches 

Benchmarking metrics provide a standardization for model evaluation and a bridge between what land modelers can 
simulate and what the observational community can measure. Te advent of size-structured and patch-age based 
second generation dynamic global vegetation models (DGVMs) and trait-based vegetation models, the introduction 
of more ecosystem types and land use change, and the availability of more measurements from long-term sites and 
recent satellites, all motivate re-evaluation of old benchmarking metrics and addition of new ecosystem metrics. 

Table B.1.3 provides a summary of key ecosystem process and state metrics for standardization in the land modeling 
community. Tese draw upon also the eforts of the various model intercomparison projects (MIPs) of the Coupled 
Model Intercomparison Project 6 (CMIP6), particularly the Coupled Carbon Cycle Climate Model Intercomparison 
Project (C4MIP), where the goal is to constrain future climate projections (e.g., identify emergent constraints). As 
with C4MIP, we recommend the community develop standard model diagnostic variables, units, and time scales 
of averaging. 

Te metrics include pre-industrial spin-up benchmarks where there are no observations to compare to, but an 
equilibrium model state must be defned, such as potential biomass and equilibrium soil carbon. Te metrics also 
include variables suitable for evaluation against the observational record. We recommendation that models also 
develop instrument simulators to output the fundamental measurements observed by remote sensing instruments. 
Tese could include updating the fundamental canopy radiative transfer model (RTM) code such that it outputs 
canopy refectance or thermal brightness temperatures based on the internal canopy structure, optical properties, or 
thermal properties. In addition, an important component would be the capability to simulate basic LiDAR waveform 
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information based on canopy properties. Tat capability should be based on the model’s RTM representation, to best 
compare with LiDAR observations, instead of converting to estimates of height or biomass. For example, LiDAR 
waveforms of the simulated vegetation structure could be produced for direct comparison with LiDAR measurements 
by using an internal radiative transfer model. Other examples are simulation of solar-induced fuorescence (SIF) or 
shortwave albedo in the same band as measurements. 

Table B.1.3. New Metrics/Model Diagnostics/Benchmarks. 

Activity 
Physical 

Properties 
Ecosystem 
Structure 

Temporal 
Diagnostics 

Spatial 
Diagnostics 

Land–Atmosphere Seasonal timing Horizontal column 

Vertical regional 

Vegetation Canopy Fluorescence Albedo Age since 
disturbance. Plant 
age, geometry, 
demography, 
biomass. 

LiDAR waveforms 

Seasonal timing 

Decadal-
centennial 
prediction 

RMSE, uncertainty 

Soil Parameter values -
data repository 

Seasonality of 
fuxes 

RMSE, interpolation 

Vegetation–soil Litterfall mass, 
litter layer 

Seasonality Requires data 

B.1.3 Observational Data Needs and Priorities 

Current best-available datasets must be selected based the relevant time scale (annual mean, seasonal cycle, 
interannual variability, trend) and the spatial extent and resolution for comparison (site, regional, global). New 
in situ or remote sensing measurements are needed for global soil depths, isotope tracers, leaf area index, and many 
other state variables. A wide variety of measurements are needed to characterize specifc phenomena of interest, 
including drought. Appropriate metadata (e.g., site history) must accompany all feld data. Synthesis of data from 
a variety of sources (e.g. FLUXNET, TRY, Allometree, NECTAR), and coordination among data centers providing 
open standard APIs is crucial. 

Table B.1.4. Observational Data Needs. 

Ecosystem 
Structure Physics Biogeochemistry Ecology Scaling Up 

Atmosphere Flux inversion 
products 

Vegetation Canopy Age distribution 
of disturbance, 
plant demography. 
Height. 
Root exudates. 
Reproduction. 
Allometric leaf 
area index and 
seasonality of 
traits. 

Seasonality of 
leaf traits 

Hyperspectral 
data 

Vegetation 
structure 

Site: 

Airborne: 

Remote: 

Cover change Beyond PFTs 

“Decomposition 
functional types” 
(Bond-Lamberty 
et al., 2016b) 

Soil More soil state 
and response 
data needed: C, 
N, bulk density. 
Partitioning of 
soil hetero- vs. 
autotrophic 
respiration. 

Soil respiration. 

Updated gridded 
soil respiration 
observational data 

Peatlands 
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B.1.4 Model Development and Output Requirements 

To improve ecosystem process representation, the land modeling community should investigate advances to these 
aspects of coupling ecosystem components: 

» Energy exchange: Second generation vegetation models that represent canopy heterogeneity and seasonally 
prognostic leaf albedo should be evaluated to determine if they improve the prediction of surface albedo, canopy 
and ground temperature, and surface energy balance. 

» Water exchange: First, litterfall is a poorly constrained ecosystem exchange process between vegetation and 
soil. Te mulching efect of a litter layer to insulate the soil and conserve soil moisture is well known but lacks a 
mechanistic modeling approach for ESM grid scales. Matthews (1997) produced a benchmark estimate of litter 
production and pools with regard to annual dry matter production according to vegetation type and climate. 
However, seasonal variation in the physical properties of a litter layer (mass, heat capacity, moisture conductivity) 
by ecosystem type and seasonally is poorly known. Eddy fux sites should be monitored to develop relationships 
between temporally varying litterfall quantity, decomposition processes, and litter layer physical properties. 
Second, water stress remains a tuned control on plant stomatal conductance relative to a particular land model’s 
soil hydrology. ESM land surface models do not typically have very deep soils, meaning that water stress and 
conductance of deep-rooted plants are inadequately represented. Pelletier et al. (2016) have produced the frst 
global gridded map of soil thicknesses to bedrock, and implementation of this soil depth map in more ESM land 
models will enable deeper-rooted soil–vegetation–atmosphere coupling in the conductance of water vapor. 

» Carbon exchange: Litterfall from vegetation as an input to soil biogeochemistry is subject to high uncertainty in 
model simulations due to uncertainty in leaf mass per leaf area and weak performance of leaf phenology models 
for the timing of senescence. Introduction of deeper roots with deeper soils will alter vegetation–soil and water– 
carbon coupling in modeled ecosystems, as it will motivate revision of each DGVM in its distribution of soil 
carbon from senescing roots, and in plant allometry and carbon allocation to roots. Phenological timing remains 
poorly simulated but the approaches of Stöckli et al. (2008, 2011) and Caldararu et al. (2014) are worthy of 
experimentation in more land models. 

» Nutrient exchange: For those ESMs that include soil–plant nitrogen dynamics, plant biomass pools typically have 
fxed C:N ratios, and their growth drives demand for soil N. N inputs are generally from deposition. Improved 
representation with varying C:N should be explored. 

Table B.1.1. Ecosystem coupling processes. 

Physics Biogeochemistry Ecology 

Atmosphere CH4 

Vegetation Canopy Beyond PFTs 

Leaf physiology 

Phenology 

Respiration partitioning 

SIF 

C:N:P Community structure: 
height-stratifed canopies 

Managed land dynamics 

Wetlands 

Herbivory, insects 

Climate change/elevated 
CO  responses2

“Decomposition functional 
types” (Bond-Lamberty et 
al., 2016b) 

Soil Layers vs. catchments 

Permafrost 

Deep soil 

Erosion 

C:N:P, CH , N O4 2 Other functional pools? 

Ocean coupling Runoff Nutrient fuxes 
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B.2 Hydrology 
Randal D. Koster and Hongyi Li 

B.2.1 Scientifc Challenges and Opportunities for Model Evaluation 

Te key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into 
evapotranspiration (ET), runof (streamfow), and changes in soil moisture storage. Tese water cycle calculations are 
intrinsically tied to energy balance calculations (e.g., through the connection between ET and latent cooling) and 
carbon balance calculations (e.g., through the control of stomatal conductance on transpiration). Soil moisture (its 
vertical profle and spatial variations) lies at the heart of land surface control over moisture fuxes, including both ET 
and runof. 

A wide variety of terrestrial processes are relevant to surface hydrology: ET and its component parts, streamfow 
generation, snow, permafrost, subsurface moisture transport, and human water management and disturbance, to 
name just a few. Also of relevance are groundwater dynamics, with diferent timescales connecting deep and shallow 
groundwater processes with surface hydrology. River routing is a key process to consider; evaporation from stream 
surfaces provides moisture to the atmosphere, and the streams and rivers themselves inject fresh water into oceans and 
lakes, a needed input fux for ocean models. Rivers also transport and transform nutrients through the Earth system, 
and lakes and wetlands slow these transport times. Additional relevant processes are discussed below. 

Current State of Process Representations in Models 

Today’s LSMs compute a broad suite of hydrological fuxes (e.g., infltration, interception loss, surface runof, 
basefow, soil moisture storage change). However, the accuracy of these fuxes is arguably limited by key disparities in 
model complexity. For example, in many models the “vertical” treatment of the land surface is highly detailed, with 
multiple stacked soil layers overlain by a complex canopy structure. One-dimensional physics can thus be said to be 
well-represented. However, many aspects of hydrological behavior are afected equally by horizontal complexity— 
spatial variability (not explicitly resolvable in climate model-based land surface schemes) in topography, vegetation 
(including root distributions), soil properties, and soil moisture itself. Emphasizing complexity in the vertical at 
the expense of the horizontal leads to poor model performance. Balancing process complexity for strongly coupled 
processes (e.g., ET versus runof formulations) is also important for good model performance. 

Poor representation of runof is also refected in (1) the lack of appropriate complexity in groundwater modeling 
and (2) underrepresented aquatic processes, especially in rivers. Groundwater formulations are restricted by the 
lack of lateral fuxes between land grid cells and the lack of realistic, spatially variable depths to bedrock. Both lead 
to poor simulation of groundwater table dynamics, which can interact with runof generation processes. Riverine 
processes are also oversimplifed, leading to a lack of lateral water fuxes between terrestrial water bodies (e.g., rivers, 
lakes, wetlands) and land, which will modulate the soil moisture at certain spatial and temporal scales. It also leads 
to underrepresented linkages to the atmospheric model via water, energy, and carbon fuxes from the river water 
surface (particularly when inundation is not properly modeled), and to the ocean model via terrestrial discharges at 
river mouths. 

Existing Approaches for Assessing Model Performance 

Many approaches are currently used to assess land model performance in producing hydrological fuxes. Flux tower 
data are used to assess ET, for example, and streamfow measurements (once corrected for human infuence) are used 
to assess runof production. In situ soil moisture measurements have been used to evaluate model soil moisture, and 
the advent of satellite-based soil moisture measurements is allowing such validation to proceed at the global scale. 
Satellite-based datasets of ET and vegetation phenology (e.g., NDVI) have more recently been used to evaluate land 
model output. 
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B.2.2 New Metrics and Benchmarking Approaches 

New Metrics, Scores, and Functional Relationships 

New work is needed to better evaluate hydrological processes in LSMs. For example, these models produce runof 
(streamfow), which is reasonably well measured. While annual and seasonal streamfow in unmanaged systems is 
already a staple of model evaluation, work is needed to extend current time series analyses to determine if models 
reproduce slow versus fast responses and capture the impact of managed fows. Similarly, models produce soil 
moisture information that could be evaluated in the context of drought identifcation and potentially lead to a more 
useful drought index. 

Since direct measurements of many hydrological fuxes are unavailable, methods for novel indirect estimation of these 
fuxes should be developed. For example, satellite-based fuorescence measurements may prove useful for evaluating 
transpiration, and other vegetation-focused measurements (e.g., NDVI) may be useful for constraining land models 
with dynamic vegetation. Functional relationships between directly measurable variables and those that are not could 
be very useful in hydrologically ungauged areas. For example, functional relationships have been reported between 
the Horton index (the ratio of catchment ET and available soil moisture for ET) and NDVI, between the aridity 
index (the ratio of evaporative energy and annual precipitation) and foods, etc. Te capability of LSMs to reproduce 
such functional relationships could enable diagnosis not only of the efectiveness of the representation of individual 
processes but also the balance of complexity in the treatments of model components. 

Te joint control of soil moisture over ET and runof in nature and in LSMs suggests one potentially valuable 
benchmarking approach. Because ET and runof both vary with soil moisture, they efectively vary with each other. 
A land model should be able to reproduce observations-based relationships between ET and streamfow production 
efciencies, with soil moisture (a largely model-dependent variable) taken out of the picture. Techniques for such 
benchmarking currently exist. 

Since most applications of LSMs and ESMs are large-scale in nature, the infuences of human systems on the water 
cycle are not negligible. Caution is thus necessary regarding the role of human impacts while designing and applying 
new metrics over large scales. A related issue is potential nonstationarity: a model may validate well for present-
day climate, but will it also perform well under a modifed climate? Evaluations should proceed with this concern 
in mind. 

Current Best-available Data Sets for Specifc New Metrics 

Existing datasets can be used as the basis for new metrics. For runof and streamfow-related metrics, Model 
Parameter Estimation Experiment (MOPEX) data are largely ideal for pristine headwater watersheds over the United 
States and Global Runof Data Center (GRDC) data are the best available for global streamfow metrics, though 
because the GRDC basins are largely regulated, caution is needed in their use. For soil moisture-related metrics, both 
in situ measurements and satellite-based datasets (SMOS, SMAP, ASCAT) are of great value. 

B.2.3 Observational Data Needs 

Gaps in Current Data Availability 

Te lack of snow water equivalent (SWE) data on the global scale is a signifcant defciency. Moreover, direct 
measurements of ET at large spatial scales are not available; at best we have access to indirect evaluations through, 
for example, the analysis of streamfow (see above), the upscaling of FLUXNET site data using satellite information 
(e.g., NDVI), or the interpretation of diurnal temperature cycles in terms of latent heat fux. Furthermore, while 
streamfow data are available, separate datasets are needed for managed and unmanaged systems. Human impacts also 
take the form of irrigation, and irrigation data are sparse, if not absent. Collocation of diferent measurements would 
greatly increase their value. 
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New in situ or Remote Sensing Measurement Needs 

A number of currently underutilized in situ datasets would contribute signifcantly to the evaluation of simulated 
land surface hydrology. For example, sap fow measurements may provide valuable information on transpiration, and 
direct or indirect measurements of macropore structures are still lacking. Remote sensing has the potential to provide 
a number of datasets relevant to evaluating land model hydrological fuxes. Te ECOSTRESS mission, for example, 
focuses on ET, MODIS provides information relevant to both ET and snow, ASO also provides snow information, 
GPM provides precipitation data, SMAP provides data on surface soil moisture, GRACE data are relevant to 
terrestrial water storage, and SWOT (and AirSWOT) will provide useful information on surface runof. Te global 
coverage of these datasets gives them unprecedented value for the evaluation of land model products. Measurements 
are never perfect, and all measured variables should be provided with associated uncertainty estimates. 

Spatial and Temporal Extent and Resolution Requirements 

Any metric for evaluating a land model’s simulation of hydrology needs to be valid for a large spatial area; local site 
measurements (e.g., fux towers) are, in isolation, inadequate. Tis is because: (i) the key hydrological fux, runof 
(streamfow), is not measured at local sites; and (ii) land surface models are meant to produce large-area estimates 
of surface fuxes. Runof production and ET vary substantially in space as a result of spatial heterogeneity in soil 
moisture, soil properties, and vegetation properties. Hence the measurement of runof production at a local site has 
limited usefulness, even if the measurements are of high accuracy. Stream gauge measurements, in contrast, integrate 
spatially the runof generated across a basin and are thus ideal targets for land model hydrological validation; they 
constitute a useful basis for new metrics and benchmarking. By validating large-scale runof through streamfow 
measurements, the modeler is also arguably benchmarking aspects of large-scale ET. 

Synthesis Activities Needs and Approaches 

Combining diferent available soil moisture datasets into a single, long-term dataset for model evaluation would be 
useful. Such a synthesized dataset can be derived from in situ soil moisture measurements and a number of diferent 
satellite-based soil moisture products. Parallel work on model development is needed to bring the land model’s soil 
moisture variables more in line with these measurements. Another example of a proposed synthesis activity is the 
development of a global dataset of pristine (unmanaged) watersheds, similar to the MOPEX dataset but extended 
to the global domain. Te content can potentially even be extended to incorporate additional watershed-scale 
measurements or estimates such as soil moisture or SWE, which might provide new insights not underpinned by the 
in situ measurements. 

B.3 Atmospheric CO2 
Gretchen Keppel-Aleks and William J. Riley 

B.3.1 Scientifc Challenges and Opportunities for Model Evaluation 

Atmospheric CO2 integrates both land and ocean fuxes over large spatial scales, providing a unique constraint on 
integrated fuxes. Te concentration footprint of atmospheric CO2 ranges 106 km2 to hemispheric, depending on the 
location, altitude, and vertical extent of the observation. Te fact that atmospheric CO2 integrates over large areas 
and is quite sensitive to atmospheric transport complicates the use of CO2 for benchmarking because model–data 
mismatch may be attributed to either carbon fuxes or atmospheric transport. Terefore, it would be possible to alias 
a transport-induced error into a comparison intended to evaluate carbon fuxes. At this point, mismatch in CO2 

diagnostics for predictive models may be dominated by carbon exchange, but constraining error in the atmospheric 
transport operator is crucial and will become a more signifcant source of error as carbon cycle models evolve. Despite 
the complication of these characteristics, atmospheric CO2 has been used successfully to benchmark simulated 
time series (e.g., Lindsay et al., 2014), seasonal patterns (e.g., Keppel-Aleks et al., 2013), functional relationships at 
interannual timescales (e.g., Keppel-Aleks et al., 2014), and multi-decadal trends (e.g., Graven et al., 2013). CO2 

has also been used as emergent constraints (e.g., Cox et al., 2013; Hofman et al., 2014; Figure B.3.1). Functional 
relationships may provide insight into linkages between biogeochemistry and physical climate, and thus will be useful 
for emergent constraints on centennial scale prediction. 
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Tere are multiple opportunities to develop atmospheric CO2 as a benchmark. Some fully coupled ESMs have 
the capability to simulate the three-dimensional structure of CO2. Several ESMs include capabilities to simulate 
isotopic fractionation in terrestrial processes, and including a 3-D d13CO2 tracer would facilitate evaluation against 
observations from surface networks. Transport of CO2 throughout the atmosphere is relatively facile, because it is 
a passive tracer and, to frst order, chemical formation in situ can be neglected. Further, the isotopic composition 
of CO2 can be used to attribute variations specifcally to certain sources. For example, d13CO2 is a useful tracer 
of terrestrial CO2. Finally, there are opportunities to better integrate the use of atmospheric CO2 with local scale 
constraints, to identify model occasions when mismatches between local-scale observations and the models lead to 
regionally coherent biases. 

Figure B.3.1. Hoffman et al. (2014) found an emergent constraint based on carbon inventories (left, for (a) 2060 and 
(b) 2100) and applied it to constrain future atmospheric CO2 projections from CMIP5 Earth system models, reducing 
both the mean and uncertainty range of CO2 mole fractions (right, for (a) 2060 and (b) 2100). 

B.3.2 New Metrics and Benchmarking Approaches 

Incorporating atmospheric CO2 observations with vertical resolution above the surface is an important goal for the 
benchmarking system that will permit disentangling transport-induced biases from the land (or ocean) fux biases 
the system is designed to constrain. Incorporation of isotopes of CO2 will also permit accounting of the contribution 
from land and ocean fuxes. Te d13CO2 data are available at 95 National Oceanic and Atmospheric Administration 
(NOAA) fask observing sites, with many time series extending from the early 1990s to the present. 

Atmospheric CO2 likely plays a key role in emergent constraints because it integrates over the regional to global 
scales for which emergent constraints are most likely to provide value for future climate–carbon cycle predictions. 
Determining robust ways to use atmospheric data for emergent constraints should be an ongoing focus of discussion. 

B.3.3 Observational Data Needs 

Atmospheric CO2 data are publicly available and observations from all platforms are tied to the World Meteorological 
Organization (WMO) calibration standards. Within the past decade, remote sensing observations of atmospheric 
CO2 have gained prominence, and characterization of errors in observations have improved, especially from remote 
sensing. Observations to constrain the atmospheric transport operator are also crucial. Diagnostics for boundary layer 
depth, convective mixing, and horizontal advection would all provide insights into whether model–data mismatch 
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is due to carbon fuxes or atmospheric transport. Existing atmospheric CO2 data are fairly well archived, with 
data publicly available from NOAA (surface), CDIAC (aircraft campaigns and TCCON), and NASA (OCO-2). 
Maintaining and growing these archives of surface and atmospheric profle measurements along with estimates of all 
anthropogenic emissions over time is critical to meet a variety research needs in a warming world. Availability of other 
observations, including satellite remote sensing, varies by agency. 

B.3.4 Model Development and Output Requirements 

CO2 should be output at gridcell resolution with the vertical profle saved for comparison with aircraft campaigns, 
which occur in regions sparsely sampled by the long-standing surface network, and remote sensing platforms, which 
reduce potential model–data bias due to misrepresentation of vertical transport. Monthly frequency is the minimum 
temporal frequency, although process level insights could be gained by benchmarking diurnal and synoptic variations. 
Components of CO2 in the atmosphere from land, ocean, and fossil fuel sources (kg/kg), and specifc humidity (kg/ 
kg) are necessary for column integration for comparison with satellite observations. Integration of isotopes of CO2, 
including d13CO2 should be expressed per mil (‰). 

B.4 Soil Carbon and Nutrient Biogeochemistry 
Gustaf Hugelius, Jinyun Tang, and the International Soil 
Carbon Network (ISCN) 

B.4.1 Introduction 

Soils hold the Earth’s largest biogeochemically active organic carbon (C) pool, which has the potential for a signifcant 
feedback to climate. At roughly 2,000 Pg C, this stock is more than twice as large as the atmospheric C pool (Ciais 
et al., 2013). Over time and large spatial scales, the soil C stock is determined by its turnover, which is a function 
of input from plant photosynthesis and losses via microbial decomposition, both of which are mediated by nutrient 
biogeochemistry. At present, global scale C inputs to soil are roughly balanced by losses to the atmosphere. However, 
because of its large pool size, even small changes in the soil C balance may cause signifcant increases in atmospheric 
greenhouse gas concentrations, contributing to additional climate warming. Since the start of the industrial era, soils 
have sequestered a signifcant fraction of CO2 emissions from fossil fuel burning and human land use change (Ciais 
et al., 2013). However, under continued climate change and human intervention, soil C is expected to feedback with 
atmospheric C, and this balance may shift (Davidson and Janssens, 2006). Although urgently needed, quantifcation 
of how this balance may shift remains elusive, as many key processes that regulate the soil C stocks are poorly 
represented or missing in existing ESMs (Lehmann and Kleber, 2015). 

B.4.2 Scientifc Challenges and Opportunities for Model Evaluation 

Broad-scale observations of soil C that span global environmental conditions are useful frst order benchmarks for 
model predictions. For instance, observed global scale patterns provide undeniable evidence of the overarching 
climatic and biological controls on soil C and nitrogen cycling (Post et al., 1982; 1985). Tus, the degree of 
agreement between ESM predictions and observed global scale soil organic matter (SOM) patterns provides a baseline 
assessment of the ESMs’ predictive power, even though the range of complex interactions and processes that control 
SOM cycling in models have not been assessed. Te soil C stocks produced by current ESMs (CMIP5 models) are 
in only fair agreement with global soil C distributions, and the models are unable to reproduce local to regional scale 
spatial soil C patterns or to quantify bulk C stocks (Todd-Brown et al., 2013). Soil C variability in models can largely 
be explained by modeled net primary productivity (NPP), but observed soil C stocks cannot be explained solely 
by NPP and temperature. Tis model–data discrepancy is partly due to large C stocks in permafrost and peatlands 
where soil freezing or anoxia limits decomposition, resulting in large accumulations of soil C even under limited NPP. 
Permafrost and peat formation are examples of strong environmental controls on soil C turnover, and a model that 
does not address these controls cannot reproduce observed C stocks. 

Terefore, ESM development should focus on improving the key controls on soil C turnover such as biogeochemical 
nutrient dynamics and environmental controls of microbial activity, suggesting that useful benchmarks for ESM 
soil C dynamics should target soil C turnover. Presently, basic soil nutrient biogeochemical processes are lacking or 
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insufciently represented in many existing models, which causes models to behave inconsistently with data (Bouskill 
et al., 2014; Zaehle et al., 2014). Needed are improvements in modeling the cycling of nitrogen (N) and phosphorus 
(P) and their interactions with ecosystem productivity and decomposition through limiting plant photosynthesis 
or microbial processing of SOM. Modeled and observed soil C stocks should be analyzed in the context of both 
empirical and model data to understand processes afecting both NPP and soil C turnover times. 

Soil C turnover in models has traditionally been conceptualized as a spectrum of pools linearly decaying with 
diferent turnover rates, which are modifed multiplicatively by moisture and temperature efects (Parton et al., 1988). 
However, recent studies suggest that soil C decomposition across all ecosystems is an emergent response resulting 
from the interactions between many biotic and abiotic factors, including availability or activity of microbes, minerals, 
plants, and inorganic chemicals (Schmidt et al., 2011). Tis new conceptualization may explain why existing ESMs 
under-predict the climate change efect on carbon turnover (Carvalhais et al., 2014; Koven et al., 2015). Many new 
modeling approaches are also being explored to explicitly address interactive and emergent factors. Notably, studies 
show that considering the microbial and environmental dynamics in models e.g., improves global distributions of 
soil C stocks (Wieder et al., 2013), explains the diverse temperature sensitivity of C decomposition (Tang and Riley, 
2015) and improves simulated respiratory response to soil moisture fuctuations (Grant et al., 2012a; Manzoni et al., 
2014, 2016). Also, most soil biogeochemical models have only simulated the biogeochemistry in topsoil, but models 
are developed to resolve the vertical distribution and transport of SOM and they show improved model performance 
in recreating observed radiocarbon ages or C stocks at high latitudes (Braakhekke et al., 2014; Koven et al., 2013; 
2015; Riley et al., 2014; Tang et al., 2013; He et al., 2016). 

To date, model evaluations have focused primarily on whether models can reproduce observed time series or spatial 
patterns in observational data (e.g., soil C stocks). While such benchmarks provide initial insights into whether 
discrepancies exist, they ofer limited insights into why models may or may not mimic observations. Te next logical 
step is to break down the observed spatial and temporal patterns to identify key processes and environmental controls 
on model predictions. A model should be evaluated for what it was designed to simulate as opposed to what we 
wish it to simulate. For any given benchmarking activity, the targeted processes should be identifed a priori and 
the empirical benchmarking dataset should be adapted accordingly. For instance, a model that does not include 
peatland formation should not be directly compared to datasets that include substantial stocks of peatland soil C. 
Other approaches include evaluating whether models can simulate ecosystem responses to disturbances, which could 
be either natural or manipulative. Te emergent constraint approach is a non-traditional benchmarking method to 
evaluate and post-correct model performance (Hofman et al., 2014), but its accuracy and mechanistic underpinning 
require further examination. Finally, to make the model–data benchmarking informative, benchmarking datasets 
should also include explanatory support data (metadata) and provide robust estimates of data uncertainties. 

B.4.3 Observational Data, New Metrics, and Benchmarking Approaches 

Despite its importance, observation-based estimates of the global soil C are highly uncertain. Te estimates published 
between 1951 and 2011 (Scharlemann et al., 2014; median 1,460 Pg C, n = 27) have varied from 500 to 3,000 Pg 
C. With the recent release of the WISE 3.1 database (Batjes, 2016) the number was updated to 1,408 ± 154 Pg C 
to 1 m depth and 2,060 ± 217 Pg C to 2 m depth. Te WISE database combines earlier products with climate maps 
and an updated soil profle dataset that integrates the global harmonized soil data with notable improvements at 
northern high-latitudes. At local to regional scales most modern soil inventories are based on digital soil mapping 
techniques where soil properties are predicted based on soil profle reference data in combination with environmental 
data. Hengl et al. (2014) frst applied this technique at global scale and produced the SoilGrids 1 km dataset. 
Although digital soil mapping has many advantages when compared with other approaches, its product is still in early 
stages of development and needs further evaluation. Hengl et al. (2017) described the technical development and 
accuracy assessment of the most recent and improved version of the SoilGrids system at 250 m resolution, based on 
machine learning. Even with these recent advances, global soil C estimates still have large uncertainties, and regional 
discrepancies are high for wetland soils, tropical and northern peatland soils, and permafrost region soils. Broad-
scale characterizations of these soil types are still hampered by pedon data scarcity, access restrictions (licenses), and 
insufcient data on their spatial distributions. Terefore, there are substantial remaining challenges for the research 
community working with improving and harmonizing mapping of global scale soil properties (Batjes et al., 2017). 

While the community has not decided whether to replace established multi-pool models with models based on 
emerging conceptualizations of transient environmental and microbial dynamics within ESMs, disparate types 
of models can be evaluated with some common metrics. Examples include benchmarking model-estimated soil 
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C residence time with that from radiocarbon datasets and data–model experiments that target soil C responses 
to various environmental perturbations. Such approaches ofer a way forward in comparing the performance of 
traditional and emerging models for a range of processes and across environmental gradients. Wieder et al. (2015a) 
present a framework for representing soil microbial processes in ESMs. However, formulating standard protocols for 
model parameters and output as well as common benchmarking approaches that are applicable across various model 
designs is a challenge that continues to provide opportunities for innovative ideas and cross-cutting discussions and 
collaborations. 

Several challenges remain for next generation of soil biogeochemistry models. To meet these challenges, both 
model development and creation of dedicated benchmarking datasets are needed. First, how realistic is model 
representation of microbial dynamics? Is, for example, the microbial substrate-use efciency, microbial community 
population dynamics or microbial and enzyme turnover appropriately represented? Microbial community responses 
to soil warming and changes in moisture are of particular interest. New experiments, including C-isotope labeling 
techniques (Dijkstra et al., 2011), for example, will be helpful to constrain these processes. Second, how realistic is 
model representation of soil mineralogy impacts on C stabilization across wide environmental gradients? Observed 
correlations between soil mineralogy and C turnover (Torn et al., 1997; Doetterl et al., 2015) could emerge from 
mineral interactions with, for example, dissolved organic substrates (Mayes et al., 2012), extracellular enzymes 
(Quiquampoix et al., 2007), root exudates (Keiluweit et al., 2015), or soil aggregates (Nicolas et al., 2014). Datasets 
are needed to parameterize and evaluate the representation of aggregates and abiotic destabilization efects on soil C 
dynamics across the full gradient of environmental conditions. High-quality observational datasets of soil mineralogy 
and soil textures across broad geographical scales are presently lacking. Tird, how realistic is model representation of 
SOM stabilization and microbial activity across gradients from aerobic to anaerobic conditions as well as from frozen 
to unfrozen states? In response to hydrology, soils continuously fuctuate between aerobic and anaerobic conditions, 
and the two conditions often coexist at diferent soil depths (e.g., Grant et al., 2012b). Partial freeze-thaw dynamics 
of the soil column occur in both seasonally frozen and permafrost soils. Empirical data to support a mechanistic 
parameterization and evaluation of models with comprehensive redox cycles and dynamic soil freezing are needed. 
Model approaches that look beyond empirical scaled temperature and moisture responses may provide new ways 
forward in modeling these complex relationships (Davidson et al., 2012). Useful benchmarks to validate such 
models could be provided by laboratory incubations of full intact soil cores under varying thermal and hydrological 
conditions. Fourth, how realistic is model representation of soil transport and turbation processes? Tis includes 
bioturbation, cryoturbation, and other physical transport mechanisms. Only limited data are available to benchmark 
model performance, and observed radiocarbon ages of diferent SOM fractions across diverse environments are 
needed. Fifth, how realistic is model representation of nutrient dynamics and competition by microbes, plants, 
and mineral surfaces? Tese processes also feedback to plants and alter an ecosystem’s capability to sequester 
atmospheric carbon. Many models that consider stoichiometric demand are limited to C:N dynamics, and increased 
understanding of C:P dynamics is desirable. Further, data availability limits mechanistic parameterization and the 
ability to assess models of nutrient competition (Tang and Riley, 2013; Zhu et al., 2016). 

B.5 Surface Fluxes (Energy and Carbon) 
A. Scott Denning and Daniel M. Ricciuto 

B.5.1 Scientifc Challenges and Opportunities for Model Evaluation 

Surface fuxes of carbon and energy are a key input from land to atmosphere models, and observations of these 
variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. 
Networks of surface fux observations such as the FLUXNET eddy covariance network have expanded rapidly over 
the last 25 years and have been used in numerous model intercomparisons and model–data comparison papers. Tools 
such as ILAMB can indicate when particular models may be agreeing with each other or with observations of surface 
fuxes, but, absent other benchmarks, cannot explain why they diverge in century-scale predictions. When diferent 
types of data are co-located, the benchmarks are even more powerful and should be given more weight. Intensively 
observed sites or regions, such as Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER) sites, 
or National Ecological Observatory Network (NEON) sites that include surface fuxes as part of a diverse set of 
measurements, may be candidates for a new subset of powerful “super-site” style benchmarks. Additionally, surface 
fux measurements in combination with experimental manipulations (e.g., warming experiments, rainfall exclusion, 
or CO2 additions) may provide powerful constraints on ecosystem responses to climate change. 
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While eddy covariance measurements are critically important, their footprint (~1 km2) is still 2–4 orders of 
magnitude smaller than that of a typical Earth system model grid cell (~104 km2). Key process and driving variables 
of surface fuxes at these spatial scales may difer from those at the fux tower scale. It remains difcult to characterize 
soil, vegetation, and disturbance heterogeneity, and to estimate the efect of this heterogeneity on model predictions. 
“Bottom-up” approaches to upscaling use observations (e.g., FLUXNET) in combination with gridded driver datasets 
to estimate fuxes at regional scales. Tese already comprise a set of important ILAMB benchmarks, but more work 
remains to characterize associated uncertainties. Atmospheric inversion “top-down” models have progressed rapidly 
over the past two decades, increasing in resolution from continental scale to scales approaching that of Earth system 
model grid cells. While the global surface atmospheric CO2 concentration measurement network remains relatively 
sparse and atmospheric transport uncertainty contributes to high estimated fux uncertainty, targeted regional 
networks and new remote sensing capabilities are beginning to enable predictions of surface CO2 fuxes at higher 
accuracy and resolution. In the future, a combination of top-down and bottom-up techniques with data assimilation 
or model–data fusion approaches could produce integrated surface fux benchmarks that are more accurate and 
spatially relevant than individual approaches. 

Specifc Points and Recommendations 

Measurements of surface exchanges of energy, water, carbon, and momentum at fux towers are uniquely valuable 
for evaluation of ESMs because these are precisely the quantities that must be provided by land-surface modules for 
successful coupling to the atmosphere. It is critical that ESMs continue to focus on getting the surface fuxes right, 
despite the aforementioned problems with heterogeneity and mismatched footprints. Benchmarking models against 
hundreds of surface fux records can help identify key model shortcomings and guide model development, but the 
value of these comparisons is greatest when the data are used to understand which processes matter at which spatial 
and temporal scales. Combining surface fuxes with other key benchmarks to understand their responses to changing 
climate conditions enhances mechanistic understanding of model defciencies. 

Te mismatched footprints of fux towers and ESM grid cells have driven innovations in surface fux benchmarking. 
One approach involves model evaluation against suites of fux sites across gradients of climate drivers such as moisture 
or stand age. Upscaling from tower footprints has been done directly using feld measurements and remote sensing 
to characterize spatial patterns and heterogeneity (e.g., Bigfoot Project: Cohen et al., 2003; Turner et al., 2003). 
Empirical upscaling of tower fuxes to produce global maps of surface fuxes by combining local observations with 
remote sensing and climate data is an especially promising direction for future model benchmarking (Luyssaert et al., 
2007; Beer et al., 2010; Jung et al., 2011). Another important approach involves comparing models to measurements 
at much larger spatial scales using natural integrators of mass balance such as hydrologic watersheds or atmospheric 
mixing. Atmospheric measurements of trace gases provide a strong constraint for surface fuxes over large areas, 
but quantitative benchmarking requires accurate calculation of the efects of atmospheric transport through formal 
optimization techniques collectively known as inverse modeling. Tese methods have been used for CO2 and other 
trace gases for decades, but have historically been limited by sparse CO2 measurement networks. Recent developments 
in greenhouse gas observations from space (e.g., GOSAT, OCO-2) have the potential to dramatically improve ESM 
benchmarking at larger scales. 

Benchmarking based on diurnal, seasonal, and even interannual variations in the recent past does not fully test the 
ability of models to predict future fuxes in response to climate forcing outside the envelope of recent changes. Unlike 
hindcasts, ESM predictions on decadal and centennial timescales cannot be compared to observations of changes that 
have not happened yet! Instead, we rely on model intercomparisons such as C4MIP and CMIP5 to characterize the 
spread among models of the future. Intercomparisons provide a way to quantify uncertainty in production modeling, 
and classifcation of variations in ESM predictions relative to emergent constraints in hindcasts can help stratify 
models and provide guidance for model development (Hofman et al., 2014). 

B.5.2 New Metrics and Benchmarking Approaches 

In addition to simple diferences between models and observations, metrics should include separate evaluation 
of model bias, variance or RMSE, phases of diurnal and seasonal cycles, and spatial covariance. For mechanistic 
interpretation to propel model improvement, benchmarking should focus on characterizing functional relationships 
such as changes in surface fuxes with temperature and soil moisture anomalies. For ESMs to make credible 
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predictions, new benchmarks must quantify long-term responses to climate forcing, rather than just diurnal and 
seasonal behavior. While interannual variations are notoriously difcult to simulate accurately and very few fux tower 
records are long enough to characterize decadal variations, benchmarks that explicitly target these slower changes will 
be important in evaluating and improving decadal to century timescale ESM predictions. 

B.5.3 Observational Data Needs 

Surface fuxes of heat, water, carbon, and momentum are now routinely measured at more than 700 sites around the 
world, and fux data are available across an amazing breadth of climate and ecosystem types. Unfortunately, much of 
the data from these sites is difcult to obtain in a timely way. A number of national and regional networks contribute 
data to FLUXNET (http://fuxnet.fuxdata.org/), which performs high-level processing to fll in missing values and 
match fux data with other measurements, but fux records are often years behind real time. Moreover, updating of 
site records is uneven across the networks. Tese factors make development of benchmarks that relate fux anomalies 
to climate forcing or other data problematic. Combining fux data with remote sensing and other in situ observations 
(e.g., trace gas sensors or specialized phenocams) is possible, but is not done routinely. 

Most fux towers have only operated for a few years, and only a handful have operated long enough to assess decadal 
changes in surface fuxes. To quantify responses of slower ecosystem processes, it will be critical to maintain the 
longest-running tower sites into the future, despite the cost and manpower challenges. Te few 20-year records now 
available demonstrate the important roles of ecosystem succession and climate response. Predictive ESMs will be 
greatly enhanced if these long records can be captured in new benchmarks. 

Integrated meta-analyses are required to enable evaluation of changes in surface fuxes from predictive models in 
response to forcing from climate, land use, and nutrient cycling. Combining fux records with other observations 
such as climate, remote sensing, land use, and disturbance histories provides the information modelers need to 
assess mechanisms for slowly changing fuxes. New syntheses can take advantage of ecosystem manipulations (e.g., 
Amazon throughfall exclusions, SPRUCE, and NGEE), leverage natural experiments (e.g., droughts, heat waves), 
and collect fux records across gradients in climate, land use, nutrient deposition, and stand age. Benchmarks 
using these synthetic analyses help indicate the sources of model discrepancies and lead to improved confdence in 
ESM predictions. 

B.5.4 Model Development and Output Requirements 

Current models include the calculation of albedo, partitioning of latent and sensible heat, transmittance of radiation 
to the ground, soil heat fux, and canopy temperature for some approximation of canopy heat capacity. Approaches to 
calculation of albedo and canopy radiation balance and heat storage vary widely, and evaluating how these diferent 
model frameworks calculate surface energy balance should be revisited in light of how second generation vegetation 
models now represent heterogeneity in plant canopies. In addition, ESM development is now addressing gaps in 
process representations that pertain to slower responses of ecosystems to changes in forcing, including ecosystem 
succession, nutrient cycling, and the efects of prolonged physiological stress. Plant mortality and replacement of 
plant functional types in response to climate change are critical processes that control ESM responses over decadal 
time scales, yet have typically not been included in ESMs. 

B.6 Vegetation Dynamics 
Rosie Fisher and Chonggang Xu 

B.6.1 Scientifc Challenges and Opportunities for Model Evaluation 

In the context of this report, we defne “vegetation dynamics” as the changes in ecosystem composition and 
structure—manifested in current ESMs as the distribution of plant functional types (PFTs)—in space, and of the 
processes leading to that distribution, including recruitment, succession, growth, mortality, and disturbance. In many 
LSMs, vegetation distribution is prescribed, and thus, vegetation dynamics metrics become a test of model behavior 
only when dynamic vegetation models (DVMs) make PFT distribution prognostic. 

http://fluxnet.fluxdata.org
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Development of Vegetation Demographic Models 

Most land surface models now contain some kind of vegetation dynamics model, typically a frst generation model, 
including Lund-Potsdam-Jena (LPJ)-derived models (in ORCHIDEE, CLM, CTEM), TRIFFID (in JULES), and 
the JSBACH-DGVM. Te majority of CMIP models simulations do not actually include prognostic DVMs (they 
can typically be turned of and replaced with a static PFT distribution) because of challenges with increasing model 
degrees of freedom. 

In frst generation ESMs, the land surface is discretized into tiles, according to PFT, with each PFT represented 
by a single representative individual. Te abstraction of ecosystems into this simplistic structure makes it difcult 
to simulate light competition, and, thus, exclusion or coexistence of diferent PFTs. In the last decade, second-
generation vegetation demographic models (VDMs) have emerged that capture light-competition driven coexistence 
and competition of PFTs through the representation of diferent tree sizes (e.g., cohorts or individuals) in the vertical 
canopy structure and successional dynamics through the representation of disturbance history. One of these (SEIB-
DGVM) is incorporated into an existing CMIP model, and development of several more VDMs is underway. VDMs 
allow comparison with many more potential data streams than frst generation DVMs, and the sections below were 
written with this in mind. 

Existing Large-scale Metrics for First Generation Vegetation Dynamics 

In the frst generation of ILAMB, the only vegetation dynamics metrics were for burned area. Te GFED burned area 
product is used for comparison with models (Giglio et al., 2013). Hantson et al. (2016) reviewed the availability of 
benchmarking products related to fre in the context of the planned FireMIP experiment. Tey highlighted frst the 
existence of four alternative burned area products (GFED3, L3JRC, MCD45A1, Fire_cci) and also the Global Fire 
Assimilation System biomass-burning fuel consumption product, which includes both fre and radiative power (Kaiser 
et al., 2012). Expansion of ILAMB to include these metrics would be benefcial to collaboration with FireMIP. 

Most existing large-scale metrics of vegetation dynamics are derived from Earth observation measures of canopy 
greenness and algorithms that imply phenological type from seasonal cycles of canopy greenness (Lawrence et al.., 
2012). Further, canopy height metrics allow distinction between short stature and low stature vegetation (trees/ 
shrubs/grass). Both of these metrics can also be used to assess model projections of LAI and canopy height. Numerous 
alternative land cover maps exist (GLC2000, GlobCover, MODIS). For DVMs, it is traditional to compare model 
output with land cover maps generated from one or both of these products (Gotangco-Castillo et al., 2012). 
However, generation of land surface cover products (and their variation through time) is subject to uncertainty 
in both algorithm structure and PFT classifcation (Poulter et al., 2011). Integration of all such products into the 
ILAMB package would allow for characterization of the uncertainties across classifcations. 

Existing Plot-scale Metrics for Vegetation Dynamics 

In the case of vegetation demography models, tree demography/forest inventory data at the site level have been used 
to compare with model simulations of recruitment, mortality, and canopy structure. Some early syntheses might be 
suitable for ILAMB integration, notably Forest Inventory and Analysis (FIA) program mortality rates gridded over 
the USA (Johnson, Xu, McDowell et al., in prep). Tere are numerous regional forest inventory datasets, but no 
comprehensive synthesis of these disparate products, meaning global-scale analyses are not possible at present. 

B.6.2 Observational Data Needs 

Observational data can be divided into two categories: (1) new data that is now available for use by frst generation 
DVMs and (2) data that can be accessed by second generation (demographic) DVMs. 
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Forest Inventory Data 

A critical but challenging source of data for VDM comparisons is the network of national and regional scale forest 
inventory data. Tese include FIA (USA), ForestPlots, ForestGEO, and many other national inventories (e.g., Spain, 
Russia). Data can be used to quantify mortality rates by PFT or size class, equilibrium and transient stand structure 
(height distributions), and relations among all these and driver variables, plant properties, and changes through time 
(e.g., van Mantgem et al., 2009). Te major challenges here are analysis of the complex raw data, which is routinely 
conducted for small-scale analyses, and comparison across networks, which is rarely undertaken. Tis is a long-
standing but important challenge (e.g., Purves and Pacala, 2008). Further challenges to the use of inventory plots are 
the typical absence of model drivers (meteorology) and auxiliary data (soil, plant traits) at individual sites, making 
direct comparison with models difcult, although this can potentially be overcome by concentrating on cross-network 
analyses and variable relationships, such as growth/mortality relationships through space and time. 

Representation of Functional Diversity and Use of Trait Data 

A further development in the LSM community is a proliferation of methods that seek to better capture diversity of 
plant function via the increasing use of plant functional trait data. Tese approaches include (1) using trait maps or 
trait-environment relationships to constrain LSMs (where trait information is an input) (Verheijen et al., 2013; Reich 
et al., 2014); (2) using optimality models to predict plant traits under given conditions (Xu et al., 2012; Tomas and 
Williams, 2014), and (3) trait fltering, where plants of diferent functional types compete within a demographic 
model (Scheiter et al., 2013; Fisher et al., 2015). For these latter two methods, geographical distribution of plant 
traits (which is increasingly available from remote sensing data) might be considered a metric or benchmark. Tanks 
to recent, very large databases of plant traits (Kattge et al., 2011), there has been much progress recently in identifying 
relationships between plant leaf traits (Wright et al., 2004; Reich et al., 2014). Depending on the choice of model, 
these data can either be used as input (to trait maps and climate-environment relations, or trait-trade of relationships) 
or as validation of the geographical distribution of traits predicted by optimal or trait fltering approaches. Despite the 
abundance of data for the most easily measured traits, such databases are only sparsely populated for many functional 
variables, in particular for belowground plant properties and for more physiologically complex processes (plant 
hydraulics information, tissue allocation, carbohydrate storage). 

Remote Sensing Products 

Remote-sensing based disturbance maps could be useful for benchmarking severe mortality events (e.g., fre and 
insects; Hansen et al., 2013). Such products are more useful for benchmarking if they attribute the disturbance to 
diferent causes of death (fre, deforestation, drought stress, insects/disease). Dynamics of vegetation heights based on 
LiDAR sensors could be useful to detect the disturbances too. With a demography size-structured model, however, 
linking height retrievals to model size-class representations introduces elements of uncertainty, particularly if retrievals 
are only available for the tallest trees. be able to provide the tallest tree info? Tis is particularly true for new global 
LiDAR products such as Global Ecosystem Dynamics Investigation (GEDI). Finally, the remote-sensing based 
functional relationship between traits and vegetation dynamics (e.g., trait distribution vs. mortality rates) could be 
useful for the third generation of vegetation models. 

Paleo and Tree Ring Data 

Forest inventory data has time scale limitations. Tus, it would be benefcial to use pollen records to indicate past 
vegetation distributions (e.g., PalEON for North America; http://www3.nd.edu/~paleolab/paleonproject/). It 
would also be useful to compile the tree ring data across the world for the prediction of tree diameter growth under 
past climate conditions. 

http://www3.nd.edu/~paleolab/paleonproject
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Variable-variable Relationships 

Turner et al. (2016) generated a global product of the plant productivity divided by the estimated carbon 
stocks. Te result is an estimate of carbon residence time, which, although not precisely a metric of mortality, is 
comparable to the identical model metric and can potentially be used not just for DVMs but also for static vegetation 
distribution models. 

B.6.3 New Metrics and Benchmarking Approaches 

In terms of the metrics of benchmarking, it would be benefcial to use the traditional bias and RMSE as score 
metrics; however, metrics related to the successional trajectories (e.g., basal area and density change through time) 
with diferent types of disturbances could be useful to constrain the overall behavior of models. Furthermore, for the 
demographic type of DVMs, it would ideal to have metrics on the distribution of size and height on the same grid 
cell, given that it is important to correctly simulate both the mean and distribution to capture the vegetation dynamic 
under future novel climate conditions. 
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Appendix C. 
Metrics for Integrating 
and Cross-cutting Themes 
C.1 Process-specifc Experiments 

Mathew Williams and Jianyang Xia 
In this section we discuss how process-specifc experiments—that is detailed lab or feld based studies—can provide 
critical parameters or insights into improved model structure. 

Te key scientifc priority is selecting a group of sites from FLUXNET that span major biomes to serve as testbeds 
for ILAMB. Each of these sites should have associated data provided (e.g., met forcing, soil texture, land use history, 
plant traits) to allow model runs over specifed time periods. Each site would have a series of independent datasets 
(e.g., net fuxes, biometrics and experimental data), allowing a careful diagnosis of model process representation. 
Below we set out the more detailed requirements and activities. 

C.1.1 Scientifc Challenges and Opportunities for Model Evaluation 

It has been widely suggested that Earth system models should be made more robust by improving their structures to 
represent more real world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of 
Earth system processes, it is still challenging to (1) specify which processes are more critical than others in regulating 
Earth system dynamics, such as climate change; and (2) evaluate representation of processes that have been widely 
incorporated but diversely parameterized in diferent models. One promising approach to solve this challenge is using 
process-specifc experiments, which can evaluate and improve the model representation of a specifc key process with 
observations. In this section, we identify a range of key processes where current models are highly parameterized or 
have major structural uncertainties. Tis identifcation then allows targeted links to process-specifc experiments for 
tackling knowledge gaps in the following areas: 

» Decomposition: Coupling to plant process, particularly priming through microbial dynamics 

» Nitrogen cycling: Organic uptake, fxation largely unmeasured, not included in models, but likely to be critical 

» Autotrophic respiration: Fundamental controls are poorly known, climate sensitivity is a major question 

» Fluorescence: How can these data, soon to be available from space, be used to evaluate canopy processes? 

» Phenological sensitivity to climate: Te model response of plant canopies to changes in precipitation, CO2, and 
temperature lacks strong foundations 

» Plant trait correlations and trade-ofs: Trait data are more available, but the trade-ofs between traits must be 
better incorporated into models. 

C.1.2 New Metrics and Benchmarking Approaches 

Experimental approaches for addressing the key process uncertainties listed above involve using models to simulate 
processes at selected eddy fux sites, so that direct comparison to local data for process diagnostics are possible. Tis 
requirement means that the necessary drivers for all selected sites must be synthesized and distributed. 

» Decomposition: Priming studies using varied litter quality to monitor microbial responses, time series of soil 
respiration (trenching experiments would allow more direct monitoring of heterotrophic respiration). Evaluate 
modeling of decomposition dynamics, climate sensitivity, and litter quality sensitivity. 
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» Nitrogen cycling: C:N ratio for all pools, 15N tracer studies to quantify uptake, allocation, and turnover. 
Evaluate modeling of N pools and dynamics. 

» Autotrophic respiration: Plant tissue respiration measurements, links to whole-plant economy, C isotope tracer 
experiments. Evaluate capacity of models to distinguish between growth and maintenance respiration for various 
plant pools, and their seasonal patterns. 

» Fluorescence: Tis quantity needs to be co-observed with eddy fux data to allow direct relations to gas exchange 
to be evaluated. Tere are issues with representativeness when comparing site to satellite data. Evaluate leaf level 
process representation in models. 

» Phenological sensitivity to climate: Models could usefully provide output of leaf out date and senescence date 
that would be comparable to remote sensing indices. Below-ground phenology is a major uncertainty, so rhizotron 
data would be valuable. Information on non-structural carbohydrate can inform on plant allocation potential. 
Evaluate phenological timing against local data. 

» Plant-trait correlations and trade-ofs: Use local trait data to calibrate and evaluate models. 

C.1.3 Experimental/Observational Data Needs 

Field experimentation is a useful approach to explore new mechanisms underlying Earth system changes (Medlyn et 
al., 2015; 2016). However, there are challenges to connecting experimental data to models due to scale mismatches 
and gaps in records. Hence the need for carefully constructed driver and evaluation datasets at selected sites for 
developing diagnostics of model process representation. Tere are clear areas for novel experimental focus, particularly 
around isotopic tracers and fuorescence. 

Gaps in Current Data Availability 

Tere are difculties in accessing experimental data in forms of value for model calibration and evaluation. Likewise, 
climate forcing for experimental data are often unavailable. Te measurements are usually non-consecutive, and only 
a few variables or processes, e.g., soil respiration, are measured with standardized tools among diferent sites. Isotopic 
data remain relatively rare, but ofer opportunities for tracing fows of C and N, allocation and residence times 
(Trumbore, 2006). 

New in situ or Remote Sensing Measurement Needs 

In situ experiments should focus on isotope tracer studies that quantify the residence time and pathways for N and 
C in ecosystems. Leaf and canopy scale studies of fuorescence are needed to inform use of satellite data (Guanter 
et al., 2014; Yang et al., 2015). Measurement of non-structural carbohydrate can inform on how plants invest and 
hedge against risk. It is highly valuable to have in situ remote sensing data over instrument sites, for comparison with 
satellite observations. Drone based sensors now make it possible to record similar data to that collected by satellite 
sensors, and thereby to determine atmospheric, scale, and spatial location errors between platforms. 

Spatial and Temporal Extent and Resolution Requirements 

Tere is a need for detailed in situ evaluations of model processes to test and parameterize models consistently; this 
means being able to isolate specifc model processes so their decoupled sensitivity to particular forcing (experiments) 
can be evaluated and calibrated. Temporal requirements are closely related to residence times of carbon pools. Data 
extending over years are critical for understanding dynamics of the long-lived soil and wood pools. Weekly data are 
needed to track key phenological events. Hourly data provide insights into leaf level processes and sensitivity. We 
note signifcant data gaps in tropical ecosystems (Schimel et al., 2015) leading to major unknowns in the C cycle of 
these biomes. 
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Integrating Extant Meta-analyses into Benchmarking Approaches 

Meta-analyses of feld experiments results have been recently used for benchmarking terrestrial ecosystem models 
(e.g., Piao et al., 2013). Plant trait databases are growing and providing important data on plant traits (Kattge et al., 
2011). Teir focus is mostly on leaf traits, particularly structural traits. Tese databases will become more valuable 
as they include broader plant traits, and functional traits (e.g., respiration determinants, carboxylation rates). We 
particularly need to understand trait trade-ofs, and use these to guide model parameterisation and structural 
improvements. We need to be able to simply characterize response patterns of diferent C and N processes for 
benchmarking model response functions. 

Synthesis Activities Needs and Approaches 

Exploration of full economic modelling for C allocation and C-N linkages provides a means to introduce optimality 
constraints on biological processes consistent with competitive interactions (Tomas and Williams, 2014). Efective 
modeling of plant-microbe-soil interactions, addressing priming, N fxation, exudates among other processes 
(Wieder et al., 2013), requires a concerted experimental efort, and particularly the use of isotopic tracers to unravel 
belowground processes. 

C.1.4 Model Development and Output Requirements 

For model development we require testbeds for calibration and evaluation of submodels at site scale, allowing 
simple connections between model inputs/outputs and site data. We need to evaluate plant trait correlations to 
determine process trade-ofs (e.g., wood density versus hydraulic resilience). Tere is a risk that model development 
adds parameters and complexity, but thereby does not reduce model error and bias. Tis risk can be overcome by 
consistently testing simple models against data, and determination of the information content provided by more 
complex parameterizations (Li et al., 2014). 

For output requirements, we need residence times for all pools, allocation and turnover of foliage, microbial 
pool dynamics, respiration of all living pools, trait correlations, N dynamics (including biological fxation). Te 
biogeochemical data can then be used to evaluate model dynamics across pools and timescales (Tomas et al., 2013). 

C.2 Metrics From Extreme Events 
Hyungjun Kim and Maoyi Huang 

C.2.1 Scientifc challenges and opportunities for model evaluation 

In the context of ILAMB, we defne extreme events as the terrestrial and societal impacts (e.g., foods, streamfow and 
soil moisture drought, vegetation dieback, and fre) of weather and climate extremes (WCEs), and their feedbacks 
to the atmosphere. Te WCEs are estimated as the occurrence of a value of a weather or climate variable above 
(or below) a threshold value near the upper (or lower) ends (“tails”) of the range of observed values of the variable 
(Seneviratne et al., 2012). Also, WCEs are identifed as single and compound events. Te latter occurs when (1) two 
or more extreme events occur simultaneously or successively, (2) combinations of extreme events lead to conditions 
that amplify the impact of the events, or (3) combinations of events that are not themselves extremes but lead 
to an extreme event or impact when combined. For example, foods most likely occur when heavy precipitation 
falls over saturated soils, so that it is desirable to analyze precipitation and soil moisture extremes simultaneously. 
One special case of compound events is associated with feedbacks within the climate system such as the possible 
mutual enhancement of droughts and heat waves in transitional regions between dry and wet climates that can be 
attributed to the interactions among soil moisture, surface energy budget partitioning, and near-surface temperature 
(Seneviratne et al., 2010). 

Infrequent extreme events may play a particularly important role in structuring terrestrial ecosystems, for example 
in controlling severe fres and contributing to drought-related vegetation mortality events (Figure C.2.1). Tus, it 
is necessary to include these long-term efects and their role in governing vegetation dynamics. Current models, 
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particularly those that do not have a dynamic vegetation component, only represent short-term responses to WCEs, 
such as depressed growth during the period of the WCE. However, datasets to benchmark these long-term ecosystem 
responses to WCEs are sparse, and the framework to test ecosystem model responses to WCEs is not well developed. 

Figure C.2.1. Processes and feedbacks triggered by extreme climate events, including droughts and heatwaves, 
heavy storms, heavy precipitation, and extreme frost. Solid arrows show direct impacts; dashed arrows show indirect 
impacts. The relative importance of the impact relationship is shown by arrow width (broader lines indicate stronger 
feedbacks). Adopted from Reichstein et al. (2013). 

To distinguish causal processes of extremes and to evaluate how they are well represented in a model, we suggest a 
logical framework to categorize them into diferent spatiotemporal scales and scopes of their footprints and impacts, 
and list examples which have relatively large uncertainties or are missing representations in current ESMs. 

A. Climate scale features: Macro-scale features having long persistence (> seasonal) and large horizontal length scale 
(> 2,000 km), such as the spatial distribution and intensity of SST anomalies (e.g., El Niño and other climate 
modes), locations of ITCZ on meridional migrations, intensity of Hadley circulation, and latitudinal temperature 
gradient 

B. Synoptic and mesoscale features: Persistence up to seasonal time scale and continental scale in the spatial domain, 
such as monsoons, tropical/extratropical cyclones, frontal systems, and sand/dust storm, as well as their impacts, 
such as excessive precipitation (i.e., meteorological drought) and heat/cold waves 

C. Basin-scale land processes: Processes spanning up to seasonal or sub-seasonal scale such as excessive defcits and 
surpluses of water (e.g., food), dry (i.e., hydrological and ecological droughts)/wet spells, extreme sea level, 
cryosphere- and ecosystem-related impacts (snow and snowmelt, fre, vegetation dieback), and landslides 

D. Socioeconomic impacts: Processes which are directly related with human-society, such as inundation and crop 
failure (i.e., agricultural drought) 
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C.2.2 New Metrics and Benchmarking Approaches and Observational 
Data Needs 

Considering the potential objects listed above to be benchmarked, we propose several metrics on WCEs below: 

A. ITCZ displacement: Meridional distance of ESM simulated ITCZ location from atmospheric reanalysis datasets 
or satellite observations (e.g., QuikSCAT). Location of the ITCZ is defned as places where the temporal mean of 
the meridional component of surface wind (v) is zero. 

B. Zonal shift of Walker circulation: Zonal displacement from ascending/descending kernel locations of atmospheric 
reanalysis datasets. Convergence and divergence of near surface (e.g, 950 mb) and high atmosphere (e.g., 300 mb) 
and 500 mb pressure velocity will be used to 
identify the kernels. 

C. Reproducibility of weather systems: Skills of 
ESM representations of weather systems in 
terms of geographical location, intensity, and 
duration. Objectively detected weather systems 
(Utsumi et al., 2014) generated by ESM 
will be evaluated through comparison with  
observations (e.g., best track records for tropical 
cyclones; Utsumi et al., in revision; Figure 
C.2.2) and/or objective detections based on 
atmospheric reanalysis datasets. 

D. Hydroclimatic intensity: Giorgi et al. (2011) 
suggested an index to estimate the intensity 
of hydroclimatic cycles as a ratio of mean 
precipitation intensity and mean dry spell 
length. ESM-reproduced precipitation intensity 
and temporal variability will be validated by using 
an observational precipitation-based index for each model gridcell. 

E. Flood inundation extent and duration: ESM calculated inundated area will be compared with satellite-based 
surface water extent (Prigent et al., 2007). ESMs without the inundation process can utilize an of-line method 
using a standalone river model (e.g., CaMa-Flood; Yamazaki et al., 2011; Figure C.2.3) to validate their runof 
generation. Te anomaly of water storage combined with the other components (e.g., soil moisture) can be 
compared with the terrestrial water storage anomaly monitored by the GRACE satellite (Kim et al., 2009; 
Figure C.2.4). 

Figure C.2.2. Benchmarking for weather system reproducibility 
of CMIP5 models. 

Figure C.2.3. Comparison of food inundation extent over Amazon by CaMa-Flood (left) and satellite remote sensing 
(right). 
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Figure C.2.4. (a) Comparison of seasonal cycles of observed GRDC discharge (black solid line), discharge routed by 
the Total Runoff Integrating Pathways (TRIP) model (red solid line), and runoff without routing (gray dashed line). 
(b) Comparison of seasonal cycles of GRACE TWSA (black solid line), simulated TWSA with river storage (red solid 
line), simulated TWSA without river storage (gray dashed line), and the major water storage components in TWS. 
Gray crosses, green circles, and blue triangles represent snow water, soil moisture, and river storage, respectively. 
(c) Inter-annual variations of relative TWS: GRACE observation (black dot), and the TWS simulations with river 
storage (red solid line) and without river storage (gray dashed line). Each area shaded by blue, gray, and green 
indicates the portion of river storage, snow water, and soil moisture in the simulated relative TWS, respectively. 

F. Cumulative rainfall defcit: Maeda et al. (2015) suggested combining GRACE observations with in situ river 
discharge data to estimate water storage defcit on a basin-scale. Te defcit refects a cumulative amount of 
precipitation needed to satisfy evapotranspiration requirements through consecutive months (Figure C.2.5). 
A combination of ESM-simulated precipitation and evapotranspiration will be compared to benchmark how 
the model properly represents the intensity and the duration of dry spells. 

Figure C.2.5. Cumulative Rainfall Defcit and annual rainfall anomalies in four watersheds over the Amazon basin. 
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G. Event oriented benchmarks: Compile standard dataset libraries for well-studied extreme events for comprehensive 
benchmarking through multiple state and fux variables between onset and ofset of the extremes. A 2003 
heatwave in Europe, California drought, Alaska fre events, 2010 Russian drought, and 2011 food in Australia 
would be candidates. Crucial to the use of naturally-occurring WCEs as model benchmarks is to compile both the 
short-term water, energy, and carbon responses of the coupled ocean–land–atmosphere system during the event, 
as well as the longer-term responses of ecosystems and anthropogenic systems to the extreme events, including 
vegetation mortality responses to drought and heat events, and soil and vegetation carbon losses during fres. 
Ideally, such observations can be collected in cases where some medium-term predictability allows installation of 
dense observing systems prior to or during the WCE, for example in examining ENSO-related drought events 
which may allow several months of predictability about where droughts are likely to occur, which has been a 
strategy of the NGEE Tropics project for the 2015–2016 El Niño event. 

H. Experimentally-induced WCEs: Numerous rain throughfall exclusion experiments have been conducted in 
terrestrial ecosystems to simulate drought events, and these are a useful benchmark of terrestrial models (e.g., 
Fisher et al., 2007; Powell et al., 2013). Tese experiments, and other experimentally-induced WCEs, allow 
for targeted measurement campaigns and collection of key variables required for testing models, which may 
not be possible given the opportunistic nature of observational campaigns around naturally-occurring WCEs. 
Synthesizing these experiments and developing clear model protocols for comparison is a key requirement for 
better use of these experiments as model benchmarks. 

C.3 Design of New Perturbation Experiments 
Martin De Kauwe and Ankur Desai 

Breakout Meeting attendees: James Simkins, Shawn Serbin, Rosie Fisher, Elena Shevliakova, 
Ben Bond-Lamberty, Dan Ricciuto, Nick Smith, Kaoru Tachiiri 

C.3.1 Scientifc Challenges and Opportunities for Model Evaluation 

Perturbation experiments directly manipulate ecosystems and by measuring observed responses against a control, 
they provide direct tests of ecosystem responses to land use and global change (Bonan, 2014). Manipulation 
experiments short-circuit long-term monitoring experiments and directly test the global changes that ESMs are 
expected to predict. Despite this, these experiments have been under-used in evaluating ESMs predictions. Tere 
are a number of reasons for this disconnect: (i) there are often scale mismatches between the (coarse) model and 
the experiment; (ii) datasets from experiments are not in a format which can readily be used by modellers; (iii) the 
necessary meteorological forcing for the experiment may not exist, or may have gaps; (iii) there are data-sharing 
issues; and (iv) the modelling and experimentalist communities are not sufciently engaged. Furthermore, attempts to 
model experiments have traditionally taken place after the conclusion of the experiment (but see Luo, 2001; Parton 
et al., 2007; Medlyn et al., 2016), which often results in missed opportunities to take measurements that could have 
distinguished between competing model hypotheses (Dietze et al., 2014). 

Field manipulations encompass a broad range of experiments including: nutrient addition/removal, species transplant 
(addition/removal), precipitation and temperature manipulation, rainfall exclusion, manipulation of atmospheric 
chemistry and greenhouse gases. Arguably the most well known example of which were the US Department of 
Energy Free-Air Carbon Dioxide Enrichment (FACE) studies, carried out between ~1996–2010 (Figure C.3.1). 
For logistical reasons many of these experiments often manipulate a single factor, although a smaller collection of 
multi-factorial experiments do exist (Dukes et al., 2005; Pendall et al., 2013; see Dieleman et al., 2012 for a review). 
Such experiments need to be conducted outside of mid-latitude biomes, and the Amazon FACE experiment 
(https://amazonface.org/; Grossman, 2016) is expected to provide valuable information about photosynthetic 
potential of tropical forests. Ongoing and new studies that look at multiple factors in critical ecosystems such as 
peatland warming and drying (SPRUCE; http://mnspruce.ornl.gov/; Witze, 2015; Figure C.3.2), drought, 
nutrient addition, active warming, including the Tropical Responses to Altered Climate Experiment (TRACE; 
http://forestwarming.org/; Cavaleri et al., 2015; Figure C.3.3), or passive warming, including the International 

http://forestwarming.org
http://mnspruce.ornl.gov
https://amazonface.org
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Tundra Experiment (ITEX; http://ibis.geog.ubc.ca/itex/) and the Zero Power Warming (ZPW) experiment 
(https://www.bnl.gov/envsci/test/zpw-liveupdates.php) have high potential for constraining ecosystem model 
responses in ways that are difcult to do with traditional benchmarks from long-term observations. Tere are also 
a new generation of FACE experiments focused on mature ecosystems, which cover a wider range of biomes and 
climatic space than the frst generation did (Norby et al., 2016). 

Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE experiment. 

Figure C.3.2. The SPRUCE experiment consists of 10 octagonal enclosures, 
each 12 meters across and 8 meters high, in a peat bog in Northern 
Minnesota, USA. Atmospheric CO2 levels and temperature can be 
manipulated within the enclosures to test out the effects of future climates on peatland ecosystems. 

https://www.bnl.gov/envsci/test/zpw-liveupdates.php
http://ibis.geog.ubc.ca/itex
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 Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE 
experiment. 

C.3.2 New Metrics and 
Benchmarking Approaches 

Most benchmarking approaches 
for perturbation studies do not 
difer signifcantly from traditional 
benchmarking, though the focus is on 
comparing model sensitivity to response 
of the perturbation over the control, for 
the target variable and driver change. To 
date, most comparisons have not exploited 
this approach. For example, model 
comparisons to FACE data have often 
focused on capturing the mean net primary 
productivity (NPP) response over the 
experiment period (Hickler et al., 2008). 
Tis is problematic because models can be 
tuned to get the right answer, but arrive 
at it for the wrong reasons. Alternatively 

the FACE model–data synthesis (De Kauwe et al., 2013; 2014; Walker et al., 2014; Zaehle et al. 2014) used the 
experimental data to understanding how and why models difered from each other and the observed responses, 
providing a clear roadmap to model improvement (Medlyn et al., 2015). 

Tere are a number of existing experiments that we identifed which as yet have been under-exploited for model 
benchmarking. Tese include: (i) warming; (ii) drought/rainfall exclusion (see Smith et al., 2014 for a review); (iii) 
competition changes (species composition); and (iv) acclimation responses. It is likely that additional funding will be 
required to synthesis past experiments to defne big picture responses we feel models should be capturing. 

Due to the small scale of manipulation experiments, it may be that the best route for benchmarking ESMs remains 
in targeted ofine model intercomparison projects. It may also be possible to use these results as a set of response 
surfaces to benchmark future climate model runs in an emergent constraint framework (Hofman et al., 2014), by 
estimating processes such as tissue turnover rates, or recovery times from disturbance. Nevertheless, now that many 
of these experiments have been completed there is scope to defne a series of cross-site responses that could be used 
to defne a benchmark for ESMs (Walker et al., 2015). One successful example of this approach was the use of data 
across 301 N-fertilization experiments to confront global predictions from two land surface schemes (Tomas et al., 
2013). Another example was the use of a long-term throughfall exclusion experiment in the Amazon to probe how 
well models captured responses during drought (Powell et al., 2013). 

C.3.3 Observational Data Needs 

While perturbation experiments often collect extensive feld-level data, much of these data are difcult to acquire and 
integrate. Many data, such as those on leaf-level parameters, NPP are stored in diverse formats (e.g., xls vs. csv vs. 
netCDF), often not open-source , rarely directly machine-readable and on archives that may require permissions to 
access. Metadata and protocol documents may not specify treatment details in sufcient detail to properly replicate in 
a model. For example, exactly how much biomass was removed and what was done with this biomass: was it removed 
from the site, or deposited as litter; the distinction matters for models wishing to replicated experiments. Tere 
remains an outstanding need to provide funds to experiments so that the datasets produced are open, self-describing 
and useable by outside groups (e.g., Bond-Lamberty et al., 2016a). Even in experiments which have readily shared 
datasets (e.g., FACE), often the experiments do so via site-specifc websites and these datasets often lag datasets used 
in recent publications. Tere is a clear need for central archival repositories for manipulation experiments. Tis would 
not only help in distributing datasets, but would most likely also raise awareness to the wider community. 

Model–data synthesis initiated at the start of experiments (Medlyn et al., 2016; Norby et al., 2016) is an excellent 
means to identify and solve many of these potential issues before the experiment begins. Tese synthesis activities 
can also lead to the development of experiment modelling protocol which direct other modelling groups how to set 
models up for individual experiments (Walker et al., 2014; Medlyn et al., 2016). 



78 

2016 ILAMB WORKSHOP REPORT

 

  
 

 

C.3.4 Model Development and Output Requirements 

Several challenges exist in attempting to apply models to perturbation experiments. Many ESMs operate at relatively 
large scales (>50 km2), whilst experimental plots may be relatively small in spatial size (1–100 m2). In particular, for 
the core global change processes of CO2 fertilization, drought, and nitrogen addition, mechanisms are limited in 
variety. Tus parameterizing a model or scoring performance against these experiments when mechanisms are not 
nuanced enough to address the main responses remains a challenge. It is important for benchmarking to consider 
multiple aspects of a response (e.g., biomass growth, allocation changes, water use, mortality rates) to reliably score 
a model against such an experiment. Otherwise a model may perform well in one area, but without the proper 
mechanisms, incorrectly capture other dynamics. 

Models need to be able to run control and perturbation studies and produce output on the diference between these 
two across multiple types of variables that are measured on the ground, including soil respiration, NPP, transpiration, 
allocation, and root growth. A specifc challenge may be properly specifying the actual treatment. While some like 
CO2 fertilization or N deposition are straightforward, others like soil warming or biomass removal may require model 
modifcation to properly simulate the experimental protocol, if it afects the response. Properly specifying initial 
conditions and species specifc parameters is also critical to properly simulate plot-level and ecosystem-scale studies. 

Benchmarking applications need to consider comparing not just time and space overlapping state variables, but also 
comparisons of responses grouped by ecosystem function or structure. Te benchmarking community should work 
jointly with experimentalists to identify a set of shared priorities for evaluation and experiments best designed for 
addressing those. 

C.4 High Latitude Processes 
Charlie Koven, Kevin Schaefer, and Umakant Mishra 

C.4.1 Scientifc Challenges and Opportunities for Model Evaluation 

Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). Tis 
enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated 
warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; 
Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. 
For example, active-layer dynamics, thermokarst formation, thermal erosion, shrub expansion, fre disturbance, soil 
moisture heterogeneity, and the overall rate of wetting and drying that will accompany warming. Tese processes 
impact the vulnerability of permafrost carbon pool through diferent mechanisms. Active layer thickness determines 
the volume of SOC available for microbial decomposition, and has been projected to go deeper under future 
warming. Termokarst formation on the permafrost landscape enhances methane emissions to the atmosphere. 
Termal erosion due to permafrost collapse can increase microbial decomposition and translocate large amounts 
of soil carbon to river networks. Increased wildfre occurrence has been projected under future warming scenarios; 
wildfres can directly combust the carbon in the surface organic layers and may alter the soil moisture dynamics. 
Similarly, many studies projected shrub expansion northwards under future warming, which can further destabilize 
the existing permafrost. 

Te CMIP5 generation of models were still defcient with respect to their ability to simulate these processes. None 
of these models included permafrost carbon pools, many had poor representation of crucial physical processes 
such as snow insulation of organic soil physical properties (Slater and Lawrence, 2013; Koven et al., 2013), and 
none included a careful treatment of subgrid-scale heterogeneity in landscapes driven by polygonal features. Since 
then, research on modeling high latitude dynamics and creating observational benchmarks for these models has 
resulted in signifcant progress in the feld. Some ESMs, including CESM and ACME, now represent permafrost 
carbon and nutrient cycle processes (Koven et al., 2015), while others have focused on dynamic organic layers (Yi 
et al., 2009), or high-latitude-specifc vegetation dynamics (Euskirchen et al., 2009). A MIP led by the Permafrost 
Carbon Network (PCN) compared diferent representations of the high latitude system to identify the efects of 
diferent structural representations on model predictions (McGuire et al., 2016). Activities like PCN have focused on 
synthesizing existing datasets on soil carbon stocks (Hugelius et al., 2014; Harden et al., 2012); permafrost carbon 
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decomposability under oxic, anoxic, and frozen conditions (Schädel et al., 2014, 2016; Schaefer et al., 2016); and 
appropriate benchmarks for testing the physical dynamics of the coupled atmosphere-snow-soil system (Slater et 
al., submitted). DOE’s NGEE Arctic project has focused on understanding the heterogeneity of polygonal tundra 
ecosystems, developing approaches to represent that heterogeneity in ESMs, and creating benchmarks for testing land 
models to reduce uncertainties of permafrost-afected ecosystems under a changing climate. 

C.4.2 New Metrics and Benchmarking Approaches 

In addition to assembling key datasets to benchmark physical, vegetation, and biogeochemical predictions of land 
models, it is crucial to identify the relationships between these variables in order to test whether model predictions 
of these relationships are accurate. While this is true everywhere, it is particularly the case at high latitudes because 
the climate gradients are especially steep and the heterogeneity of model-generated and reanalysis climates in the 
region is very high. For example, active layer thickness is a highly emergent quantity that results from the complex 
interplay between soil properties, snow dynamics, local climate, and fne-scale hydrologic variation; what is needed 
to benchmark models is not just observations of active layer thickness, but how measured active layers vary across 
gradients of these underlying driving variables, in order to diagnose specifc model processes that are contributing to 
biases relative to observations. Tus, where possible, data from observational networks should be combined, and the 
types of observations made at existing networks should be expanded to best utilize observations focused on diferent 
aspects of the terrestrial system. 

C.4.3 Observational Data Needs 

One can break down the key observational needs into three main groups: vegetation, soil biogeochemistry, and 
the physical system. Each of these requires a much more detailed treatment and testing than was possible with the 
CMIP5 generation of models. For many of these, data exists and needs to be synthesized and developed into metrics, 
whereas for others the data must be collected. 

Table C.4.1. Observational requirements for benchmarking of high-latitude processes. 

Domain Status Variables 

Vegetation Data exists and is being used for 
benchmarking 

LAI, Baseline PFT maps, Productivity 

Data exists but must be synthesized and/or 
used for benchmarks 

Biomass, non-vascular plant dynamics, fre 
disturbance frequency 

Data does not exist Large-scale changes to vegetation 
distributions 

Soil Biogeochemistry Data exists and is being used for 
benchmarking 

Soil carbon distributions; ecosystem 
responses to nutrient fertilization; 

Site-level CH  fuxes4

Data exists but must be synthesized and/or 
used for benchmarks 

Oxic, anoxic, and frozen soil respiration 
rates, ecosystem warming experiments; 
extreme scarcity of synthesized soil carbon 
observations from Siberia 

Data does not exist Pan-arctic organic layer thickness maps 

Physical Snow–soil– 
hydrologic system 

Data exists and is being used for 
benchmarking 

Snow cover extent, site-level soil 
temperatures, site-level hydrology, basin-
scale streamfow, gravity-based mass 
changes, site-scale ALT 

Data exists but must be synthesized and/or 
used for benchmarks 

Large-scale soil moisture, Large-scale snow 
thickness, SWE 

Data does not exist Large-scale maps of ALT, Changes to 
permafrost extent 
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C.4.4 Model Development and Output Requirements 

Te ESM community has made substantial progress since CMIP5 in representing ESM structures of key systems that 
govern climate feedbacks from high latitude ecosystems. Tese include: permafrost physical state, exchange of energy 
and mass between the land and atmosphere in high latitudes, permafrost biogeochemical dynamics, dynamic organic 
soil layers, and vegetation dynamics across the tundra–boreal forest ecotone. However, these have been done primarily 
one at a time in diferent models with no coupled ESMs that include a high level of sophistication in all aspects of 
the high latitude system. Furthermore, some aspects of the high latitude system remain poorly resolved in models, in 
particular the complex hydrology and associated fne-scale heterogeneity that exists at high latitudes. 

Approaches to better sample models to enable benchmarking are also critically required. CMIP5 protocols were 
able to benchmark soil thermal dynamics, but only poorly represented soil hydrological dynamics, for example, in 
predictions of unfrozen moisture content or detailed snowpack information, and had very little information on soil 
biogeochemical dynamics. CMIP6 protocols request more detailed output variables across these domains, including 
vertically-resolved carbon stocks, nutrient dynamics, and more fnely-resolved thermal and hydrological variables 
(Jones et al., 2016; van den Hurk et al., 2016), allowing a more efective and systematic benchmarking capability 
for ESMs. 

C.5 Tropical Processes 
Nathan G. McDowell, Paul Moorcroft, and Charles D. Koven 

C.5.1 Scientifc Challenges and Opportunities for Model Evaluation 

Tropical ecosystems present many processes that overlap with those in other biomes, but also have additional 
complexity that makes modeling and benchmarking a distinct challenge from that experienced in other regions. 
Tese include challenges related to biodiversity and how to represent it in simulations, and understanding the 
role biodiversity plays in bufering ecosystem responses to perturbations. Much advanced modeling has been 
done in tropical forests and through these eforts we have unveiled many challenges, including the difculty in 
representing the diverse variety of above and belowground traits as they relate to water acquisition and use, and 
carbon metabolism. Benchmarking has revealed these challenges through comparison to drought-experiments 
and atmospheric constraints, with previous and current MIP’s providing great insight into the advantages and 
disadvantages of various numerical representations. While advances have been made, most work has pointed to 
the critical need for more extensive benchmarking of a range of processes at a range of scales, along with associated 
UQ and model development. 

Representing these processes is particularly crucial as tropical forests are predicted by the CMIP5 generation of ESMs 
to be particularly important for both the carbon–climate and carbon–concentration feedbacks. Tis importance led 
to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the representations 
of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling approaches 
for representing these processes. Te activities described below, including synthesizing forest inventory data for 
benchmarking demographic models, collecting more highly process-resolved observations on plant hydraulics and 
nutrients, and introspecting models to allow for benchmarking, are core activities of the project, which will help with 
the goal of reducing model uncertainties in tropical forest dynamics as an Earth system feedback. 

C.5.2 New Metrics and Benchmarking Approaches 

New and novel datasets, including spatially distributed inventories of survival and mortality (e.g., RAINFOR and 
Forest-GEO) and ecosystem processes (e.g., FluxNET, GEM), are providing insight into how to improve model 
realism, but these have not been capitalized on for benchmarking. Such regionally and pan-tropically distributed 
datasets can enable advances in model benchmarking, which thus far has been primarily sub-regional in scale. 
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C.5.3 Observational Data Needs 

Data availability is improving for species level traits of value for model parameterization, but evaluation datasets 
against manipulations (drought, CO2, temperature) are extremely limited, and while inventory datasets are available, 
benchmarking against them has yet to be attempted. Remote sensing is promising using a variety of platforms that 
can provide ecosystem level benchmarking, but cannot yet provide species or individual resolution information. 
FLUXNET sites exist, but again are few and far between. Understanding physiological processes is one of the largest 
uncertainties in the tropics, again due to the diverse nature of forest composition and climate drivers both within and 
across sites. Tus a combination of data types, from inventory to process measurements to fuxes and remote sensing, 
provides the best possible suite of benchmarking in the tropics. Tis is true for all systems, but in the particularly 
complex tropics this is especially true. Large gaps exist in spatial coverage of critical regions, particularly in the 
perhumid western Amazon, tropical Africa, and in the island regions surrounding southeast Asia. 

Key parameters that require investment for data collection include turnover, C allocation, whole tree hydraulics, 
phenology, LAI, reproduction, dispersal, and all of their controls. Belowground processes, including soil depth, soil 
moisture availability, and soil water acquisition for transpiration, are recognized as important. Multiple processes 
were identifed as poorly understood, such as how mechanisms of seasonal drought tolerance transcend to anomalous 
drought survival, and interactions with mean annual precipitation, vapor pressure defcit, and fertility. Te 
community agreed that looking at response surfaces for benchmarking from both observational and manipulative 
studies was extremely valuable. 

Table C.5.1. Observational requirements for benchmarking of tropical processes. 

Domain Status Variables 

Vegetation Data exists and is being used for 
benchmarking 

Greenness indices; upscaled carbon fux 
data; static remotely-sensed biomass 

Data exists but must be synthesized and/or 
used for benchmarks 

Inventory data: biomass, growth, mortality; 
plant trait covariation with climate; 
chlorophyll fuorescence; experimental 
climate manipulations 

Data does not exist Large-scale biomass dynamics; tropical CO2 

fertilization experiments; pantropical carbon 
allocation datasets 

Soil Biogeochemistry Data exists and is being used for 
benchmarking 

Soil carbon distributions, profles, isotopic 
data 

Data exists but must be synthesized and/or 
used for benchmarks 

Ecosystem process variation across soil 
fertility gradients 

Data does not exist Pan-tropical peatland maps 

Physical soil-plant-
atmosphere system 

Data exists and is being used for 
benchmarking 

Upscaled ET fux data; terrestrial water 
storage; river runoff 

Data exists but must be synthesized and/or 
used for benchmarks 

Plant stemwood trait variation 

Data does not exist Vertical root water uptake profles, sap fow 
datasets 

C.5.4 Model Development and Output Requirements 

Model development in water uptake, plant hydraulics, carbon allocation and metabolism, and mortality and survival 
strategies, all within a framework that accounts for hyper-diversity, has been targeted as urgent steps for next-
generation models in the tropics. Nearly all aspects listed above as observational needs also are model development 
needs. Tus, what is needed for benchmarking purposes is a greater ability to test these novel processes and compare 
them against observations. 

As the community shifts from unstructured to structured vegetation models, model outputs must move beyond 
gross stocks and fuxes and include information on the heterogeneity and structure of vegetation. Tis includes size 
distributions, distributions of plant traits in models that predict these, and more detailed heterogeneity associated 
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with LULCC. Furthermore, how these axes of heterogeneity covary with each other and with plant function is crucial 
to understand the role that diversity and heterogeneity play in these ecosystems. 

More fnely-resolved process models must also include sufcient outputs to benchmark these processes against 
observations. For example, models that trace hydraulic fuxes from the soil through the canopy must be testable 
against observations of sap fow, tissue water potential, and overall canopy fuxes, and thus must output this 
information for purposes of comparison. As nutrient-enabled models include more detailed representation of both 
nitrogen and phosphorus, key diagnostics at site, regional, and global scales are required to evaluate the representation 
of the nutrient cycling and the relationships between nutrient and carbon cycling in these models. 

C.6 Remote Sensing 
Shawn Serbin 

C.6.1 Scientifc Challenges and Opportunities for Model Evaluation 

Te large extent and high diversity of vegetation comprising Earth’s biomes present a signifcant challenge for 
local to global-scale terrestrial ecosystem process modeling eforts, including benchmarking and evaluation of 
model projections. To provide the knowledge and understanding necessary to improve model parameterizations, 
representation and evaluation of alternative model structures and observations are needed at the relevant spatial and 
temporal scales for controlling processes. Te general goal of remote sensing from leaf to global scales is to provide 
critical information on ecosystem dynamics (e.g., seasonality, response to perturbations), and states (e.g., composition, 
structure, biomass), as well as to scale, map, and monitor important ecosystem properties and processes across 
space and through time. Compared with other observational and model evaluation datasets (e.g., inventory, eddy 
covariance, manipulation, and global change experiments), remote sensing data provide the synoptic, continuous, and 
temporally frequent observations needed for site to global model benchmarking. Moreover, the relative magnitude 
of remote sensing datasets of various types and temporal extents has helped to usher in the current data-rich era in 
ecology and global modeling, providing large volumes of information across scales that could be leveraged within data 
assimilation frameworks for model calibration and development activities. 

Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally 
and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically 
active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., 
Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products 
such as surface albedo (Shaaf et al., 2002), to process-level observations, including evapotranspiration (Mu et al., 
2011), photosynthesis (e.g., Running et al., 2004; Ryu et al., 2011; Guanter et al., 2014; Serbin et al., 2015), and 
plant functional traits (e.g., Asner et al., 2015; Singh et al., 2015). Calibration of algorithms for the retrieval of 
measurements using remote sensing observations vary in approach and complexity but generally require some degree 
of the physical relationship as well as independent information from ground or other observations for evaluation 
prior to any scientifc or modeling use. In addition to other smaller campaigns, past and ongoing global change 
manipulations (e.g., FACE, DOE SPRUCE), feld experiments, and large-scale projects such as the DOE Next 
Generation Ecosystem Experiments (NGEE) in the Arctic and tropics as well as NASA’s Arctic Boreal Vulnerability 
Experiment (ABoVE) provide ample opportunities to refne remote sensing methods and products for use within 
ILAMB and elsewhere (Schmid et al., 2015). Leveraging projects such as these enables the development and testing 
of existing approaches, new techniques, and the development of new observations or data products based on new 
instrumentation or the “fusion” of observations into new synthetic measurements. Here, we briefy review the use 
of past, present, and future uses of remote sensing data and new technologies for model evaluation within ILAMB, 
provide caution for proper use and avoiding pitfalls, and provide some guidance on ways to use observations within 
model–data integration or data assimilation frameworks. 

Within the scope of benchmarking terrestrial ecosystem processes and climate–biosphere feedbacks with remote 
sensing observations, we explored the following key questions: 

» What can be observed with remote sensing now and with additional research or development eforts? What is 
operational and what is experimental? 

» What can be done with existing technologies? 
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» What new imaging technologies, approaches, or product development eforts are needed? 

» How do we better leverage airborne platforms? Can we use sub-orbital data for local-scale benchmarking and 
couple this with larger scale activities using satellite observations? 

» How do we sustain a suite of remote sensing observations for current and future MIPs and benchmarking activities 
given the typically ephemeral lifespan of most airborne and spaceborne platforms? 

» How do we better incorporate uncertainties in remote sensing observational data products with 
benchmarking activities? 

In addition, it is important to understand what processes and scales remote sensing data can contribute for model 
evaluation and development. Many approaches exist for developing observations and data products for eforts like 
ILAMB from the leaf to global scales. Critical for these activities are a careful consideration of the methods used for 
scaling observations, including algorithms and uncertainties, as well as the methods for evaluation such as point-
to-point versus average response. Tese topics and others were discussed to develop a roadmap for data product 
development, evaluation, uncertainties and appropriate uses, and sustainability and evolution within ILAMB. It 
was agreed that this discussion was a critical activity for developing long-term products that can help constrain new 
process representations and model structures. Importantly, these new data products can be developed with the same 
iterative uncertainty quantifcation frameworks used for model–data experimentation (ModEx). Tis is critical for 
developing standard approaches for model evaluation and calibration through data assimilation, which is currently 
limited by availability of products and a dearth of information on product uncertainties. 

C.6.2 New Metrics and Benchmarking Approaches 

Remote sensing observations and derived data products fll a critical role in the evaluation of process models from 
the site to global scales (Schmid et al., 2015; Schimel et al., 2015). One of the key capabilities of remote sensing 
observations for model evaluation and benchmarking is the ability to capture the broad, synoptic context as well as 
relevant timescales (annual mean, seasonal cycle, interannual variability, trend) for comparisons with a wide array of 
model states. However, important considerations include the necessary spatial extent, spatial and spectral resolution, 
and whether individual tree/plant scale or larger watershed scales are relevant. Moreover, these considerations also 
depend on the model process under evaluation. Finally, remote sensing metrics and benchmarks can evolve with 
new instrumentation and/or help to guide further investments in observing platforms to improve benchmarking 
activities. Table C.6.1 highlights some of the new remote sensing benchmarks that could be leveraged or expanded 
within ILAMB. 

Table C.6.1. New Metrics/Model Diagnostics/Benchmarks. 

 Topic 
Proposed 
Approach 

Details & 
Rationale 

Spatial & 
Temporal Scales Benchmarks 

Ecosystem state Active and time-
series optical remote 
sensing, sensor 
fusion 

Benchmark model 
output states, 
such as biomass, 
canopy structure or 
soil moisture. Do 
models capture the 
evolution and spatial 
patterns 

1 m – 10 km, annual RMSE, spatial 
patterns, vertical 
distribution 

Vegetation/ Imaging Evaluate model 1 m – 30 km, RMSE, spatial and 
soil properties, spectroscopy, parameterization monthly to annual temporal patterns, 
parameters, and microwave, thermal, and emergent Vertical distribution, 
functional diversity gravity properties. Do 

models adequately 
capture patterns 
in plant functional 
properties/traits 
and soil moisture 
through time, 
resulting in accurate 
states for the right 
reasons? 

functional 
relationships 
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 Topic 
Proposed 
Approach 

Details & 
Rationale 

Spatial & 
Temporal Scales Benchmarks 

Vegetation dynamics Time-series active/ 
optical remote 
sensing, sensor 
fusion 

Do models accurately 
represent plant 
demography and 
succession, growth/ 
mortality 

1 m – 10 km, daily to 
monthly 

Functional 
relationships, phase, 
RMSE 

Vegetation 
seasonality & 
functional phenology 

In situ, airborne, 
satellite time series, 
synthetic time 
series from multiple 
platforms, thermal, 
SIF 

Evaluate model 
capacity to represent 
phenology from 
arctic to tropics, 
capture seasonality 
of C, water, EB 
cycling 

1 m – 10 km, daily to 
weekly 

Phase, temporal 
pattern, interannual 
variability, functional 
relationships 

Canopy optical Canopy simulator: Modify model 1 m – 1 km, weekly RMSE, seasonal cycle, 
properties and Simulate the spectral canopy radiative to monthly evolution of canopy 
energy balance signature (SWIR, 

thermal, microwave) 
of various remote 
sensing instruments 
given a particular 
model state. Enable 
direct connection 
between RS data and 
model structure 

transfer code to 
provide directly 
comparable 
outputs (e.g., 
surface refectance, 
LiDAR waveform, 
thermal brightness 
radiance). Evaluate 
model structure 
and dynamics, 
facilitate direct data 
assimilation 

optical properties, 
functional 
relationships 
between optical 
properties and 
model processes 
(e.g., GPP) 

Perturbations Time series, active 
microwave and 
lidar, sensor fusion, 
thermal 

Test ability for 
models to capture 
and correctly 
respond to various 
disturbance or 
change events 

10 – 100 km, days to 
annual 

RMSE, spatial 
patterns, temporal 
trajectory, phase 

Figure C.6.1. Example maps of foliar morphology (leaf mass area, Marea) and nitrogen concentration (N%) derived 
with NASA AVIRIS imagery. Trait maps such as these can be used to benchmark prognostic model predictions of 
properties such as canopy / leaf nitrogen over space and time. However, the utility of these maps is dependent 
on providing appropriate uncertainty estimates to evaluate model spread versus data uncertainty. Adapted from 
Singh et al. (2015). 
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In general, ILAMB and model benchmarking could leverage new remote sensing techniques, technologies, and 
platforms, including airborne platforms, to expand the diversity and extent of observations for evaluating models 
(Schimel et al., 2015; Shugart et al., 2015; Schmid et al., 2015). For example, imaging spectroscopy (IS) enables 
the retrieval of canopy and soil functional traits at a range of scales (e.g., Ollinger et al., 2002; Ustin et al., 2004; 
Singh et al., 2015; Serbin et al., 2015; Figure C.6.1), which can be used to test model carbon and nutrient cycling. 
IS data can also quantify plant composition 
and functional diversity across landscapes, 
allowing for the characterization of patterns 
across climatic and topographic gradients, 
enabling the parameterization or validation of 
model response surfaces (Fisher et al., 2015). 
Active systems such as LiDAR (from airborne or 
spaceborne platforms) could be used to evaluate 
modeled changes in canopy structure through 
time or in response to disturbance, or to test 
model predictions of carbon storage, succession, 
or demography, together with spectroscopic 
information e.g., Kumar et al., 2015; Figure 
C.6.2). Termal infrared (TIR) observations 
are particularly useful for evaluating model 
predictions of the surface energy balance, 
seasonality, and water cycle and can be 
coupled with measurements of soil moisture or 
storage. Together, observations from imaging 
spectroscopy, LiDAR, and TIR can be used to 
benchmark the representations of surface energy 
balance, albedo and canopy radiative transfer 
(Figure C.6.3). Finally, there are an increasing 
number of leaf to near-surface remote sensing 
datasets (e.g., leaf optical properties, phenology 
cameras, tower-mounted spectrometers) that 
could be used to benchmark and evaluate model 
leaf to canopy parameterization, predictions of 
seasonality, or scaling approaches. 

Figure C.6.2. (a) 3-D LiDAR point cloud at 30 m × 30 m region (black square) in 
a typical cove forest of the Great Smoky Mountains National Park. (b) The raw 
LiDAR point cloud (3,985 points), showing the imprints of the underlying cove 
topography. (c) LiDAR point cloud after topographic detrending and fltering 
(3,936 points) that converted the elevations to above ground level elevation. 
(d) Distribution of LiDAR point density along the vertical profles in a cove 
forest dominated by tall trees and a dense understory. Adapted from Kumar 
et al. (2015). 

Figure C.6.3. The relationship between radiation, canopy structure, optical properties and key processes including 
metabolism, water and energy cycling, as well as C allocation and turnover. Optical and thermal data can inform 
model representation energy, C, and water fuxes while LiDAR remote sensing can provide critical information on 
canopy structure, turnover and disturbance. (Adapted from Serbin et al., in prep) 
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In addition to direct or seasonal comparisons, remote sensing data within ILAMB should be used as a metric of 
functional responses. For example, models often fail to adequately capture short-term perturbations, such as acute 
drought; however, remote sensing observations can often more completely characterize the ecosystem response and 
short- to long-term recovery (AghaKouchak et al., 2015). By comparing the observed functional responses through a 
suite of remote sensing measurements (e.g., Table C.6.2) we can test the model response in magnitude, timing, and 
extent. Moreover, we can mine remote sensing archives to fnd similar perturbations through the record of data to 
identify the typical response to a change event and test the model functional response. Tis serves as a means to both 
assess and provide functional constraints for models. 

C.6.3 Observational Data Needs 

Te advantage as well as the disadvantage of remote sensing observations for model benchmarking is the diversity 
in scale, platforms, sensors, and approaches for collecting, scaling and providing data products for key terrestrial 
biophysical and functional properties. As such, a challenge for benchmarking with remote sensing is reconciling the 
typically ephemeral nature of many satellite or aircraft missions which make it challenging to provide consistent 
or wall-to-wall data products over long periods, scale mismatch, and embedded assumptions in data products. 
However, the diversity of past, present, and future missions also lends itself to the development of new observations 
and products for model evaluation such as comparison of model states (e.g., LiDAR canopy structure, imaging 
spectroscopy derived forest composition, and functional diversity) and process (e.g., SiF vs. model GPP). An 
additional challenge lies in the tendency to develop remote sensing data products which are themselves based on a 
model (e.g., global MODIS NPP, LAI, ET) and the need to reconcile the potential diferences in the ways in which 
these observations/model outputs are defned. Tis often results in products that should not be used in benchmarking 
(see Section C.6.4 below). Below are the beginnings of a list of considerations for flling data needs: 

Table C.6.2. Measurement Needs. 

 Topic 
Measurement 
Approaches Temporal Scale Spatial Scale Considerations 

Aboveground 
structure & biomass 

LiDAR, radar, repeat 
high-resolution 
optical imagery, 
sensor fusion 

Annual 1 m – 10 km LiDAR coverage 
is still limited and 
spatial coverage 
is typically small. 
Data availability 
varies. Access to 
high-resolution 
optical imagery 
to create canopy 
height maps is still 
limited. Microwave 
and interferometric 
SAR coverage is 
limited or pixel size 
is typically too large 
for detailed site 
scale assessment. 
Uncertainties with 
allometry and scaling 
approaches 

Plant demography LiDAR, optical time 
series, imaging 
spectroscopy 

Monthly to annual 1 m – 10 km LiDAR similar to 
above, limited access 
to IS data. Need to 
integrate remote 
sensing with ground 
observations 

Detailed plant 
composition, land-
cover change 

LiDAR, optical time 
series, imaging 
spectroscopy, sensor 
fusion 

Annual 1 m – 100 km Beyond basic 
PFTs. Spatial scale, 
temporal resolution, 
phenological timing 
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 Topic 
Measurement 
Approaches Temporal Scale Spatial Scale Considerations 

Succession and LiDAR, optical time Monthly to annual 1 m – 10 km Attribution, timing 
mortality series, microwave, of imagery 

sensor fusion 

Carbon fux, Optical time Daily to monthly 10 m – 100 km Measurements of 
photosynthesis, series, imaging C fux parameters/ 
photosynthetic spectroscopy, vertical photosynthetic 
capacity column CO , SIF2 capacity (e.g., 

Vcmax) are preferred 
over correlation 
with GPP. Leverage 
geostationary 
satellites, 
space station 
instrumentation 
(OCO-3). SIF still 
needs development 
to identify links 
to GPP at remote 
sensing scales 

Water fux/ET, Optical, thermal, Daily to annual 10 m – 100 km Matching fux with 
canopy moisture, microwave, gravity storage, delineating 
balance, wetlands seasonal and 

permanent wetlands 

Surface energy 
balance 

Thermal, imaging 
spectroscopy 

Daily to monthly 10 m – 10 km Higher temporal 
frequency TIR data 
at spatial scales of 
30 – 100 meters is 
needed. Spaceborne 
IS is needed to get 
high-resolution 
surface albedo data 
globally 

Vegetation Optical time Daily to monthly 1 m – 100 km SIF retrieval of 
seasonality, LAI, and series, imaging C fux still needs 
functional phenology spectroscopy, development 

thermal, SIF 

Vegetation functional 
traits, biochemistry 

Imaging 
spectroscopy 

Monthly to annual 1 m – 10 km In situ datasets of 
key plant traits 
in critical biomes 
(e.g., Arctic, tropics) 
are needed to 
calibrate empirical 
scaling approaches. 
RTM approaches 
need additional 
development to 
incorporate a wider 
range of plant traits. 
Spaceborne IS is 
needed to gather 
global plant trait 
datasets 

Canopy optical and 
thermal properties, 
architecture 

LiDAR, optical 
imagery, imaging 
spectroscopy, 
thermal 

Daily to monthly 1 m – 10 km Spaceborne IS is 
needed. Higher 
temporal frequency 
TIR data at spatial 
scales of 30 – 100 
meters is needed 

Vegetation optical Active/passive Weekly to monthly 1 km – 30 km Data availability, 
depth microwave spatial and temporal 

resolutions 
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In addition to identifying the broad sensor types listed in Table C.6.2 (e.g., spectroscopy, LiDAR, thermal), 
consideration of the methods for developing data products to meet observations needs together with detailed 
uncertainty assessment is required for any remote sensing data in ILAMB. Many of the data products can be 
generated with a range of approaches from empirical to modeled (i.e., variable driven or radiometric data-driven). In 
some cases empirical approaches are currently preferred (e.g., canopy traits) while others such as microwave vegetation 
optical depth can be retrieved efectively through radiative transfer modeling. Te approach taken should minimize 
the number of assumptions as well as avoid the use of a model that difers signifcantly from that underlying the 
terrestrial biosphere model. In other words, minimize the use of a remote sensing observation that uses a diferent 
approach and assumptions or treat as a comparison rather than as a direct observation. In addition, the approach 
should provide the best estimate of data product uncertainties possible, preferably at the pixel scale. To the extent 
possible, the development of products and approaches should be shared across groups to standardize. Airborne data 
should be leveraged where possible to provide novel local to regional scale benchmark data products or target “hot 
spots” to challenge the models. To achieve these goals, ILAMB should expand its “cyber infrastructure” to enable 
on-the-fy remote sensing data retrieval (including the mining of airborne data), generation of benchmarks, and 
model evaluation. Tis may require some development of standard data pre-processing and preparation, but this 
should be based on the state-of-the-art in the literature or through discussions with experts in the feld. 

Finally, capturing the seasonal “functional” phenology instead of only observing the changes in leaf quantity 
(e.g., LAI), for example, should be explored for use as an ILAMB benchmark. Models may capture the broad leaf 
emergence/senescence patterns but often fail to capture the true seasonality of C, water, and energy fuxes because 
they rarely account for changes in canopy physiology through the growing season. Imaging spectroscopy, thermal 
IR, and SIF are all ways to explore patterns in vegetation functional diversity and seasonality (e.g., Serbin et al., 
2015; Guanter et al., 2014). However, we must caution the use of SIF as a direct model constraint given there is still 
signifcant uncertainty in the signal observed by in situ and satellite based observations. Additional exploration of 
the SIF signal over time, in response to perturbations, and across sites is needed to better understand the connection 
between SIF and C fux. 

C.6.4 Potential Pitfalls and Misuse of Remote Sensing 
in Model Benchmarking 

A number of potential misuses and pitfalls exist when leveraging remote sensing observations as model benchmarks. 
As already mentioned, remote sensing data products that are derived from models should be treated as a comparison 
benchmark and not a direct observation. However, treating model benchmarks as an actual observation and tuning 
the process model to match the remote sensing benchmark could lead to inappropriate parameterization or unstable 
model outputs under new environmental conditions. Moreover, remote sensing driven light-use and water-use 
efciency approaches should be used cautiously. Instead of direct benchmarks, these products should be used to assess 
the capacity of models to capture seasonal or inter-annual cycles given environmental conditions and as a comparison 
of spatial patterns, but the signifcant diferences in model complexity make any direct evaluation challenging and 
inappropriate. In addition, remote sensing LUE/WUE approaches typically incorporate environmental downscaling 
on the efciency term so that it is inappropriate to then evaluate model response to climate to test process model 
functional responses. However, remote sensing approaches that leverage the same fundamental photosynthetic 
schemes as the full process model (e.g., Ryu et al., 2011) could be used as an alternative. Whenever possible the 
allometric relationships used to derive remote sensing estimates of biomass, carbon, or canopy structure should match 
those used for the same PFTs within the model. Diference in assumptions, uncertainties, and detail of allometric 
relationships can lead to signifcant model–data mismatches. At a minimum these uncertainties need to be included 
in model benchmarking. We also suggest caution using SIF as a benchmark for model carbon fux and GPP. Tere is 
still signifcant uncertainty in the signal observed by in situ and satellite-based observations and the current regressions 
with tower-based GPP are insufcient as direct benchmarks for GPP, although they can be used for comparative 
purposes. In addition to methodological considerations, spatial and temporal scale of remote sensing data should be 
considered when developing model benchmarks to minimize having to aggregate/disaggregate data products to match 
model outputs. 

Finally, the ILAMB framework needs a direct way to integrate uncertainties in model outputs and remote sensing 
benchmarks. Accounting for uncertainty will provide more accurate assessments of model predictions and error, as 
well as facilitate data assimilation to improve model calibration. 
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C.6.5 Model Development and Output Requirements 

Remote sensing can not only help to evaluate models and submodels to guide new developments at various spatial 
and temporal scales but also could guide the development of new model outputs to further facilitate direct model– 
data comparisons (or assimilation) specifcally focused on the use of remote sensing observations (Figure 6.3). 
Requirements for this are consistent spatial and temporal scales, similar variable defnitions and units (less important), 
and explicit development and handling of remote sensing product uncertainties. An important model development 
recommendation and model output requirement identifed within the group was a remote sensing “simulator” (e.g. 
Figure C.6.4; Viskari et al., in prep) to provide outputs that are more directly comparable with basic remote sensing 
measurements (e.g., spectral refectance, thermal radiance, LiDAR waveform) rather than derived products (e.g., 
biomass). To facilitate this, models would need to update their canopy radiative transfer code base to provide a full 
canopy spectral response, based on the leaf optical properties and internal model structure, instead of the typical 
surface albedo in a few spectral regions (e.g., visible, near-infrared). Importantly, it would be benefcial for models 
to develop this simulator as code that can execute outside of the full model framework, but still compile against the 
full model code based and functions/libraries, to facilitate rapid execution by running only the functions needed to 
simulate canopy radiation transfer. Tis is dependant on the remote sensing instrument’s ability to be simulated (e.g., 
Shiklomanov et al., 2016) to directly compare model predicted (dependent on modeled state) versus observed remote 
sensing patterns. Tis approach would also facilitate direct assimilation of remote sensing data to inform model 
parameterization and test alternative model structures. 

In addition to the remote sensing simulator, model code should be 
adapted to leverage the latest high-performance computing 
environments to facilitate comparison of models against large remote 
sensing datasets across large spatial and 
temporal scales. In addition, on-the-fy 
retrieval and processing of airborne data 
will require distributed computing. 

Figure C.6.4. Example of the use of an “sensor simulator” within a terrestrial biosphere model (TBM; in this case 
ED2) to facilitate direct assimilation of and/or benchmarking against remote sensing observations within the PEcAn 
framework (Shiklomanov et al., 2016; Viskari et al., in prep). In this approach the output TBM spectral signature is 
based on the internal model structure (i.e. canopy biomass, height, RT properties) and compared with comparable 
remote sensing observations (i.e., surface refectance, albedo). This allows for direct comparison and evaluation of 
associated processes such as photosynthesis, energy balance, surface temperature and evapotranspiration as well as 
identify uncertainties and areas to target for model improvement. 



90 

2016 ILAMB WORKSHOP REPORT

 

  
 

 

C.6.6 Computational Needs and Requirements 

Depending on the type of remote sensing observation, scale, algorithmic approach, and resultant data product, the 
computational needs will vary considerably. For example, an empirical model applied to a series of Landsat images 
(i.e. image stack) will be relatively quick to generate a new product; however, the use of a radiative transfer model 
(RTM) together with a highly dimensional dataset to develop a complex data product could take several hours 
to months to produce on a high-performance computing (HPC) environment. Tese considerations therefore 
determine the degree of availability of data products as well as the capacity to provide near real-time information for 
benchmarking models during short-term perturbations. Tere are means to reduce computational costs or improve 
the speed of product development such as look-up tables and learning algorithms (e.g., ANN). ILAMB should invest 
in a cyberinfrastructure to facilitate the use of airborne remote sensing data such as imaging spectroscopy and LiDAR, 
including data storage, handling, and preprocessing, as well as distributed or HPC to create or refne benchmark 
products. In addition, ILAMB should invest in eforts to assimilate remote sensing datasets to test, calibrate, and 
update model structures. Finally, all of these eforts need to consider observation uncertainties that may require 
computational approaches (e.g., resampling, ensembles) to estimate algorithm and pixel-scale error assessments. 

C.7 Roles for Flux Networks 
Dennis Baldocchi 

C.7.1 FLUXNET: A Network of Eddy Covariance Flux Measurement Networks 

Regional and global networks of eddy covariance fux towers, measuring fuxes of carbon, water and energy between 
terrestrial ecosystems and the atmosphere, are providing crucial data to the global carbon cycle science community 
(Baldocchi et al., 2001; Baldocchi et al., 2012; Reichstein et al., 2014). 

Individual eddy covariance fux towers are capable of measuring mass and energy fuxes directly and quasi-
continuously on time scales of hours, days, years, and now decades. And, by assembling networks of fux towers, one 
is able to deduce how carbon, water and energy fuxes vary spatially, across many of the Earth’s climate and ecological 
spaces and disturbance/management regimes. Together, these fux data are being used to: 1) produce annual carbon, 
water and energy budgets (Baldocchi, 2008); 2) provide process level information about how ecosystem metabolism 
responds to biophysical perturbations (Biederman et al., 2016; Reichstein et al., 2014); 3) examine the role of 
trends in carbon fuxes to rising CO2 (Keenan et al., 2013); 4) quantify the variability of carbon fuxes to extreme 
events in climate forcings (Frank et al., 2015; Reichstein et al., 2013); 5) validate and parameterize a spectrum of 
machine learning, process and remote sensing models that are predicting, interpolating and extrapolating carbon 
fux information in time and space (Beer et al., 2010; Xiao et al., 2014); and 6) provide priors for Bayesian data 
assimilation models (Bloom et al., 2016; Williams et al., 2009). 

Between 1997 and 2012 the global FLUXNET project was funded in an ad hoc manner with successive grants from 
NASA and the National Science Foundation as well as from Microsoft Corporation. An efort to modernize and 
update the FLUXNET data system and expand the database is currently being supported by DOE in the 2014 to 
2017 time-frame via collaboration with computer scientists from Lawrence Berkeley National Lab and University of 
Virginia along with our international partners. 

Te FLUXNET project and database are ready and ripe for use to advance carbon cycle synthesis by process-based, 
data assimilation and machine learning models and to address the next generation set of problems and questions; 
what is causing interannual variability in net and gross carbon fuxes?; are trends in carbon fuxes being induced 
by global change, and are these changes detectable?; how do fuxes respond to disturbance and management?; is 
ecosystem photosynthesis and water use efciency responding to elevated CO2?; how well do models perform with 
soil water defcits and over open and complex canopies?; how accurate are the global upscaling estimates of gross and 
net carbon fuxes? 

Te production and distribution of fux data, and its accompanying metadata, to the global carbon cycle community 
requires human efort to recruit data from diferent countries and cultures, to build a harmonized dataset that has 
been subjected to quality control and assurance and to have the software and staf to update the database as new 
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data are submitted. Distribution of these data to the users and production of value added products that are of use 
to the modeling community for benchmarking model simulations requires a coordinated and sustained efort. 
Today, the FLUXNET database has submissions from 450 sites, representing 2700+ site-years of data, and 
200 variables on meteorological condition, water, carbon and energy fuxes. Tese data are distributed through 
http://fuxnet.fuxdata.org/, and the dataset continues to grow and expand. In addition, there are 77 sites with 
over a decade of data, giving the scientifc community a new opportunity to study and model interannual variability, 
trends in fuxes and the efects of climate extremes on carbon, water and energy fuxes. Regional fux networks will 
continue into the future and new funding is needed to support the global FLUXNET activity to ensure these data 
are available and are in a useful form for new eforts on data-model inter-comparisons. 

C.7.2 Current and Future Roles of FLUXNET for Carbon Cycle Synthesis 

Te eddy covariance method is currently the standard method used by biometeorologists to measure fuxes of trace 
gases between ecosystems and atmosphere. Fluxes are measured by computing the covariance between the vertical 
velocity and target scalar mixing ratios at each individual node (site). Key attributes of the eddy covariance method 
are its ability to measure fuxes directly, in situ, without invasive artifacts, at a spatial scale of hundreds of meters, and 
on time scales spanning from hours, days, years, and now, decades (Baldocchi, 2014). 

Today, eddy covariance measurements of carbon dioxide and water vapor exchange are being made routinely on all 
continents. Te fux measurement sites are linked across a confederation of regional networks in Americas, Europe, 
Asia, Africa, and Australia, into a global network called FLUXNET. Tis global network includes more than eight 
hundred registered and four hundred active measurement sites, dispersed across most of the world’s climate space 
and representative biomes (Figure C.7.1). Within this larger network, smaller meso-networks target specifc land use 
types, such as urban areas, inland water systems, within a region. Many of these locales serve as focal points or anchor 
sites for sets of ecosystem-scale ‘manipulative’ studies. Comparative fux measurements are being made at satellite-sites 
that may difer by plant functional type, biophysical attributes, biodiversity, time since disturbance (e.g., fre, logging, 
windthrow, fooding, or insect infestation), or management practices (e.g., fertilization, irrigation, or cultivation). 
Distinct scientifc attributes of the fux network include its ability to detect emergent scale properties of ecosystem 
metabolism at local to regional and global scales and quantify temporal and spatial variability in carbon, water and 
energy fuxes. 

Figure C.7.1. The spatial representativeness of the FLUXNET network (existing towers labeled as blue dots), which 
is mapped relative to a set of quantitative ecoregions (white-to-black colors). Distance in data space to the closet 
ecoregion containing a site quantifes how well the FLUXNET network represents each ecoregion in the map. 
Environments in the darker ecoregions are poorly represented by this network. (Jitendra Kumar, Forrest M. Hoffman, 
William W. Hargrove, in prep.). 

http://fluxnet.fluxdata.org
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Te fux network continues to grow and expand, giving the model community open and fair use access to over 2700 
site years of fux data and complimentary meteorological and site information. Te size and value of this database is 
unprecedented in the history of carbon cycle science and ofers many unique opportunities for collaboration with 
model synthesis activities. So continued support for the operation of FLUXNET is a necessary and warranted cost if 
we are to achieve the scientifc goals mandated to the carbon cycle science modeling community. 

Figure C.7.2. Time series of fux network size by continent. Panels are for potential sites registered in the network, the 
previous 2007 La Thuile dataset and the potential size of the 2015 FLUXNET dataset, which is being processed, quality 
assured and corrected. 

With regards to modeling work, the fux network is highly representative of most of the world’s ecosystems and 
climate spaces (Figure C.7.3). And statistically, the sparse tower network is representative of much wider regions and 
landscapes than the individual distinct tower footprints, as shown in Figure C.7.1 (Sundareshwar et al., 2007). 
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 Figure C.7.3. The correspondence between FLUXNET sites and the climate space (precipitation and temperature) of 
the Earth. 
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Appendix D. 
Model Intercomparison Project (MIP) 
Benchmarking Needs and Evaluation 
Priorities 
D.1 CMIP6 Historical and DECK 

David M. Lawrence, Veronika Eyring, and Charles D. Koven 

D.1.1 Scientifc Challenges and Opportunities for Model Evaluation 

Te core of the CMIP6 process is a series of experiments, called the Diagnostic, Evaluation, and Characterization 
of Klima (DECK) (Eyring et al., 2016b). Tese runs formalize the set of standard climate model confgurations 
that have historically been used both by the modeling centers and by previous CMIP activities, and comprise four 
experiments: (1) a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., 
Atmospheric Model Intercomparison Project (AMIP)), (2) a coupled land–atmosphere–ocean preindustrial control, 
(3) an abrupt quadrupling of CO2, and (4) an idealized 1% per year CO2 increase. Because of the idealized nature 
of these experiments, they are expected to be conducted in all future CMIP activities. In addition to the DECK 
experiments, all participating CMIP6 models are expected to perform a transient coupled land–atmosphere–ocean 
historical experiment driven by time-varying greenhouse gas concentrations (Historical) and, for ESMs with a fully 
prognostic carbon cycle, a second transient coupled 
land–atmosphere–ocean historical experiment 
driven by CO2 emissions rather than concentrations 
(esmHistorical). Te DECK experiments form the 
hub of all CMIP6 activities (Figure D.1.1), and 
all other CMIP6 experiments may optionally be 
performed by modeling centers. 

Te Historical and esmHistorical experiments have 
provided the strongest basis for benchmarking of 
models, because of their correspondence to the 
period of scientifc observation. In the frst version 
of ILAMB (Mu et al., in prep), all benchmark 
diagnostics for the CMIP5 models were performed 
on either the Historical or esmHistorical (Hofman 
et al., 2014) experiments, both of which are in the 
CMIP6 DECK experiments. Tese include a broad 
suite of remote sensing data, upscaled data such 
as soil maps, and system-integrative data such as 
atmospheric CO2 concentrations. 

Figure D.1.1. Overview of the CMIP6 structure. All modeling 
centers will perform the DECK experiments and may 
optionally perform any other MIPs. Adopted from 
(Eyring et al., 2016b). 
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D.1.2 New Metrics and Benchmarking Approaches 

As with CMIP5 and the frst version of ILAMB, we expect the DECK experiments to form the fundamental 
basis for model benchmarking approaches. One novel application in applying the ILAMB system to the CMIP6 
DECK experiments will be to benchmark the AMIP experiments in addition to the Historical and esmHistorical 
experiments. Tis will allow the diagnosis of land model fdelity as a function of ESM complexity, as that complexity 
changes from the relatively constrained AMIP experiments to the less physically-constrained Historical to the less 
biogeochemically constrained esmHistorical experiments. 

D.2 C4MIP 
Forrest M. Hoffman, Charles D. Koven, 
and James T. Randerson 

D.2.1 Scientifc Challenges and Opportunities for Model Evaluation 

For the coupled climate–carbon cycle model intercomparison project (C4MIP; Friedlingstein et al., 2006, 2014a; 
Jones et al., 2016), several aspects of the experiments create unique opportunities and challenges with respect to 
benchmarking and model evaluation. A key goal of C4MIP is to assess model-to-model variations in the strength 
of carbon–climate and carbon–concentration feedbacks. Tis is accomplished through a factorial experimental 
protocol that separates the radiative efects of CO2 from the biogeochemical efects of CO2. Te use of benchmarks to 
discriminate among strong and weak feedback parameters such as beta-land (bL) and gamma-land (gL) may contribute 
to the development of new models that yield more realistic scenarios of carbon dioxide and temperature change 
during the latter part of the 21st century. Tese models, in turn, may be able to provide more accurate estimates of 
allowable emissions necessary to stabilize greenhouse gases at a particular level, thereby achieving a desired maximum 
temperature change target. 

In this context, the development of “emergent constraint” benchmarks is potentially valuable and important. In 
past work, emergent constraint benchmarks have been developed for gamma-land (gL) using interannual variability 
in atmospheric carbon dioxide and temperature (Cox et al., 2013; Keppel-Aleks et al., 2014) and for the combined 
magnitude of beta-land (bL) and beta-ocean (bO) by assessing model biases relative to the long-term secular trend 
of atmospheric CO2 at Mauna Loa (Hofman et al., 2014; Figure B.3.1). Additional work has suggested that 
the magnitude of NPP responses to atmospheric CO2 may be overestimated in the models because they do not 
properly account for infuences on growth from nitrogen and phosphorus limitation (Wieder et al., 2015b). Further 
quantitative assessment of signifcance to nutrient limitation for contemporary forest responses to global change is 
needed, although model overestimates of the strength of leaf area trends in many areas as compared with satellite 
observations provide evidence for a positive bias in the sensitivity of NPP to CO2 enrichment (Smith et al., 2016b). 

For the C4MIP simulations planned as a part of CMIP6, new simulations forced with historical and future “business 
as usual” CO2 concentrations from 1850 to 2300 will permit exploration of the consequences of contemporary 
biases in the representation of soil processes for the strength of the permafrost-mediated carbon–climate feedback. 
In CMIP5, none of the models had made investments in the representation of permafrost carbon stocks, and the 
idealized 140 year 1% per year CO2 increase (1pctCO2) simulations were not designed to allow for a quantitative 
assessment of soil thaw processes that take several centuries to develop. 

Modeling centers that will contribute simulations to CMIP6 are expected to use ESMs that have improvements in 
the representation of several processes, including permafrost (Koven et al., 2011), nitrogen dynamics, fres (Li et al., 
2013; Kloster et al., 2010), and hydrological processes (Swenson et al., 2012). Some of the models will have a new 
representation of dynamic vegetation, and some improvements are expected in the ability of these models to capture 
observed trends in shrub and tree cover. Furthermore, it is expected that existing aspects of the models will be much 
more highly constrained by existing observations than in prior versions. For example, observations that were not 
available at the time of CMIP5, such as globally-upscaled FLUXNET-based GPP (Beer et al., 2010), can allow the 
models a clearer observationally determined current state of the biosphere to use as their target for development. 
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D.2.2 New Metrics and Benchmarking Approaches 

Te crucial requirement for enhancing predictive capability is the ability to tie the transient behavior of the models 
over the future period to currently-observable quantities. A promising approach here is the identifcation of 
possible emergent constraints, as discussed above, for both system-integrative measures such as atmospheric CO2 

concentration or growth rate, and more process-resolved emergent constraints on diferent aspects of the Earth 
system. Identifying these and evaluating their domain of applicability is crucial to developing a more predictive 
capacity for understanding terrestrial carbon cycle feedbacks. 

D.2.3 Observational Data Needs 

Within the last 5 years, considerable progress has been made in quantifying aboveground live biomass stocks. 
Estimates by Saatchi et al. (2011), and Baccini et al. (2012) have efectively combined optical, LiDAR, and 
microwave remote sensing techniques with plot-level feld observations to create pan-tropical estimates of 
aboveground biomass. Tese estimates point to a considerable reduction in the magnitude of aboveground carbon 
stocks in intact tropical forests compared with earlier estimates from the International Geosphere-Biosphere Program 
in the 1970s and other approaches. 

In parallel, new estimates of soil carbon have become available in permafrost areas (Hugelius et al., 2014) and globally 
from analysis of plot-level soil profle observations. 

Important gaps that remain include accurate quantifcation of litter and coarse woody debris pools, wood and litter 
turnover times, and the representation of organic soil layers. In several biomes, including boreal forests, aboveground 
and belowground litter is mixed with a living moss layer, live roots, and coarse woody debris in organic soil layers 
above the mineral surface. Some ambiguity remains with respect to the representation of organic soils and moss layers 
in existing soil carbon datasets. 

Another critical issue is that many of the aboveground live biomass products have been developed for forests. 
Depending on the methodology, tree and shrub biomass may not be included, making it challenging to compare 
with grid cell averages from models that refect contributions from a combination of diferent plant functional 
types. Also, this means that aboveground biomass estimates in savannas and shrublands have higher uncertainties. 
By disaggregating stocks for diferent plant functional types, C4MIP may enable more accurate comparisons in 
the future. 

Apart from stocks, important carbon cycle analysis has explored the change in forest inventories to estimate rates 
of carbon accumulation (Pan et al., 2011). One important next step that could increase the value of the inventory 
observations is the development of coarsely gridded (~0.5°) carbon change products that do not compromise privacy 
of landowners, yet enable efective model comparisons and validation using remote sensing imagery. Another 
important goal is to harmonize the global stock estimates with carbon fuxes derived from national inventories. 

Higher quality datasets of land cover change, changing human population density, roads, and other measures of 
landscape fragmentation are needed to better quantify disturbance dynamics and migration rates within the models. 

So far, evaluation of model dynamics at hourly and diurnal time scales has not advanced as rapidly as evaluation using 
monthly means. Tis allows model biases that are evident at this timescale (e.g., Ghimire et al., 2016) to persist. 
Tis defciency could be addressed by outputting a set of model fuxes that most highly correspond to measured 
eddy covariance data (NEP, GPP, Re, LH, SH) at sub-daily frequency over the period of fux tower observations 
(approximately 1995–present), for direct comparison. 

Ultimately, a global carbon stock data assimilation system that integrates inventory and plot-level data to create 
maps of stocks and accumulation/degradation rates would be extremely valuable to the ESM community. Key 
requirements for such a system would be the need for wall-to-wall coverage of carbon in all vegetation types 
and accurate accounting of the continuum of carbon among living vegetation (separate above and belowground 
components), litter (separate above and belowground components), coarse woody debris, and soil organic and soil 
mineral pools. Extensive validation would be essential for creating a useful system. Such a system could be forced with 
“fast” response variables such as assimilated GPP, but a fux-driven system also could be a parallel activity because the 
timescales and types of observational constraints that are useful are so diferent. 
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D.2.4 Model Development and Output Requirements 

Currently, the terrestrial components in ESMs have major limitations that may bias carbon cycle feedback 
projections, and further model development is required to alleviate these shortcomings. A crucial limitation is the 
current representation of nutrient cycles, which may provide a strong limitation to growth under elevated CO2, 
while stimulating growth in response to increased soil decomposition in a warmer climate (McGuire et al., 2001). 
Whereas some terrestrial components of ESMs have begun including nitrogen and/or phosphorus cycles (Tornton 
et al., 2007; Wang et al., 2010, Zaehle and Friend, 2010; Yang et al., 2016), uncertainty in these processes is 
extremely high and requires much more consistent benchmarking with observations. Vegetation models currently in 
use also primarily represent woody biomass as a uniform pool with a set turnover time, which barely changes under 
the global change pressures of the 21st century (Koven et al., 2015), whereas in reality wood turnover is a highly 
emergent property resulting from the recruitment, growth, and mortality of individual tree stems. Models that relax 
this “big wood” assumption (Wolf et al., 2011) require more detailed output of forest size distributions and output 
of process variables resolved along an axis of plant size for comparison with observations. Furthermore, vegetation 
models have typically represented vegetation with fxed PFT traits and either fxed PFT geographic distributions or 
highly-parameterized DGVM submodels. Te changes of plant traits and their geographic distributions in emerging 
novel climates are highly uncertain and require much more detailed representation of the processes that govern plant 
functional diversity and biogeography. Other vegetative processes that are poorly represented in current models 
include water transport from roots to stomates and allocation of plant resources to multiple plant tissues. 

In addition to the above weaknesses in the representation of vegetation processes, soil carbon cycling processes are also 
highly uncertain and likely biased in current models. Current terrestrial models assume linear soil carbon tendencies, 
a poorly-founded assumption given that decomposition is driven by microbial activity exhibiting highly nonlinear 
dynamics. Some modeling centers are developing nonlinear soil models (e.g., Sulman, 2014; Wieder et al., 2015a), 
but the jump in complexity and associated parametric and structural uncertainty of these models (Wang et al., 2014; 
Wang et al., 2016) must be met with greatly increased benchmarking datasets. Second, the assumption that the 
near-surface soil environment is a good proxy for whole-soil decomposition is poorly founded, particularly for the 
high latitude soil carbon pool where steep gradients in the soil environment—driven by transport, cryoturbation, 
and bioturbation processes—result in enormous stocks of carbon at depth. Resolving these gradients leads to a sign 
change in the response of the high latitude system with warming (Koven et al, 2011), and it is thus imperative for 
models to systematically resolve these vertical gradients (He et al., 2016) and output biogeochemical variables along 
the vertical axis for benchmarking purposes. Lastly, terrestrial models have typically focused on mineral soils, despite 
the importance of peatlands in both high latitude and tropical ecosystems. Resolving the processes responsible for 
organic soil dynamics, and benchmarking these models with synthesized datasets, is crucial to remove this bias from 
model projections. 

D.3 LS3MIP 
Hyungjun Kim, Jiafu Mao, and Andrew G. Slater 

LS3MIP (van den Hurk et al., 2016), another set of optional CMIP6 experiments, contains a series of coupled and 
of-line land surface experiments designed to illuminate feedback processes as well as provide information about 
model structure and parameters. It is a coordinated efort among the Global Soil Wetness Project 3 (GSWP3), 
Global Land–Atmosphere Coupling Experiment (GLACE) and Earth System Model Snow Model Intercomparison 
Project (ESM-SnowMIP). Each project may have experiments additional to the LS3MIP core. Metrics for LS3MIP 
models are likely to include standard verifcation methods, items aimed at assessing feedbacks, and methods for 
understanding process representation in models. As with all data used for model assessment or data assimilation, 
understanding the uncertainties (both observational error and representativeness error) is required. LS3MIP is largely 
concerned with snow and soil processes, their (often seasonal) timescales, and their impact on the greater climate 
system. To that end, the discussion here revolves around snow and soil. 

Verifcation involves simply comparing model output to observations using standard scores such as bias, root mean 
squared error, mean absolute diference, etc. Tese metrics are designed to demonstrate the skill of the model 
simulation, while not necessarily attributing cause and/or efect. Measures of feedback strength have been proposed 
for soil moisture (Koster et al., 2004), snow (Xu and Dirmeyer, 2011) and albedo (Qu and Hall, 2006, 2007). Te 
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relationship between large scale snow variables and atmospheric circulation indices such as the Arctic Oscillation 
have been used (Furtado et al., 2015). Deciphering specifc land model weaknesses may best be achieved by making 
assessment independent of forcing data and/or initial conditions; understanding functional relationships between 
variables provides a likely path. 

A further consideration is that of model output time and spatial scale. ILAMB has primarily used monthly mean 
data from land models, often interpolated from their native grid to a standard grid, which can lead to limitations. 
Future output may consider derived diagnostic variables that are integrative or decipher fner timescale processes— 
for example, daily runof from river basins would allow for hydrograph recession analysis that gives more insight to 
surface vs. groundwater runof processes, or model systems may store the fnal day-of-year of the seasonal snowpack, 
which might be defned as a 60-day or more continuous snow cover (Slater et al., 2013) or something similar. 

Snow cover extent data include the NOAA Climate Data Record based on the Rutgers historic snow extent 
(Robinson et al., 1993) dating back to 1967. More recent, higher-resolution records of snow cover are available: 
NOAA’s Interactive Multisensor Snow data (4 km since 1997) and the NASA EOS era of data (1999–present) using 
MODIS sensors at 500 m resolution (Hall et al., 2006, 2010). At the global level, our knowledge of snow cover is 
fairly good at least in a relative sense (one year compared to another), though exact timing (to the day) in marginal 
snow cover and mountainous regions still contain uncertainty. An example of analysis of snow extent using the 
CMIP5 models was performed by Brutel-Vuilmet et al. (2013), where the emphasis was whether models capture 
the observed multi-decadal trend of decreasing extent in the spring season. Along with area covered, the date of 
fnal melt can be indicative of melt rate relative to available energy. Te choice of metric for assessing snow extent 
can be important; for example, Toure et al. (2016) use the Nash-Sutclife Efciency (NSE) score and correlation 
coefcient (r) for evaluating the time series of snow cover in CLM4. However, for a time series containing a cyclic 
component, NSE and r will return high values so long as the seasonal cycle is reproduced, therefore not elucidating 
model capability. 

SWE at the global scale, in the opinion of the author (Slater), remains an unknown quantity for the purposes of 
rigorously verifying models. Station-based interpolations (Brown and Brasnett, 2010) and products applying remote 
sensing techniques (e.g., GlobSno [Pulliainen, 2006]) give broad estimates and may give indications of model results 
that might be largely erroneous but that are not yet of the standard to suggest what it “correct”—this remains a gap 
in our knowledge. Because of poor SWE information at large scales and in mountain regions, there is a long-term 
initiative underway among the snow community to improve this situation, including the advance of satellite sensors 
and coordinated data assimilation systems to NASA’s Decadal Survey. Spatial heterogeneity of snow depth and SWE 
should urge caution when comparing point measurements to gridcell averages; poor comparisons can be made, for 
example with SNOTEL data (Toure et al., 2016). 

Functional relationships have been used to assess model abilities. To separate the infuence of surface meteorology 
forcing from model structural or parameter error, Slater and Lawrence (2013) used a simple empirical model of 
permafrost driven by surface meteorology of respective CMIP5 models. Te relative position and trajectory of 
permafrost diagnosed directly compared to the empirical model can inform whether land models are too warm 
or cold. Similarly, the impact of modeled snow insulation was assessed by looking at diferences in air and soil 
temperatures (Koven et al., 2013) and extended to account for snow depths and relative climates (Slater et al., 
submitted). 

Te International Soil Moisture Network (http://ismn.geo.tuwien.ac.at/ismn/) curates a variety of in situ and 
satellite derived estimates of soil moisture which can be used for assessing modeled water budgeting; e.g., partitioning 
between runof, evaporation, and storage. Standard comparisons of moisture levels are useful (Xia et al., 2015b), 
although innovative methods to understand sources of simulation uncertainty are even more desirable (Nearing et al., 
2016). Total water storage from gravity anomalies (GRACE) can provide a broader integrative view of model abilities 
(Kim et al., 2009; Swenson and Lawrence, 2015). 

Shallow soil temperature data (< 5 m, often < 1 m) sufers from heterogeneity issues, and is often sporadic, poorly 
distributed, and sometimes not reported as a standard variable even when measured. As an example, historic soil data 
from Russia is often measured at disturbed agricultural plots that are not representative of the local vegetation type. 
Te rate of heat uptake over time within the terrestrial surface and actual temperatures at depths greater than 10 m 
are available only from a variety of boreholes across many diferent climate zones, from tropical to polar (Cuesta-
Valero et al., 2016). 

http://ismn.geo.tuwien.ac.at/ismn
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Albedo retrievals from satellites, such as the NASA-sponsored MOD43 series of products (Schaaf et al., 2002), have 
proved useful in assessing prognostic albedo in models as well as detecting weaknesses, including poor representation 
of canopy snow interception (Tackeray et al., 2015). 

Also, LS3MIP includes additional experiments using four alternative meteorological forcing data sets: GSWP3 
(Kim et al., in preparation), the Princeton forcing (Shefeld et al., 2006), WFD and WFDEI combined (allowing 
for ofsets as needed [Weedon et al., 2014]) and the CRU-NCEP forcing used in TRENDY (Sitch et al., 2015). 
Te model outputs will allow assessment of the sensitivity of land-only simulations to uncertainties in forcing 
data. Kim (2010) utilized a similarity index (Ω; Koster et al., 2000) to estimate the uncertainty derived from an 
ensemble of precipitation observation data sets relative to the uncertainty from an ensemble of model simulations for 
evapotranspiration and runof. It was found the uncertainty of forcing precipitation propagates in a relatively reduced 
way to evapotranspiration and an amplifed way to runof (Kim, 2010; Figure D.3.1). 

Figure D.3.1. Uncertainty in simulated evapotranspiration and runoff introduced by different land surface schemes 
in GSWP2 are larger than precipitation uncertainty-induced uncertainty by 28% and 40% in the similarity index (Ω) 
globally. 

D.4 LUMIP 
David M. Lawrence, Elena Shevliakova, and Atul K. Jain 

Te challenge of evaluating efects of land-use and land-cover change in the CMIP6 Land Use Model 
Intercomparison Project (LUMIP; Lawrence et al., 2016) is threefold: 

1. Land use and land cover change (LULCC) is an external forcing that many CMIP6 experiments (e.g., DECK, 
historical, future scenario, and LUMIP) will be using, but the forcing data itself is complex, uncertain, and 
challenging to interpret and use with climate models and ESMs. Analysis of CMIP6 experiments should begin 
with an evaluation of the consistency between the CMIP6 LULCC scenario and its implementation in diferent 
ESMs (e.g., agricultural areas, extent of diferent crops, area and amount of wood harvested). Additional 
benchmarks need to be developed for stand-alone LUMIP experiments focused on efects of management 
on physical and biogeochemical states. Evaluation or benchmarking the CMIP6 LULCC reconstruction 
itself is crucial in attributing sources of ESM uncertainty/biases, particularly in regions with a long history or 
intensifcation of LULCC. 

2. ESMs have dramatically diferent LULCC components, including types of land-use and land-management 
practices. Many LULCC parameters are not informed by data and do not capture historical patterns and practices 
(e.g., fraction of harvested residue and its fate). Furthermore, the relative importance of diferent types of land use 
and land management (e.g., wood harvest, prognostic crops, irrigation, fertilization, shifting cultivation, pasture 
representation, tilling, etc) and representation of response to disturbances are not fully understood from either 
observational or modeling perspectives. 



100 

2016 ILAMB WORKSHOP REPORT

 

   
  
  
  
  
 

 

 

 

 

 

 
 

3. LULCC afects many land processes and properties. Detection and attribution of LULCC efects are the major 
challenges for both models and observations, including impacts on 

» atmospheric CO2, 
» ecosystem processes and states, 
» hydrology, 
» soil carbon and nutrient biogeochemistry, 
» vegetation dynamics, and 
» surface energy and BGC fuxes. 

D.4.1 Land-use Metrics 

A goal of LUMIP is to establish a useful set of model diagnostics that enables a systematic assessment of land use-
climate feedbacks and improved attribution of the roles of both land and atmosphere in terms of generating these 
feedbacks. Te need for more systematic assessment of the terrestrial and atmospheric response to land-cover change 
is one of the major conclusions of the LUCID studies. Boisier et al. (2012) and de Noblet-Ducoudré et al. (2012) 
argue that the diferent land use–climate relationships displayed across the LUCID models highlight the need to 
improve diagnostics and metrics for land surface model evaluation in general and the simulated response to LULCC 
in particular. Tese sentiments are consistent with recent eforts to improve and systematize land model assessment. 
LUMIP will promote a coordinated efort to develop biogeophysical and biogeochemical metrics of model 
performance with respect to land-use change that will help constrain model dynamics. Tese eforts dovetail with 
expanding emphasis in CMIP6 on model performance metrics. 

Several recent studies have utilized various methodologies to infer observationally based historical change in land 
surface variables impacted by LULCC or divergences in surface responses between diferent land-cover types 
(Boisier et al., 2013, 2014; Lee et al., 2011; Lejeune et al., 2016; Li et al., 2015; Teuling et al., 2010; Williams et 
al., 2012). For example, Boisier et al. (2013) took MODIS albedo at 0.05° resolution and derived monthly albedo 
climatologies for croplands and four other land cover types. Tey then reconstructed the changes in surface albedo 
between preindustrial times and present-day by combining these climatologies with the land cover maps of 1870 
and 1992 used in individual land models that participated in LUCID. Te reconstructed albedo changes were then 
compared with the simulated albedo changes in the models. Because the same land cover change map is used in 
the reconstruction and in the simulations, one can infer that the diferences in albedo change can be attributed to 
limitations in the parameterization of albedo in the models. 

Another promising area for LULCC metrics development is with paired tower site analyses. Paired sites typically 
have one fux tower located in a forest and one in nearby open land (grassland, cropland, or open shrub). Diferences 
in fuxes and states for these paired sites can be taken as representative of the impacts of local land cover change 
(deforestation in these cases). Lee et al. (2011), Chen and Dirmeyer (2016), and Burakowski et al. (2016) have all 
utilized paired sites to assess the impact of LULCC on surface temperature and to identify what processes are driving 
changes in surface temperature. Two important fndings from these analyses are that daytime and nighttime responses 
difer, even in terms of their sign and that at diferent sites, the impact of LULCC can be attributed to diferent causes 
or combinations of causes (e.g., changes in roughness, albedo, and Bowen Ratio). 

Several sources of data and methods with promise for LULCC metric development have been identifed, including 
the following: 

» Paired tower sites with known LULCC activities 

» Food and Agriculture Organization of the United Nations (http://www.fao.org/statistics/databases/en/) and 
national (e.g., USDA Forest Service data, National Agricultural Statistics Service data) statistics 

» Inferred impacts derived from any global dataset (e.g., albedo; see Boisier et al., 2013; Lejeune et al., 2016); 
compare nearby pixels that are mostly forest to mostly open land 

» Water storage (Landerer and Swenson, 2012) and discharge from perturbed (managed) and unperturbed basins 
(Milly et al., 2014) 

» Land use carbon fuxes and their components from bookkeeping models (Houghton, 2013; Richter and 
Houghton, 2011), global carbon project data sets (Le Quéré et al., 2015), RECCAP synthesis project 
(http://www.globalcarbonproject.org/reccap) 

http://www.globalcarbonproject.org/reccap
http://www.fao.org/statistics/databases/en
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» Impact of LULCC in South and Southeast Asia (Adachi et al., 2011; Cervarich et al., 2016; Tao et al., 2013; Piao 
et al., 2012) 

» Impact of LULCC on soil carbon and nitrogen; Review Analysis (Smith et al., 2016a) 

» Global aboveground carbon estimates for both forest and non-forest biomes during the past two decades from 
satellite passive microwave observations (Liu et al., 2015) 

» Fire emissions (van der Werf et al., 2010) 

D.4.2 Land-only Versus Coupled Model Assessment 

Importantly, the availability of both land-only and coupled historic simulations in CMIP6 will enable a more 
systematic assessment of the roles of the land and atmosphere in simulated responses to LULCC. With both coupled 
and uncoupled experiments with and without land-use change, LUMIP will be able to systematically disentangle the 
simulated LULCC forcing (i.e., changes in land surface water, energy, and carbon fuxes due to land-use change) from 
the response (i.e., changes in climate variables such as temperature and precipitation that are driven by LULCC in 
surface fuxes). 

D.4.3 Subgrid Data Reporting and Analysis 

New output data standardization for LUMIP will also enrich and expand analysis of model experiment results. 
Particular emphasis within LUMIP is on archiving subgrid land information in CMIP6 experiments, including 
LUMIP experiments and other relevant experiments from ScenarioMIP, C4MIP, and the CMIP historical simulation. 
In most land models, physical, ecological, and biogeochemical land state and surface fux variables are calculated 
separately for several diferent land surface types or land management “tiles” (e.g., natural and secondary vegetation, 
crops, pasture, urban, lake, glacier). Frequently, including in the CMIP5 archive, tile-specifc quantities are averaged 
and only grid-cell mean values are reported. Consequently, a large amount of valuable information is lost with respect 
to how each land-use type responds to and interacts with climate change and direct anthropogenic modifcations of 
the land surface. LUMIP has developed a protocol and associated data request for CMIP6 for selected key variables 
on multiple land-use tiles (i.e., primary and secondary land, crops, pastureland, and urban). 

Several recent studies have demonstrated that valuable insight can be gained through analysis of subgrid information. 
For example, Fischer et al. (2012) used subgrid output to show that not only is heat stress higher in urban areas 
compared to rural areas in the present day climate, but also that heat stress is projected to increase more rapidly in 
urban areas under climate change. Malyshev et al. (2015) found a much stronger signature of the climate impact of 
LULCC at the subgrid level (i.e., comparing simulated surface temperatures across diferent land-use tiles within 
a grid cell) than is apparent at the gridcell level. Subgrid analysis can also lead to improved understanding of how 
models operate. For example, Schultz et al. (2016) showed, through subgrid analysis of CLM, that the assumption 
that plants share a soil column and therefore compete for water and nutrients has the side efect of an efective soil 
heat transfer between vegetation types, which can alias into individual vegetation type surface fuxes. Furthermore, 
reporting carbon pools and fuxes by tiles will enable assessment of land-use carbon fuxes not only with the standard 
method of diferencing land-use and no land-use experiments, but also within a single land-use experiment, utilizing 
bookkeeping approaches (Houghton et al., 2012), which allows a more direct comparison of observed and modeled 
carbon inventories. 

D.5 MsTMIP 
Christopher R. Schwalm 

Te North American Carbon Program (NACP) Multi-scale Synthesis & Terrestrial Model Intercomparison Project 
(MsTMIP) is a coordinated model intercomparison and evaluation efort designed to improve the diagnosis and 
attribution of carbon sources and sinks at local to global scales (Huntzinger et al., 2013). MsTMIP is distinct from 
CMIP because it focuses on the land component of ESMs. Tere are currently about 20 participating state-of-the-art 
LSMs in MsTMIP; each executed in ofine mode using a standardized protocol (Wei et al., 2014a,b). Tis key design 
tenet of MsTMIP mandates that forcing data, boundary conditions, steady-state spin up, and sensitivity simulations 
are uniform across all models. Tus, inter-model spread is attributable solely to process representations, which permits 
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a skill-to-structure mapping. Tat is, since biophysical and biogeochemical representations are the only diferences 
across models, changes in model skill can be attributed to model structures (Huntzinger et al., 2014). 

MsTMIP is divided into two phases. Te now-complete Phase I (Huntzinger et al., 2013; Wei et al., 2014a,b) was 
based on a set of retrospective semi-factorial runs where historical time-varying climate, CO2 concentration, land 
cover, and nitrogen deposition are sequentially “turned on” after steady-state. Each model completed a set of fve 
runs with the fnal run having  all factors enabled. Phase I runs were global (0.5° spatial resolution) from 1901 to 
2010 at a monthly time step. Forcing data were based on the CRU-NCEP product with sub-monthly scale variability 
from the NCEP reanalysis merged with the CRU monthly felds (Wei et al., 2014a,b). Te Phase I results from 15 
LSMs are available online (Huntzinger et. al., 2016). In Phase I each model run was performed by the corresponding 
modeling team. 

Phase II difers from Phase I in several ways. It focuses on the future, from present to the end of the 21st century 
(2011 to 2100), and forcing data are based on downscaled ESM meteorological felds from CMIP5. Each LSM is 
forced with 10 plausible climate futures using all possible combinations of two RCPs (4.5 and 8.5) and fve ESMs 
(CMIP5 historical runs) chosen to refect a range of temperature changes. Te Phase I and Phase II forcing data 
boundary is smoothed to remove any discontinuities and to provide for a single time trajectory from 1901 to 2100. 
As the same set of semi-factorial runs is preserved in Phase II, 40 runs are required for each model. Tere are no 
additional steady-state runs; Phase II transient runs are initialized with the 2010 states from Phase I. In addition, 
models are executed centrally on the NASA JPL Model Farm, which contains a subset of all MsTMIP LSMs run with 
both standardized protocol and output code. Te Model Farm ofers greater fexibility than relying on separate teams 
to run their models, and it reduces fnancial, logistical, and interoperability challenges. 

To date, MsTMIP simulations were used to (1) diagnose global patterns of soil organic carbon (Tian et al., 2015), 
(2) understand climatic vs. anthropogenic controls on evapotranspiration (Mao et al., 2015), (3) aggregate individual 
model results with benchmark-driven model ensemble integration (Schwalm et al., 2015), (4) quantify the net 
climate efect of the terrestrial biosphere (Tian et al., 2016), and (5) evaluate the impact of climate extremes on 
carbon cycling (Zscheischler et al., 2014). With retrospective Phase I and predictive Phase II simulations, MsTMIP 
can serve as a unifed platform to evaluate how model structural diferences, key controls of carbon metabolism, and 
plausible climate futures alter future carbon dynamics. 

D.6 PLUME-MIP 
Anders Ahlström 

PLUME-MIP addresses the responses of vegetation and land surface models to environmental drivers under current 
and future projections, and attempts to advance the state-of-the-art in attributing modeled carbon cycle responses to 
underlying mechanisms, as represented in the models. 

Te project is divided into two main tiers as follows: 

» Tier 1 involves standard transient simulations using bias-corrected CMIP5 climate outputs for the recent past and 
future under a set of CO2 concentration pathways. Te outcomes will be used to evaluate the diferent responses of 
the terrestrial C cycle to climate projections and CO2 pathways. 

» Tier 2 adopts a recently developed transient version of the Traceability Framework (TF) (Xia et al., 2013) to 
identify underlying causes of model diferences in their responses to current and future climate forcing. Te 
framework is designed to facilitate model intercomparisons by tracing components and their diferences across 
models. Using the TF, Tier 2 will focus on locating the main carbon cycle processes that are responsible for causing 
diferences among models and between models and data. 

Currently Tier 1 simulations are nearly complete, and Tier 2 simulations are being performed or prepared. 
Methodology for applying the transient TF has been developed, tested, and partially published (Ahlström et al., 
2015). In our analysis, we aim to answer two main research questions: (1) what is the relative role of main ecosystem 
processes in inter-model diferences today and in the future? and (2) which processes are responsible for model–data 
inconsistencies and biases? 
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To answer (1), we will utilize results from Tier 1 and Tier 2 in combination with empirical data products on plant 
productivity, carbon pools, and turnover in a novel and transparent analysis. Te transient TF can be used as an 
emulator that perfectly represents the fows of carbon between carbon pools while maintaining the model’s structure. 
Tis way we can exchange processes (fuxes) between models (e.g., NPP, vegetation turnover, soil respiration rates) to 
identify what processes contribute to inter-model diferences. 

For (2), we will utilize TF to replace simulated processes with empirically derived data products (e.g., NPP, turnover, 
and respiration rates) and evaluate the resulting carbon pools against empirical datasets. Te TF allows us to replace 
one or several processes on which independent data exists and recalculate carbon pools while preserving model 
structure and functioning from remaining processes. Te resulting carbon pools will be evaluated against independent 
data using ILAMB benchmarking resources with the overall aim to fnd the processes (fuxes) and functions 
(e.g., soil respiration rates) responsible for model–data inconsistencies while identifying potential compensation 
between processes. 

Both tiers and analysis steps (1) and (2) contribute to the goal of isolating the processes responsible for 
diferences between models and their future projections and between models and data, using a transparent and 
systematic methodology. 
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Appendix E. 
Integration with Uncertainty 
Quantifcation Frameworks 
E.1 An Uncertainty Quantifcation Framework 

Designed for Land Models 
Maoyi Huang, Zhangshuan Hou, Jaideep Ray, Laura Swiler, 
L. Ruby Leung 

Current-generation land models, such as the Community Land Model (CLM) and the Accelerated Climate Modeling 
for Energy Land Model (ALM), include numerous sub-models and associated parameters. Te high-dimensional 
parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system model 
predictions needed to assess environmental changes and risks. In practice, many parameters in land surface models 
are expected to vary from site to site and are poorly estimated or subjectively assigned. Tere is a strong need to 
calibrate/optimize the parameter values; however, with the high-dimensional parameter space, systematic calibration 
at numerous feld sites is mission impossible because of the computational demand and the ill-posed nature of the 
inverse problems. 

Tere have been attempts to calibrate LSMs. Because of their computationally expensive nature, ongoing eforts also 
target the construction of emulators (surrogate models) that map LSM’s outputs to its inputs. Te emulators can then 
be used (instead of the LSM itself ) in sensitivity analysis, parameter estimation, propagation of parametric uncertainty 
and other many-query applications. Sargsyan et al. (2014) attempted to construct surrogates for fve variables of 
interest from CLM4 with prognostic carbon and nitrogen modules turned on (i.e., CLM4-CN) using Bayesian 
compressive sensing (BCS) in combination with polynomial chaos expansions (PCEs). Müller et al. (2015) used 
an RBF to create a surrogate of the data–model mismatch and estimated 11 parameters of the CLM4.5’s methane 
module using a global optimization method called DYnamic COordinate search using Response Surface models 
(DYCORS) (Regis and Shoemaker, 2007). Gong et al. (2015) used adaptive surrogate-based optimization to perform 
parameter estimation of 12 independent parameters in the CLM deterministically using six observables jointly. 

Probabilistic methods, based on Monte Carlo simulations, have been used to calibrate LSMs. (Lo et al., 2010) 
used Monte Carlo techniques to estimate hydrological parameters of Community Land Model (CLM) 3.0, while 
Prihodko et al. (2008) calibrated Simple Biosphere Model version 2.5. Järvinen et al. (2010) and Solonen et al. 
(2012) used multi-chain Markov Chain Monte Carlo (MCMC) methods to address the formidable computational 
cost of calibrating the parameters of a climate model, while Zeng et al. (2013) used the same approach to calibrate 
the parameters of a crop module in CLM version 3.5. Bilionis et al. (2015) used a sequential Monte Carlo method 
to calibrate 10 parameters of the Crop module in CLM4.5. Tian and Xie (2008) used an unscented Kalman flter to 
calibrate CLM 2.0. 

Signifcant progress has been made toward quantifying uncertainty associated with hydrologic parameters in the 
CLM and calibrating those parameters using an uncertainty quantifcation (UQ) framework. Te framework 
features importance sampling, exploratory data analyses, HPC-enabled numerical simulations, classifcation of a 
complex system into a few relatively homogeneous regions, and Bayesian inversion using Markov Chain Monte Carlo 
techniques. Te UQ framework has been applied to fux towers and watersheds under diferent climate and site 
conditions in the contiguous United States. 
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By performing numerical simulations using an efcient stochastic sampling-based sensitivity analysis approach, 
linear, interaction, and high-order nonlinear impacts of hydrologic parameters in CLM on simulated surface water 
and energy fuxes are analyzed via statistical tests and stepwise backward removal parameter screening at 13 selected 
fux tower sites (Figure E.1.1) and 431 river basins (Figure E.1.2) from the Model Parameter Estimation Experiment 
(MOPEX) in the United States (Hou et al., 2012; Huang et al., 2013; Ren et al., 2016). Based on this analysis, 
a subset of hydrological parameters (4 out of 10 being analyzed) have been identifed to have signifcant impacts 
on latent heat, sensible heat, and runof generation, and the results are consistent across all sites, as shown in 
Figure E.1.3. Te reduction in parameter space through such an analysis establishes the foundation for inverse 
modeling, or parameter calibration. As a frst attempt, Sun et al. (2013) implemented a single-chain Markov-Chain 
Monte Carlo (MCMC) inversion procedure with CLM and demonstrated that it was feasible to invert CLM 
hydrologic parameters at the site level, when observed fuxes and streamfow are used to constrain the parameters. 
However, the computational expense of CLM makes a single-chain MCMC method not plausible, as the simulations 
have to be conducted sequentially. 

Figure E.1.1. Geographic locations of the selected fux towers. Adopted from Hou et al. (2012). 

Figure E.1.2. Classes of the 431 MOPEX basins classifed using parameter sensitivity scores with runoff as the response 
variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016). 
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 Figure E.1.2. Classes of the 431 MOPEX basins classifed using parameter sensitivity scores with runoff as the response 
variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016). 

To address this issue, there is a need to reduce computational costs and utilizing high-performance computing 
infrastructure. A Surrogate-based Markov chain Monte Carlo (MCMC)-Bayesian inversion approach has been 
developed for CLM and tested at 12 fux tower sites (Huang et al., 2016; Ray et al., 2015). Te procedure starts 
with building surrogates using CLM4 simulations driven by perturbed parameter sets using a space-flling quasi-MC 
sampling approach. Te surrogates, after careful validation and selection, are then used as computationally efcient 
alternatives to the CLM numerical simulator, for improving the estimates of the hydrological parameters, and 
therefore LH predictions, with quantifed uncertainties. Given the large number of MOPEX basins and their wide 
geographic extent, parameter signifcance scores are used to classify the basins into diferent classes by grouping basins 
with similar parameter signifcance patterns into six unique classes. Each MOPEX basin can be assigned to a unique 
class, and then appropriate unknown parameters are to be included in the calibration. Te unknown parameters are a 
reduced subset which makes the model calibration/optimization feasible (Ren et al., 2016). Eforts to further alleviate 
computational burdens to the model optimization eforts are on-going by evaluating similarity/transferability of 
parameters within each class. 

However, it has been recognized that surrogate-based inversion is intrinsically subject to errors as a result of 
approximating a complex model using simplifed functions, not to mention the potential risk of failures in building 
the surrogates due to the complex relationships between model parameters and outputs of interest (Huang et al., 
2016). To address this limitation, a Scalable Adaptive Chain Ensemble Sampling (SAChES) method has been 
developed that seeks to collect the samples required to construct the probability density functions by combining 
the scalability of Diferential Evolution Monte Carlo (DE-MC), a genetic algorithm, with the sampling efciency 
of adaptive Metropolis-Hastings sampling. Te core hypothesis is that the parameter space can be efciently 
searched using a large number of loosely coupled Markov chains. SAChES has been integrated with CESM1.2 (the 
code foundation of ACME) (Swiler et al., 2015). Te capability of SAChES to invoke a large number of chains 
simultaneously has its obvious attraction in high-dimensional inversions, i.e., when a gridded feld, rather than a 
few model parameters, has to be estimated. Some studies have begun to explore whether SAChES could be used to 
estimate saturation felds using ground penetrating radar measurements, as well as to estimate saturation and porosity 
felds using seismic and electromagnetic response observations (Bao et al., 2016), with potential applications to 
highly spatially resolved models such as the coupling between CLM and the reactive transport code PFLOTRAN 
(Hammond et al., 2014). 

To summarize, the global sensitivity analysis and Bayesian inversion procedures are useful tools for parameter 
estimation with uncertainty bounds, as well as for identifying potential model structural errors by extensively 
exploring the parameter space and comparing discrepancies between model predictions and observations. To 
successfully integrate such tools with land models, model reduction techniques are critically needed to make the 
problem tractable. Integrating such tools with the benchmarking datasets available in the International Land Model 
Benchmarking (ILAMB) framework (e.g., data from AmeriFlux network, streamfow gages, data products from 
the Moderate Resolution Imaging Spectroradiometer), would help the community to better constrain land model 
parameters and identifying model structural and parametric uncertainties. Although only being integrated with the 
CLM, the tools are general and therefore portable to other land models. 
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E.2 Use of Emulators in Uncertainty Quantifcation 

George S. Pau 
Quantifying uncertainties in land surface models (LSMs) is an important aspect of benchmarking exercises. 
Since observation data is inherently uncertain, one potential robust verifcation approach involves comparing 
the probability density functions of the observation data and the model outputs. Te difculty of quantifying 
the uncertainties in the observation data has been addressed elsewhere in this report. Here we focus on the task 
of quantifying the probability density functions of the model outputs. In particular, we consider the case where 
the nonlinearity in the model response necessitates the use of robust uncertainty quantifcation (UQ) techniques, 
especially Monte Carlo (MC) methods. Accurate statistical descriptions of model outputs also allow for more 
informative comparison between diferent LSMs. 

MC methods require many evaluations of a LSM, each of which can be computationally challenging if modeled at 
the scale of the observation data. Brute force application of MC methods is typically infeasible even with existing 
high-end computing ecosystems because of the signifcant computational resources required. Tere is thus a need 
to develop MC methods that do not require a large number of LSM evaluations. Fortunately, there are many recent 
advances in MCMC methods and particle-based MC methods. Some new efcient methods include implicit particle 
flter (Chorin and Tu, 2009), stochastic Newton MCMC method (Martin et al., 2012), and MCMC methods that 
use Gibbs samplers (Kuczera et al., 2010), diferential evolution samplers (Laloy and Vrugt, 2012), afne invariant 
ensemble samplers (Goodman and Weare, 2010) and surrogate-based samplers (Goodwin, 2015; Ray et al., 2015). 
Tese methods have varying degrees of parallelism that afect their efcient deployments on supercomputers. Apart 
from the surrogate-based samplers, the number of LSM evaluations is still typically very large. 

In surrogate-based MC methods, surrogate models, built based on a limited number of LSM evaluations, are used 
as efcient emulators of the LSM. An ofine-online computational framework allows UQ analyses to be performed 
efciently at the desired spatial and temporal scales using surrogate models (online stage) through an amortization 
of the construction cost of these models (ofine stage). Te ofine stage is computationally intensive because of the 
need to obtain outputs from a large number of LSM evaluations. Te construction of the surrogate models from 
these outputs can also be computationally and memory intensive. An additional advantage of this computational 
framework is its efcient utilization of heavily shared high-performance computing resources. By executing the ofine 
stage during the of-peak cycles, we are able to execute the online stage even during peak cycles. We can also execute 
the online stage on smaller machines with smaller user base and thus better throughput. 

Tere are many approaches to constructing an appropriate surrogate. However, this task difers from the data mining 
challenges in the industry. First, we are emulating computationally expensive numerical models that are typically 
deterministic. We need a strong theoretical framework for using statistical emulators to describe results from these 
numerical models. Second, since we are emulating physical systems, outputs from the surrogate models must obey 
the constraints inherent in the physical systems. Tird, we are typically data-limited; although each high-resolution 
numerical simulation produces a lot of data for a given scenario, the number of scenarios that we simulated is 
relatively small. 

Several promising surrogate-modeling methods are currently being used to emulate the output of LSMs. For scalar 
quantities, popular methods include Gaussian process regression (Drignei et al., 2008; Edwards et al., 2011; Holden 
et al., 2010; Olson et al., 2012; Ray et al., 2015; Rougier et al., 2009), and polynomial chaos expansion (Liu et al., 
2016b; Ray et al., 2015; Sargsyan et al., 2014). However, these methods cannot be directly applied to emulate feld 
solutions due to the sheer number of outputs from high-resolution LSMs. A typical approach combines dimensional 
reduction techniques, such as proper orthogonal decomposition, with the scalar approaches mentioned above 
(Higdon et al., 2008; Liu et al., 2016a; Wilkinson, 2011). However, statistical models may have difculties capturing 
the complex and nonlinear behavior of a LSM. In these cases, a coarse resolution numerical model can be used as a 
surrogate model. Downscaling techniques are then used to downscale the resulting outputs onto a high-resolution 
grid (Pau et al., 2014, 2016; Walton et al., 2015). 
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Te use of surrogate models within an UQ framework poses several challenges. In particular, the required accuracy 
of a surrogate model depends on the chosen UQ method. For example, a two-stage Monte Carlo method (Ma et 
al., 2008) allows the use of a surrogate model with lower fdelity since it is only used to guide the selection of the 
parameters for performing a full model evaluation. However, a poorly constructed surrogate model can lead to a large 
number of full model evaluations, severely reducing the beneft of using a surrogate model. Directly substituting the 
full model in a MC method by a surrogate model will provide greater efciency gain. However, the analysis can be 
meaningless if the surrogate model failed to adequately and consistently give accurate predictions within the range of 
uncertainty of the parameters (Goodwin, 2015). Increasing the number of training samples can increase the accuracy 
of the surrogate models but it reduces the net computational gains. A potential strategy is to choose a MC method 
that better constrains the parameter space in which the surrogate model needs to be accurate, thus reducing the 
number of training samples required (Liu et al., 2016b). 

In conclusion, surrogate models have potential to reduce the computational cost of a MC method. However, 
more research is still needed to ensure the use of surrogate models within a MC method is robust, efcient, and 
theoretically sound. 

E.3 Uncertainty Quantifcation in the ACME 
Land Model: Summary 
Daniel M. Ricciuto, Khachik Sargsyan, Dan Lu, Jiafu Mao, 
Peter Thornton 

Uncertainty about land surface processes contributes to a large spread in model predictions about the magnitude 
and timing of climate change in the 21st century. LSM’s incorporate a diverse array of processes across various 
temporal and spatial scales, and they include a large number of uncertain parameters. Traditionally, land surface 
model output uncertainty has been estimated using multimodel ensembles such as CMIP5 (Friedlingstein et al., 
2014b) or MsTMIP (Huntzinger et al., 2013), which combine uncertainties related to model structure, boundary 
conditions, and parameters. Improved understanding about the sensitivity of model outputs to specifc parameters 
and processes, as well as the contribution of parametric uncertainties to overall prediction uncertainty, is of critical 
importance not only for directing future model development and measurements, but also for increasing the accuracy 
of future predictions.UQ methods that perform such analyses have advanced considerably in the last decade and 
may be successfully applied to complex LSMs. Ultimately, land-surface observations and benchmarks, including 
those from ILAMB, could be included in a UQ framework to optimize model parameters and further improve 
model predictions. 

Global sensitivity analysis (GSA) or variance-based decomposition is a popular method to quantify the efects 
of model parameter uncertainties on specifc quantities of interest (QoIs). Although a number of GSA methods 
exist (e.g., Sobol, 1993; Saltelli et al., 2006), many simulations are generally required, which is rapidly becoming 
computationally infeasible as the number of parameters increases. In complex land surface models, simpler one at 
a time (OAT) approaches, which vary parameters around nominal values of variables and do not require very large 
ensembles, have been applied (e.g., Zaehle et al., 2010). However, these results can be misleading if parameter 
interactions are important or if sensitivities vary signifcantly over the full multidimensional parameter space (Saltelli 
et al., 2004). Surrogate models, which use a set of basis functions to reproduce the behavior of a given model for 
a given QoI, can be used to estimate sensitivities with low computational cost. Tese surrogate models are often 
constructed using polynomial chaos (PC) expansions, which have gained popularity recently as convenient machinery 
for uncertainty representation and propagation (Ghanem and Spanos, 1991; Le Maitre and Knio, 2010), allowing 
analytical extraction of both single-parameter and joint-interaction sensitivities. However, for high-dimensional 
problems with many model parameters, the construction of the surrogate still requires an infeasible number of model 
evaluations because the number of basis terms is prohibitively large. Tis problem is resolved in this study by using 
a new algorithm that iteratively searches for the best set basis terms. Te new algorithm, Weighted Iterative Bayesian 
Compressive Sensing (WIBCS), builds upon earlier PC surrogate-based sensitivity analysis (Sargsyan et al., 2014). 

https://predictions.UQ
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Here we apply this new method to perform GSA at 96 FLUXNET sites (Figure E.3.1) using the initially committed 
version 0 of the DOE Accelerated Climate Model for Energy (ACME), the land component of which is largely based 
on the CLM 4.5 (Oleson et al., 2013). Tese 96 sites cover a large range of climates, plant functional types, and other 
land surface characteristics. A total of 65 model parameters related to biogeophysics and biogeochemical cycling were 
varied randomly within uniform ranges justifed by literature or expert judgment. In order to construct site-specifc 
surrogate models, 3000 model simulations were performed for each site on the Titan supercomputer at the Oak 
Ridge Leadership Computing Facility, examining 5 QoIs: gross primary productivity, latent heat fux, net ecosystem 
exchange, vegetation biomass and soil organic matter carbon. We fnd for all PFTs, generally 15 or fewer parameters 
drive most of the variance in the outputs. Within a PFT for a given output, generally the same parameters appear as 
sensitive at each site while diferences in parameters are evident among PFTs and diferent outputs (Figure E.3.2). 
Te sensitivities of some parameters vary as a function of climate variables such as temperature or precipitation. Tis 
sensitivity analysis will serve as the basis for more focused, lower-dimensional studies leading to parameter calibration 
and improved land-surface model prediction at global scales. 

Figure E.3.1. Sites used in the global sensitivity analysis for the ACME land model at FLUXNET sites. Plant functional 
types at each site as used in the model are indicated. 

Initial eforts to calibrate the ACME land model have been specifc to individual eddy covariance or experiment sites, 
focus on a limited number of parameters, and do not estimate posterior uncertainties. We found that, by using 1 year 
of net ecosystem exchange (NEE) data from the Missouri Ozark fux site to optimize 14 model parameters, we were 
able to achieve a 30% reduction in root mean squared error in NEE over 2 subsequent years. However, when the 
calibrated parameters were used at the 2 similar deciduous forest sites Morgan Monroe State Forest and University 
of Michigan Biological Station, there was no increase in predictive skill compared to the model default parameters. 
However, when multiple QoIs are used in a calibration framework, the results are more promising (Mao et al., 2016; 
Ricciuto et al., 2011). Using the ILAMB framework, which contains a diverse set of data and benchmarks, for model 
calibration may signifcantly enhance the predictive skill of land surface models and begin to help explain or resolve 
the diferences among models. 
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Figure E.3.2. Main effect sensitivity indices as a function of plant functional type (PFT) for gross primary productivity 
(GPP) for the fve most sensitive parameters: the temperature sensitivity of maintenance respiration (q10_mr), the 
fne root to leaf allocation ratio (froot_leaf), the specifc leaf area at the top of the canopy (slatop), the fne root 
carbon:nitrogen ratio (frootcn), and the fraction of leaf nitrogen in RuBisCO (fnr). Error bars indicate the standard 
deviation of the sensitivity index across multiple sites within a plant functional type. 

E.4 The Predictive Ecosystem Analyzer (PEcAn): 
A Community Tool to Enable Land Model 
Synthesis, Evaluation, and Forecasting 
Shawn Serbin, Michael Dietze, and the PEcAn Team 

Process models are our primary tool for synthesizing our understanding of terrestrial ecosystems and projecting the 
impact of global change on ecosystem services associated with carbon, energy and water fuxes, and storage. Recently 
the use of models as a scafold for data-driven synthesis has expanded and there is increasing interest in formal 
model–data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration 
of observations, and guide model developments (Dietze et al., 2013). However, models remain inaccessible to most 
ecologists, in large part due to the informatics challenges of managing the fows of information in and out of such 
models. Moreover, the ecological sciences have witnessed an explosion in the amount and types of data that can be 
brought to bear on the potential responses of the terrestrial C, water, and energy cycles and biodiversity to global 
change. Many of the most pressing questions about global change are not limited by the need to collect new data as 
much as by our ability to synthesize and efciently use existing data (Luo et al., 2011). 
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Because no one measurement provides a complete picture of terrestrial ecosystems, multiple data sources must be 
integrated in a sensible manner. Process-based models represent an ideal framework for integrating these data streams 
because they represent multiple processes at diferent spatial and temporal scales in ways that capture our current 
understanding of the causal connections across scales and among data types. Tree components are required to bridge 
this gap between the available data and the required level of understanding: 1) state-of-the-art ecosystem models, 
2) a workfow management system to handle the numerous streams of data, and 3) a data assimilation statistical 
framework to synthesize the data with the model. 

Managing the communication between models and data involves three distinct challenges: 1) dealing with the volume 
of big data, 2) processing unstructured and uncurated long tail data, and 3) managing uncertainties in model–data 
comparisons and formal data–model assimilation. Finally, model development has long been an academic cottage 
industry, with diferent models lacking compatible formats for inputs, outputs, and settings. Tis has lead to 
redundant eforts and minimal reproducibility. As a result, the pace of model improvement has typically been slow. 
To address these challenges in modeling and model evaluation our group has developed the Predictive Ecosystem 
Analyzer (PEcAn, http://pecanproject.org/), a scientifc tool box designed to automate many of the tasks and 
challenges required for conducting model–data ecoinformatics, which makes ecosystem modeling more accessible, 
analyses more automated and repeatable, and facilitates the evaluation of model projections, uncertainties, data-
model fusion, forecasting, and decision support (Figure E.4.1). Model uncertainty quantifcation and propagation 
are a central part of PEcAn’s design, which takes a Bayesian approach of treating model parameters and predictions 
as probability distributions and updating these distributions as new information becomes available (LeBauer et al., 
2013; Dietze et al., 2014). 

Figure E.4.1. Schematic representing the PEcAn framework for model–data integration and uncertainty quantifcation 
(LeBauer et al., 2013; Dietze et al., 2014). PEcAn provides a number of tools for standardization of model inputs and 
outputs, provenance tracking to enable repeatable and transparent analyses, distributed network and web accessible 
interface, and well as general reusable tools for extraction, analysis and visualization. 

PEcAn users interact with models through an intuitive Google-Map-based interface (Figure E.4.2) and standardized 
fle formats for model inputs (e.g., meteorological drivers, initial conditions), benchmarks, and outputs. 
Standardization allows the development of common, reusable tools for processing inputs, visualizing outputs, and 
automating the suite of analyses available within PEcAn. In addition, PEcAn includes state-of-the-art Hierarchical 
Bayesian tools for model parameterization, data assimilation, UQ and variance decomposition (VD). In addition to 
these tools, PEcAn leverages a PostGIS database network (Figure E.4.3; https://www.betydb.org/) to track all inputs, 
outputs, and model runs, greatly increasing reproducibility and reliability. Within the PEcAn network, the database 
syncs all results and facilitates fle sharing to allow models to talk to each other and enables the community to 
efectively analyze many models distributed across a global network, thereby increasing the ability to conduct multi-
model, multi-institutional model comparisons, synthesis, and evaluation activities. 

https://www.betydb.org
http://pecanproject.org
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Figure E.4.2. The PEcAn framework provides a simple web-based graphical user interface (GUI) that leverages Google 
maps and PHP to link to the core PEcAn tools and PostGIS database (Figure E.4.1). Each node of the PEcAn framework 
(Figure E.4.3, this example from https://modex.bnl.gov/) serves up this interface which also serves to link model runs 
and results across the network. From this interface users can select sites, models, inputs, analyses (e.g., ensemble, UQ, 
data assimilation) and examine outputs with built in diagnostic plots or through an interactive R Shiny interface. 

Figure E.4.3. An example status map (availible at https://pecan2.bu.edu/pecan/status.php) showing the current PEcAn 
network. Each node of the network shares data within the institutions database, model run history, and results. 

https://pecan2.bu.edu/pecan/status.php
https://modex.bnl.gov
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Core components of the PEcAn framework 
include model parameterization and the 
quantifcation, propagation, and analysis of 
uncertainties (LeBauer et al., 2013; Dietze et 
al., 2014). Tese tools facilitate the efcient 
parameterization of models combining expert 
knowledge, trait observations, and feld data 
to constrain plant functional types (PFTs). 
Within PEcAn the model uncertainty analysis 
workfow follows three automated steps: 
1) a hierarchical Bayesian meta-analysis to Figure E.4.4. Example PEcAn Bayesian meta-analysis result 
summarize observational trait data and constrain for specifc leaf area (SLA, m2 kg-1). (adapted from LeBauer 
ecosystem model parameters (Figure E.4.4), 2) a et al., 2013). The curves show the prior (gray) and posterior 

(black) distributions of SLA as selected from the PEcAnparameter sensitivity analysis, and 3) a variance 
database (https://www.betydb.org/) for the perennial C4 grassdecomposition analysis that uses the outputs 
switchgrass (Panicum virgatum). Data from plants grown under

from the frst two steps to partition predictive an experimental treatment are presented in gray while data 
uncertainty into the contributions from diferent from feld-grown plants under control treatments are in black. 
model parameters. Te workfow can also be The posterior distribution is then used in the PEcAn uncertainty 

analysis to to generate the ecosystem model posterior based onrepeated, without the frst step, after iterative 
the selected trait quantiles (Figure E.4.5).rounds of parameter data assimilation to assess 

the contribution of diferent data constraints 
to uncertainty reduction. A detailed 
description of this workfow can be found 
in LeBauer et al. (2013). 

Following the meta-analysis step, the 
PEcAn model sensitivity analysis consists 
of perturbations to the model parameters 
to evaluate how a specifc model output 
(for example net primary productivity) 
changes as the parameter changes. Te 
model perturbations are based on the 
quantiles of the parameter’s posterior 
distribution, such that each parameter is 
moved in proportion to its uncertainty 
(Figure E.4.5). Te quantiles are fexible 
and can be chosen by the user. Te 
response function (i.e., model output Figure E.4.5. Adapted from Dietze et al., (2014). Example uncertainty
as a function of a parameter value) for analysis for the 10 year mean NPP response of a typical temperate mid-
each parameter within each PFT is then successional hardwood plant functional type to the Ball-Berry stomatal 
approximated using a spline. slope parameter (Leuning, 1995). The probability density on the x-axis 

(green shaded area) captures the uncertainty in the stomatal slope 
Te PEcAn variance decomposition parameter as estimated by the PEcAn Bayesian meta-analysis 
analysis estimates the uncertainty in (Figure E.4.4). The solid diamonds represent the sensitivity analysis, 

depicting NPP projections using the Ecosystem Demography modelmodel predictions (outputs) associated 
(ED v2.2; Medvigy et al., 2009) for different values of stomatal with each model parameter (inputs). slope, and the solid line is a spline ft to these points. The predictive

A Monte Carlo generalization of the uncertainty in NPP due to stomatal slope is represented by the 
Delta method is used by transforming probability density on the y axis (red shaded area), which is generated 
the posterior parameter distribution automatically within PEcAn by transforming the parameter distribution 

through the spline sensitivity function. Within PEcAn the partialthrough the spline sensitivity function 
variance is the variance of this predictive distribution divided by(Figure E.4.5). Because the predictive the sum of the variances across all parameters.

uncertainty is directly a product of 
parameter uncertainty and model sensitivity, these quantities are also automatically provided within the PEcAn UQ 
workfow (e.g., Figure E.4.6). To allow easier comparisons among variables, parameter variance and model sensitivity 
are expressed in dimensionless form as the posterior coefcient of variation and elasticity (sensitivity normed by both 
the parameter and output means), respectively. Moreover, PEcAn provides the predictive uncertainties associated with 

https://www.betydb.org
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each model parameter as the proportion that each variable contributes to the overall model predictive variance to 
enable direct comparisons across models, model parameters, and diferent model outputs. 

Figure E.4.6. Example PEcAn variance decomposition results presented for model runs before (gray) and following 
(black) the updating of model parameter estimates with species-level data from a PEcAn meta-analysis. Parameter 
Uncertainty: Uncertainty associated with each parameter is presented as the coeffcient of variation and the degree 
to which some parameters have been constrained by species-level data is indicated by the reduction in CV in the 
black compared to the gray bars. Sensitivity: The sensitivity of modeled output to select parameters is presented as 
elasticity (normalized sensitivity; an elasticity of 1 indicates that model output will double when the parameter value 
doubles). Output Uncertainty: The contribution of each parameter to model uncertainty. This is a function of both the 
parameter variance and sensitivity. Parameters with both large CV and elasticity have the highest uncertainty. 

Importantly, the results of the PEcAn uncertainty analysis workfow provide an understanding of the dominant 
drivers of uncertainty for outputs of interest (e.g., NPP). Te information provided by PEcAn can be used to guide 
data synthesis, feld campaigns, and Bayesian calibration. For example, an uncertainty analysis of the Ecosystem 
Demography model (ED2; Medvigy et al., 2009) across seventeen PFTs (Dietze et al., 2014), identifed consistent 
patterns in the parameters driving model uncertainty (Figure E.4.7). In addition, the UQ/VD tools within PEcAn 
have been used to explore the impact of uncertainties in canopy radiative transfer on the projections of ED2 carbon, 
water, and energy fuxes and storage (Figure E.4.8; Viskari et al., in prep). Tis ongoing work is highlighting the 
need for better constraint on the representation of canopy radiative transfer within models to reduce uncertainties in 
associated processes such as photosynthesis. 

An additional core component of the PEcAn framework, which is highly relevant to ILAMB and other model 
evaluation, benchmarking, and calibration activities, are the formal model–data assimilation workfows. Within 
PEcAn, users can make use of both parameter and state data assimilation with a range of approaches and algorithms. 
Parameter data assimilation (PDA) is used to update prior model parameter distributions based on a Likelihood 
function that quantifes how the error between model outputs and observed data changes as parameters are varied 
(Shiklomanov et al., 2016). By contrast, model state-variable data assimilation (SDA) uses observations (with their 
associated uncertainties) to constrain model states (e.g., vegetation composition, leaf area index, carbon stocks; e.g., 
Viskari et al., 2015) instead of model parameters. Te core of SDA is the forecast/analysis cycle. In the forecast step 
the model states are predicted forward with uncertainties. In the analysis step, the model forecast is treated as the 
prior and updated based on the Likelihood of new observations (Figure E.4.9). Following the integration of data 
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the total forecast uncertainty is lowered 
than that from either the model or data 
alone. In addition, when conducted over a 
region, locations without observations are 
updated based on their covariances with 
measured locations. Similarly, covariances 
among modeled states are also used to 
update unobserved model state variables 
(e.g., the relationship between canopy 
cover, a remotely sensed property, and 
aboveground biomass). Taking a Bayesian 
approach to data assimilation within 
PEcAn allows for an iterative approach 
to both parameter and state assimilation, 
where analyses can be updated when new 
data is added without having to rerun 
analyses from scratch. 

A priority highlighted in this report is the 
capacity to benchmark against and directly 
assimilate remotely sensed observations, 
such as surface refectance. Remote sensing 
observations can be used to track seasonal 
and inter-annual changes in vegetation 
structure and function (Schmid et al., 
2015). While existing benchmarks focus 
on comparing model outputs to derived 
data products, an important alternative 
is for models to output a full spectral 
signature. Tis “sensor simulator” 
approach (e.g., Figure E.4.10) would 
enable the direct comparison of model 
output to remote sensing observations 
(from leaf to regional scales) which 
also assures a consistency between the 
terrestrial biosphere model (TBM) 
output and the data, as data derived 
from remote sensing products (e.g., LAI) 
inevitably involves assumptions that are 
rarely identical to the assumptions of the 
TBM. Moreover, this approach facilitates 
more rapid inclusion of new data as it 
becomes available since it does not require 
the generation of derived data products 
(and the associated uncertainties that are 
often difcult to adequately quantify) 
and can easily be applied to sensors as 
they come online. Importantly, PEcAn 
already has this functionality for the 
ED2 model (Figure E.4.10; Viskari et 
al, in prep) which could be expanded to 
include other TBMs as needed. Coupling 
this functionality with ILAMB would 
further enable the coordination of model 
benchmarking and synthesis activities that 

Figure E.4.7. Example ED2 multi PFT multi biome UQ synthesis 
conducted within the PEcAn framework (Adapted from Dietze et 
al., 2014). This example illustrates what parameters still dominate 
model uncertainty in NPP following a trait meta-analysis to constrain 
model parameters. It was found that the priority for improved model 
representation and parameterization was growth respiration, but also 
bulk water conductance from the soil, leaf stomatal slope, the quantum 
effciency of photosynthesis, and plant mortality also dominated the 
model uncertainty across the PFTs. 

Figure E.4.8. Example PEcAn variance decomposition of ED2 canopy 
albedo showing the impact of uncertainty in model radiative 
transfer parameterization including leaf and stem optical properties, 
orientation, and clumping factors for early, mid, and late hardwood 
broadleaf PFTs in the frst year (full) and tenth year (shaded) of 
the simulation. These results show the importance of evaluating, 
benchmarking, and constraining underlying processes and structures 
such as light harvesting and utilization as well as the more commonly 
explored outputs such as plant growth, dynamics, and seasonality / 
LAI. Adapted from Viskari et al., (in prep) and funded by NASA TE 
#NNX14AH65G. 
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have been identifed as a critical need by 
the modeling community. 

Tere are several important ways the 
ILAMB and PEcAn projects could 
collaborate and share tools, resources, 
and workfows for analyzing and 
benchmarking models at the site and 
regional scales. A key strength of the 
PEcAn package is the strong focus on the 
cyberinfrastructure, scientifc workfows, 
provenance tracking, and on-demand 
multi-model synthesis capabilities. For 
example, the PEcAn network contains 
greater than ten ecosystem models that 
can be run locally or through the web 
interface one-at-a-time or together to 
produce a custom model intercomparison 
project (MIP). Furthermore, a number 
of additional models are in the process 
of being integrated, which consists of 
developing the software wrappers to 
manage and standardize the fows of 
information into and out of each model. 
Tis allows end-users the ability to 
easily run site-level/multi-site model/ 
multi-model simulations and perform 
experiments that typically require 
signifcant investments in software, 
hardware and personnel. On the 
other hand, ILAMB has strong model 
benchmarking, diagnostics, and model 
evaluation tools that could be leveraged 
by other tools such as PEcAn. In addition, 
visualization tools within ILAMB are 
useful outside of the ILAMB package. Figure E.4.10. Example of the use of an “sensor simulator” within 

a TBM (in this case ED2) to facilitate direct assimilation of and/orFurthermore, the tools within ILAMB 
benchmarking against remote sensing observations within the PEcAnto quantify changes in model output framework (Viskari et al., in prep). In this approach the output TBM

due to code updates, initial conditions, spectral signature is based on the internal model structure (i.e. canopy 
or meteorological drivers are key for biomass, height, RT properties) and compared with comparable 
frameworks such as PEcAn since they remote sensing observations (i.e. surface refectance, albedo). This 

allows for direct comparison and evaluation of associated processesprovide the capability to understand 
such as photosynthesis, energy balance, surface temperature anddiferent sources of uncertainty beyond evapotranspiration as well as identify uncertainties and areas to target

model parameters and structure. for model improvement. 
Terefore, coupling ILAMB and PEcAn 
into a synthetic virtual framework would serve to signifcantly expand the model evaluation capabilities available to 
the community and avoid any potential redundancies in software development. Importantly ILAMB has historically 
been focused on the Earth system models (ESMs) at the centennial scale but is shifting focus to include regional 
and site-level evaluation with a more process-oriented focus, which was highlighted as an important need at this 
workshop. Te ability to leverage tools within ILAMB and PEcAn would provide a framework for conducting shorter 
timescale but focused model benchmarking activities, including the leveraging of the existing and/or proposed 
ILAMB metrics such as functional relationships. Finally, a key recommendation for ILAMB was to provide model– 
data assimilation capabilities to facilitate observationally constrained model hindcasting in order to produce the 
best initial conditions for future forecasts. PEcAn already contains a suite of tools for parameter and state variable 
assimilation that could be leveraged in the future. 

Figure E.4.9. Simplifed example of the PEcAn state data assimilation 
(SDA) forecast/analysis cycle used to inform model projections within 
PEcAn. Adapted from Dietze 2017 Ecological Forecasting. 
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Appendix F. 
ILAMB 2016 Workshop Materials 
F.1 Agenda 
May 16–18, 2016, DoubleTree by Hilton Hotel Washington DC 
1515 Rhode Island Avenue, NW, Washington, DC 20005-5595, USA 

Monday, May 16, 2016 

7:00 Breakfast Ballroom Lobby 

8:00 Welcome, Introductions, and Safety – Renu Joseph Terrace Ballroom 
8:00 
8:05 
8:15 
8:25 
8:35 
8:45 
8:55 
9:05 

Welcome and Safety – Renu Joseph and Dorothy Koch 
U.S. Dept. of Energy (DOE) Research – Sharlene Weatherwax 
DOE Climate Research Priorities – Gary Geernaert 
DOE RGCM Program – Renu Joseph 
DOE ESM Program – Dorothy Koch 
Biogeochemistry–Climate Feedbacks SFA – Forrest M. Hofman 
Accelerated Climate Modeling for Energy (ACME) – William J. Riley 
Workshop Charge and Reporting – James T. Randerson 

9:10 Plenary Presentations on Benchmarking Tools – David M. Lawrence Terrace Ballroom 
9:10 
9:20 
9:30 
9:50 

10:10 

P.1 Protocol for the Analysis of Land Surface models (PALS) – Gab Abramowitz 
P.2 PLUMBER: PALS Land sUrface Model Benchmarking Evaluation pRoject – Martin Best 
P.3 Towards efcient and systematic model benchmarking in CMIP6 – Peter Gleckler 
P.4 Land surface Verifcation Toolkit (LVT): A formal benchmarking and 
evaluation framework for land surface models – Sujay Kumar 
P.5 Te International Land Model Benchmarking (ILAMB) Package – James T. Randerson, 
Forrest M. Hofman, and David M. Lawrence 

10:30 Morning Break Ballroom Lobby 

11:00 Plenary Discusson on Model Evaluation – Gretchen Keppel-Aleks Terrace Ballroom 
11:00 
11:15 

Summary of Evaluation Methods at Modeling Centers – Gretchen Keppel-Aleks 
Discussion on Model Evaluation – David M. Lawrence 

11:50 Plenary Presentations on Emergent Constraints and Evaluation Metrics I Terrace Ballroom 
11:50 
12:10 

P.6 Evaluation of vegetation cover and land-surface albedo – Victor Brovkin 
P.7 Judging the dance contest – Metrics of land–atmosphere feedbacks – Paul Dirmeyer 

12:30 Working Lunch Ballroom Lobby 

13:30 Metrics Breakout Group Meetings I – James T. Randerson 

Ecosystem Processes and States – Nancy Y. Kiang and Ben Bond-Lamberty 
Hydrology – Randal Koster and Hongyi Li 
Atmospheric CO  – Gretchen Keppel-Aleks and William J. Riley 2

Terrace Ballroom 
Directors Room 
Congressional Room 

15:00 Afternoon Break Ballroom Lobby 

15:20 Metrics Breakout Group Meetings II – Forrest M. Hofman 

Soil Carbon and Nutrient Biogeochemistry – Gustaf Hugelius 
and Jinyun Tang 
Surface Fluxes (Energy and Carbon) – Scott Denning and Dan Ricciuto 
Vegetation Dynamics – Rosie Fisher and Chonggang Xu 

Terrace Ballroom 
Directors Room 
Congressional Room 
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16:50 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies) Terrace Ballroom 
16:50 Ecosystem Processes and States 
16:55 Hydrology 
17:00 Atmospheric CO2 

17:05 Soil Carbon and Nutrient Biogeochemistry 
17:10 Surface Fluxes (Energy and Carbon) 
17:15 Vegetation Dynamics 

17:20 Poster Lightning Presentations Terrace Ballroom 

18:00 Poster Session and Reception 

Posters A.1 through A.8 Terrace Ballroom 
Posters B.1 through B.8 Directors Room 
Posters C.1 through C.8 Congressional Room 

20:00 Adjourn for the Day 

Tuesday, May 17, 2016 

7:00 Breakfast Ballroom Lobby 

8:00 Keynote Presentation: P.8 Role of fux networks in benchmarking land atmosphere 
models – Dennis Baldocchi Terrace Ballroom 

8:30 Plenary Presentations on MIP Benchmarking Needs – William J. Riley Terrace Ballroom 
8:30 P.9 Overview of the Coupled Model Intercomparison Project Phase 6 

(CMIP6) Experimental Design and Organisation – David M. Lawrence 
8:45 P.10 Assessing feedbacks for the Coupled Climate–Carbon Cycle Modeling 

Intercomparison Project (C4MIP) – Forrest M. Hofman 
9:00 P.11 Te Land Surface, Snow and Soil moisture Model Intercomparison 

Project (LS3MIP) and Global Soil Wetness Project Phase 3 (GSWP3) – 
Hyungjun Kim 

9:15 P.12 Landuse and landcover change model performance metrics for 
LUMIP – David M. Lawrence 

9:30 P.13 Multiscale Synthesis & Terrestrial Model Intercomparison Project: 
From cohort to insight – Christopher R. Schwalm 

9:45 P.14 Processes Linked to Uncertainties Modelling Ecosystems 
(PLUMEMIP) – Anders Ahlström 

10:00 Discussion – Peter Gleckler 

10:30 Morning Break Ballroom Lobby 

11:00 Plenary Presentations on Emergent Constraints and Evaluation Metrics II Terrace Ballroom 
11:00 P.15 New benchmarks for northern high latitudes – Charles D. Koven 
11:15 P.16 Permafrost Benchmarking System (PBS) – Kevin Schaefer 

11:30 Breakout Groups on CMIP6 Evaluation Priorities (pre-lunch) – Gretchen Keppel-Aleks 

C4MIP – James T. Randerson and Charles D. Koven Terrace Ballroom 
LS3MIP – Jiafu Mao and Andrew Slater Directors Room 
LUMIP – Elena Shevliakova and Atul K. Jain Congressional Room 

12:30 Working Lunch Ballroom Lobby 

11:00 Breakout Groups on CMIP6 Evaluation Priorities (post-lunch) – Gretchen Keppel-Aleks 

C4MIP – James T. Randerson and Charles D. Koven Terrace Ballroom 
LS3MIP – Jiafu Mao and Andrew Slater Directors Room 
LUMIP – Elena Shevliakova and Atul K. Jain Congressional Room 
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14:00 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies) Terrace Ballroom 
14:00 C4MIP 
14:10 LS3MIP 
14:20 LUMIP 

14:30 Keynote Presentation: P.17 Teory-enabled model evaluation 
and improvement – Yiqi Luo Terrace Ballroom 

15:00 Global Synthesis Discussion – Sha Zhou and Chris Lu Terrance Ballroom 

15:15 Afternoon Break Ballroom Lobby 

15:45 ILAMB v1 Package Demonstration and Application – Mingquan Mu Terrace Ballroom 

16:45 ILAMB v2 Package Tutorial / Training Session – Nathan Collier Terrace Ballroom 

18:00 Dinner on your own Downtown DC 

Wednesday, May 18, 2016 

7:00 Breakfast Ballroom Lobby 

8:00 Plenary Presentations on Emergent Constraints and Evaluation Metrics III Terrace Ballroom 

8:00 P.18 Evaluating the simulations of global nutrient cycles: Available 
observations and challenges – Ying-Ping Wang 

8:20 P.19 Empirically derived sensitivity of vegetation to climate as a possible 
functional constraint for process based land models – Gregory Quetin 

8:40 P.20 Some suggestions on emergent constraints and metrics on model 
evaluations over land – Xubin Zeng 

9:00 P.21 Decomposition of CO2 fertilization efect into contributions by land 
ecosystem processes: Comparison among CMIP5 Earth system models – Kaoru Tachiiri 

9:20 Breakout Groups on Next Generation Benchmarking Challenges and 
Priorities I – James T. Randerson 

Process-specifc experiments (litterbags, 14C) – Mathew Williams and Jianyang Xia Terrace Ballroom 
Metrics from extreme events – Hyungjun Kim and Maoyi Huang Directors Room 
Design of new perturbation experiments – Martin De Kauwe and Ankur Desai Congressional Room 

10:30 Morning Break Ballroom Lobby 

11:00 Breakout Groups on Next Generation Benchmarking Challenges and 
Priorities II – David M. Lawrence 

High latitude processes – Kevin Schaefer, Charles D. Koven, and Umakant Mishra Terrace Ballroom 
Tropical processes – Nathan McDowell and Paul Moorcroft Directors Room 
Global remote sensing – David Schimel and Shawn Serbin Congressional Room 

12:10 Breakout Group Reports (1–3 datasets, 1–3 new metrics, and bibliographies) Terrace Ballroom 
12:10 Process-specifc experiments 
12:15 Metrics from extreme events 
12:20 Design of new perturbation experiments 
12:25 High latitude processes 
12:30 Tropical processes 
12:35 Global remote sensing 

12:40 Working Lunch Ballroom Lobby 
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13:40 Plenary Presentations on Uncertainty Quantifcation (UQ) Methods – 
Forrest M. Hofman Terrace Ballroom 
13:40 
13:50 
14:00 
14:10 

P.22 An uncertainty quantifcation framework designed for land models – M
P.23 Use of emulators in uncertainty quantifcation – George Pau 
P.24 Uncertainty quantifcation in the ACME land model – Dan Ricciuto 
P.25 PEcAn: A community tool to enable synthesis, evaluation & forecastin

aoyi Huang 

g – Shawn Serbin 

14:20 Prioritizing Next Steps – James T. Randerson Terrace Ballroom 

14:40 Workshop Report Organization and Writing Assignments – Forrest M. Hofman Terrace Ballroom 

15:00 Afternoon Break Ballroom Lobby 

15:30 Parallel Sessions on the ILAMB Packages and a Global Synthesis 

ILAMB v2 Package Tutorial / Training Session – Nathan Collier 
Global Synthesis Discussion (Continued from Tuesday) – Yiqi Luo 
ILAMB v1 Package Demonstration and Application – Mingquan Mu 

Terrace Ballroom 
Directors Room 
Congressional Room 

17:00 Adjourn the Meeting 

F.2 Plenary Presentation Abstracts 
F.2.1 Benchmarking Tools 

P.1 Protocol for the Analysis of Land Surface models (PALS) 

Gab Abramowitz1;2;† 

1University of New South Wales, Sydney NSW 2052, Australia 
2Australian Research Council Centre of Excellence for Climate System Science (ARCCSS), Sydney NSW 2052, Australia 
†Author to whom correspondence should be addressed; e-mail: gabsun@gmail.com 

An increasing number of land surface model evaluation packages are becoming available, including ILAMB, LVT, 
EMSValTool and others. Te frst phase of the PALS web application also represented a something of a limited attempt 
at a standardised evaluation package, but was restricted to site-based evaluation and benchmarking. PALS facilitated the 
PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER; a MIP), also discussed at this meeting, and 
in particular promoted the use of empirical benchmarking as a way of defning model performance expectations. 

With the arrival of the more comprehensive evaluation packages listed above, what have we learnt from PALS that is still 
of use? Tis presentation will focus in particular on the benefts of bringing tools such as these into an online web-based 
environment. Tese benefts include: 

» ability to quickly and easily compare results internationally 

» potential for better capture of simulation provenance information, increasing reproducibility 

» simplicity and speed of creating MIPs 

» MIPs can continue indefnitely, since they can be automated 

» the ability to keep evaluation datasets for evaluation only (i.e. not calibration) 

» identifcation of systematic performance issues across diferent models internationally 

» new analyses can be applied to retrospectively to past simulation submissions 

» ability to access archived historical model performance information 

» increased transparency 

Difculties include sufciently rigid i/o standards to enable automated analysis of model outputs, as well as intellectual 
property and security issues. Development of a second phase of a PALS-like environment that could incorporate a range 
of diferent analysis packages will also be discussed. 

mailto:gabsun@gmail.com
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P.2 PLUMBER: PALS Land sUrface Model Benchmarking Evaluation pRoject 

Martin Best1;†, Gab Abramowitz2;3, and Andy Pitman2 

1UK Met Ofce, Exeter, EX1 3PB, UK 
2University of New South Wales, Sydney NSW 2052, Australia 
3Australian Research Council Centre of Excellence for Climate System Science (ARCCSS), Sydney NSW 2052, Australia 
†Author to whom correspondence should be addressed; e-mail: martin.best@metoce.gov.uk 

Many studies make the claim of undertaking model benchmarking. Unfortunately, there is often confusion about what 
“benchmarking” means; some undertake true benchmarking, others are undertaking the more traditional evaluation or 
comparison activities. In this presentation we will attempt to clarify the diferences between the three approaches and 
demonstrate how the interpretation of model results can difer depending on which of the three measures of model 
performance are used. To enable this, data from the land surface benchmarking experiment PLUMBER (PALS Land 
sUrface Model Benchmarking Evaluation pRoject) are used. 

In addition, a brief overview of the PLUMBER experimental protocol will be presented along with the key fndings 
from the experiment to date. All land surface models had a consistent performance compared to the set of benchmarks 
when using standard statistical measures. Tese results demonstrated that the current day models perform better than 
older physical models, hence as a community we have progressed our knowledge over the last few decades. However, 
none of the models out performed the empirical benchmarks, with the models worse than a three variable piecewise 
linear regression for latent heat fux, but worse than even a single variable linear regression with downward shortwave 
radiation for the sensible heat fux! 

Analysis using distribution statistics resulted in the land surface models having difering performance compared to the 
set of benchmarks. Tis result is inconsistent with the standard statistical measures and suggests that the models have 
been optimised for statistics such as mean bias error, standard deviation and correlation coefcient. 

Te conclusions from this study challenge our traditional view of the surface energy balance. In addition, the results 
suggest that improvements can be made to these models without the introduction of complexity, but by making better 
use of the currently available information content in the atmospheric forcing. 

P.3 Towards effcient and systematic model benchmarking in CMIP6 

Peter J. Gleckler1;† and Veronika Eyring2, 
1Lawrence Livermore National Laboratory, Livermore, California, USA 
2Deutsches Zentrum fÜr Luft- und Raumfahrt (DLR), Oberpfafenhofen, Germany 
†Author to whom correspondence should be addressed; e-mail: gleckler1@llnl.gov 

A more routine benchmarking and evaluation of models is envisaged to be a central part of CMIP6. One purpose of 
the DECK and CMIP historical simulations is to provide a basis for documenting model simulation characteristics. 
A few analysis packages currently under development will be routinely executed whenever new model experiments 
are contributed to the CMIP archive. Te foundation that will enable this to be efcient and systematic is the 
community-based experimental protocols and conventions of CMIP, including their extension to obs4MIPs, which 
serves observations in parallel to the CMIP output on the ESFG. Examples of available tools that target routine 
evaluation in CMIP will be highlighted in this talk including the PCMDI Metrics Package (PMP) and the Earth System 
Model Evaluation Tool (ESMValTool). Te PMP is built on DOE supported tools and emphases the implementation 
of a diverse suite of summary statistics to objectively gauge the level of agreement between model simulations and 
observations. ESMValTool includes a variety of diagnostics and metrics, including reproduction of the analysis in the 
IPCC AR5 model evaluation chapter. Both capabilities are open source, have a wide range of functionality, and are 
being developed as community tools with the involvement of multiple institutions. Collectively, the PMP, ESMValTool 
and ILAMB packages ofer valuable capabilities that will be crucial for the systematic benchmarking of the wide variety 
of models and model versions contributed to CMIP6. Tis evaluation activity can, compared with early phases of 
CMIP, more quickly and openly relay to analysts and modelling centers the strengths and weaknesses of the simulations 
including the extent to which long-standing model errors remain evident in newer models. Tis talk will highlight the 
opportunities and challenges these capabilities provide as well as possible pathways to advance the coordination between 
them. It will also explain how this community-based benchmarking can accelerate the pace at which climate models can 
be used to further scientifc understanding of climate change. 

mailto:gleckler1@llnl.gov
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P.4 Land surface Verifcation Toolkit (LVT): A formal benchmarking and evaluation framework for 
land surface models 

Sujay V. Kumar1;† and Christa D. Peters-Lidard1 

1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 
†Author to whom correspondence should be addressed; e-mail: Sujay.V.Kumar@nasa.gov 

Tough there is a vast amount of literature on land surface model development, model simulation studies and 
multi-model intercomparison projects, the evaluation methods and metrics used in them tend to be specifc for 
individual case studies and mostly deterministic. Tese studies have not typically converged on standard measures of 
model performance for evaluating diferent LSMs. In this presentation, we describe the development and capabilities 
of a formal system for land surface model evaluation and benchmarking called the Land surface Verifcation 
Toolkit (LVT). LVT is designed to provide an automated, consolidated environment for model evaluation and 
includes approaches for conducting both traditional deterministic and probabilistic verifcation. LVT employs 
observational datasets in their native formats, enabling the continued use of the system without requiring additional 
implementation or data re-processing. Currently a large suite of in-situ, remotely sensed and other model and 
reanalysis datasets are implemented in LVT. Aside from the accuracy-based measures, LVT also includes metrics 
to aid model identifcation, such as entropy, complexity and information content. Tese measures can be used to 
characterize the tradeofs in model performance relative to the information content of the model outputs. In addition 
to model verifcation, LVT also provides an environment for model benchmarking, where benchmark values for 
each metric is established a priori. Te development of such benchmarks is facilitated in LVT, using regression and 
machine learning techniques. Finally, LVT also includes uncertainty and ensemble diagnostics based on Bayesian 
approaches that enable the quantifcation of predictive uncertainty in land surface model outputs. Tese capabilities 
provide novel ways to characterize LSM performance, enable rapid model evaluation eforts, and are expected to help 
in the defnition and refnement of a formal benchmarking and evaluation process for the land surface modeling 
community. A suite of examples of using LVT for the evaluation of land surface model and data assimilation 
integrations will be presented. 

P.5 Development of the International Land Model Benchmarking (ILAMB) System version 1 
and its application to CMIP5 Earth system models and the Community Land Model 

James T. Randerson1;†, Mingquan Mu1, Gretchen Keppel-Aleks2, Charles D. Koven3, William J. Riley3 

Dave M. Lawrence4, and Forrest M. Hofman5 

1University of California Irvine, Irvine, California, USA 
2University of Michigan, Ann Arbor, Michigan, USA 
3Lawrence Berkeley National Laboratory, Berkeley, California, USA 
4National Center for Atmospheric Research, Boulder, Colorado, USA 
5Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
†Author to whom correspondence should be addressed; e-mail: jranders@uci.edu 

New approaches for evaluating earth system models (ESMs) are needed to improve the quality of simulations of 
future global environmental change and to speed model development. Here we describe the development of the 
International Land Model Benchmarking (ILAMB) software system. Version 1 of the ILAMB system (ILAMBv1) 
provides a framework for comparing model simulations with observations for 25 land surface variables. Tis 
set encompasses 9 carbon cycle and ecosystem, 5 hydrological and turbulent energy, 6 surface radiation, and 
5 driver variables. For many variables, more than one dataset has been integrated within the system, enabling 
comparisons with data products that have diferent regional coverage or methodology. For each data set, scoring 
metrics and graphical output allow the user to explore model behavior within diferent regions and across seasonal, 
interannual, and (when appropriate) decadal time scales. Another set of variable to variable comparisons enables 
investigation of functional relationships, and limits the infuence of climate system biases. We use the ILAMBv1 
to evaluate ESMs participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) and several 
versions of the Community Land Model. Analysis of historical simulations (1850-2005) from CMIP5 that had 
prognostic atmospheric carbon dioxide revealed several biases in the multi-model mean that may help guide future 
model development. 

mailto:jranders@uci.edu
mailto:Sujay.V.Kumar@nasa.gov
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F.2.2 Emergent Constraints and Evaluation Metrics I 

P.6 Evaluation of vegetation cover and land-surface albedo 

Victor Brovkin1;†, Lena Boysen1, Tomas Raddatz1, Veronika Gayler1, Alexander Loew1, and Martin Claussen1 

1Max Planck Institute for Meteorology, Hamburg, Germany 
†Author to whom correspondence should be addressed; e-mail: victor.brovkin@mpimet.mpg.de 

In recent generation Earth System Models (ESMs), land-surface grid cells are represented as tiles covered by diferent 
plant functional types (PFTs) such as trees or grasses. Here, we present an evaluation of the vegetation cover module 
of the MPI-ESM for present-day conditions. Te vegetation continuous felds (VCF) product [Hansen et al., 2003] 
that is based on satellite observations in 2001 is used to evaluate the fractional distributions of woody vegetation 
cover and bare ground. Te model performance is quantifed using two metrics: a square of the Pearson correlation 
coefcient, r2, and the root-mean-square error, rmse. On a global scale, r2 and rmse of modeled tree cover are equal to 
0.61 and 0.19, respectively, which we consider as satisfactory values. Te model simulates tree cover and bare ground 
with r2 higher for the Northern Hemisphere (0.66) than for the Southern Hemisphere (0.48-0.50). We complement 
this analysis with an evaluation of the simulated land-surface albedo using the diference in net surface radiation. 
On global scale, the correlation between modeled and observed albedo is high during all seasons, while the main 
disagreement occurs in spring in the high northern latitudes. Tis discrepancy can be attributed to a high sensitivity 
of the land-surface albedo to the simulated snow cover and snow-masking efect of trees. In contrast, the tropics 
are characterized by very high correlation and relatively low rmse (5.4–6.5 W/m2) during all seasons. Te proposed 
approach could be applied for an evaluation of vegetation cover and land-surface albedo simulated by diferent ESMs. 

P.7 Judging the dance contest – Metrics of land–atmosphere feedbacks 

Paul A. Dirmeyer1;† and Liang Chen1 

1Center for Ocean-Land-Atmosphere Studies (COLA), George Mason University, Manassas, Virginia, USA 
†Author to whom correspondence should be addressed; e-mail: pdirmeye@gmu.edu 

Te Global Energy and Water Exchanges project (GEWEX), part of the World Climate Research Programme, has 
supported the investigation of processes involved in the local coupling between land and atmosphere and how they 
are simulated in models. From this efort, a compilation of coupling metrics has been produced that quantify both 
legs of the feedback from land to atmosphere: how biophysical land surface states afect surface fuxes, and what 
efect changes in surface fuxes have on the overlying atmosphere. A key consideration emerges from this approach – 
namely, that in climate models, both dance partners (land and atmosphere) must execute their steps correctly for the 
feedbacks to be realized. Tis requires there to be sufcient sensitivity in the links of the feedback chain, variability 
of the drivers of the feedbacks and memory of anomalies that excite feedbacks. Some metrics of land-atmosphere 
coupling are predicated on unobservable characteristics (e.g., the behavior of ensemble statistics in model simulations) 
but recent emphasis has turned towards metrics based on observable quantities and climate model variables, which 
provide a means for univariate and multivariate validation of coupled land-atmosphere behavior in models. Examples 
will be presented to prompt further discussion of potentials for benchmarking. 

F.2.3 Ecological Sampling Networks 

P.8 Role of fux networks in benchmarking land atmosphere models 

Dennis Baldocchi1;† 

1University of California Berkeley, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: baldocchi@berkeley.edu 

Fluxnet is an international network of long term fux measurements of carbon dioxide, water vapor, heat and 
momentum fuxes. Te network spans the globe in terms of climate and ecological spaces. Plus many locales have 
clusters of sites that address land use, land use change, disturbance and management. Te network has been in 
operation since 1997 and many sites have more than a decade of data. 

mailto:baldocchi@berkeley.edu
mailto:pdirmeye@gmu.edu
https://0.48-0.50
mailto:victor.brovkin@mpimet.mpg.de
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Tese fux data are proving to be useful to validate and parameterize light use efciency models that are used by the 
satellite remote sensing community, to identify important processes that must be captures by land modules in climate 
models and as priors for the new generation of data model fusion methods. Site metadata are proving critical for 
providing initial conditions for models. 

Lessons learned from the network and opportunities for the two communities to collaborate will be discussed. 

F.2.4 MIP Benchmarking Needs 

P.9 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental 
Design and Organisation 

Veronika Eyring1;†, Sandrine Bony2, Gerald A. Meehl3, Cath Senior4, Bjorn Stevens5, Ronald J. Stoufer6, and 
Karl E. Taylor7 

Presented by David M. Lawrence3 

1Deutsches Zentrum fÜr Luft- und Raumfahrt (DLR), Oberpfafenhofen, Germany 
2Laboratoire des Sciences du Climat et de l’Environnement, Gif sur Yvette Cedex, France and Universit Pierre et 
Marie Curie, Paris, France 
3National Center for Atmospheric Research, Boulder, Colorado, USA 
4UK Met Oce, Exeter, EX1 3PB, UK 
5Max Planck Institute for Meteorology, Hamburg, Germany 
6Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA 
7Lawrence Livermore National Laboratory, Livermore, California, USA 
†Author to whom correspondence should be addressed; e-mail: veronika.eyring@dlr.de 

From Eyring et al., GMDD (2015): By coordinating the design and distribution of global climate model simulations 
of the past, current and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of 
the foundational elements of climate science. However, the need to address an ever-expanding range of scientifc 
questions arising from more and more research communities has made it necessary to revise the organization of 
CMIP. After a long and wide community consultation, a new and more federated structure has been put in place. 
It consists of three major elements: (1) a handful of common experiments, the DECK (Diagnostic, Evaluation 
and Characterization of Klima experiments) and the CMIP Historical Simulation (1850 – near-present) that will 
maintain continuity and help document basic characteristics of models across diferent phases of CMIP, (2) common 
standards, coordination, infrastructure and documentation that will facilitate the distribution of model outputs and 
the characterization of the model ensemble, and (3) an ensemble of CMIP-Endorsed Model Intercomparison Projects 
(MIPs) that will be specifc to a particular phase of CMIP (now CMIP6) and that will build on the DECK and the 
CMIP Historical Simulation to address a large range of specifc questions and ll the scientifc gaps of the previous 
CMIP phases. Te DECK and CMIP Historical Simulation, together with the use of CMIP data standards, will be 
the entry cards for models participating in CMIP. Te participation in the CMIP6-Endorsed MIPs will be at the 
discretion of the modelling groups, and will depend on scientifc interests and priorities. With the Grand Science 
Challenges of the World Climate Research Programme (WCRP) as its scientifc backdrop, CMIP6 will address three 
broad questions: (i) How does the Earth system respond to forcing?, (ii) What are the origins and consequences of 
systematic model biases?, and (iii) How can we assess future climate changes given climate variability, predictability 
and uncertainties in scenarios? Tis CMIP6 overview presents the background and rationale for the new structure 
of CMIP, provides a detailed description of the DECK and the CMIP6 Historical Simulation, and includes a brief 
introduction to the 21 CMIP6-Endorsed MIPs. 

Reference: Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stoufer, R. J., and Taylor, K. E. (2015), 
Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation, 
Geosci. Model Dev. Discuss., 8:10539-10583, doi:10.5194/gmdd-8-10539-2015. 

mailto:veronika.eyring@dlr.de
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P.10 Assessing feedbacks for the Coupled Climate–Carbon Cycle Modeling Intercomparison 
Project (C4MIP) 

Forrest M. Hofman1;†, James T. Randerson2, Charles D. Koven3, and the C4MIP SSC and members 
1Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
2University of California Irvine, Irvine, California, USA 
3Lawrence Berkeley National Laboratory, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: forrest@climatemodeling.org 

Te objective of the Coupled Climate–Carbon Cycle Modeling Intercomparison Project (C4MIP) is to design, 
document, and analyze carbon cycle feedbacks and nutrient interactions in climate simulations for the sixth phase of 
the Coupled Model Intercomparison Project (CMIP6). Tese biogeochemical feedbacks are uncertain and potentially 
large, and they play a strong role in determining future atmospheric CO2 levels in response to anthropogenic 
emissions and attempts to avoid dangerous climate change. Our recent paper (Jones et al., 2016) describes the 
simulations that will complement and extend the carbon cycle simulations included the CMIP6 core experiments 
known as the DECK. Te key science motivations of these simulations are to 1) quantify and understand the carbon-
concentration and carbon-climate feedback parameters, which capture the modeled response of land and ocean 
biogeochemistry components to changes in atmospheric CO2 and the associated changes in climate, respectively; 
2) evaluate models by comparing historical simulations with observation-based estimates of climatological states 
of carbon cycle variables, their variability and long-term trends; 3) assess the future projections of components 
of the global carbon budget for diferent scenarios. Model benchmarking eforts being undertaken for ILAMB 
are particularly important for the second of these motivations. In this presentation, we will briefy describe the 
experimental design of the CMIP6 historical and C4MIP experiments and link these to model evaluation objectives 
that may be addressed by ILAMB benchmarking tools. 

Reference: Jones, Chris D., Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather 
Graven, Forrest M. Hofman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charles D. Koven, 
Julia Pongratz, Tomas Raddatz, James T. Randerson, and SÖnke Zaehle (2016), Te C4MIP experimental protocol 
for CMIP6, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-36. 

P.11 The Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP) and 
Global Soil Wetness Project Phase 3 (GSWP3) 

Hyungjun Kim1;†, Bart van den Hurk2, Gerhard Krinner3, Sonia I. Seneviratne4, Chris Derksen5, and Taikan Oki1 

1University of Tokyo, Bunkyo-ku, Tokyo, Japan 
2Royal Netherlands Meteorological Institute (KNMI), NL-3731 GA De Bilt, Netherlands 
3Laboratoire de Glaciologie et Gophysique de l’Environnement (LGGE), Grenoble, France 
4Swiss Federal Institute of Technology (ETH), ZÜrich, Switzerland 
5Environment Canada, Waterloo, Ontario, Canada 
†Author to whom correspondence should be addressed; e-mail: hjkim@iis.u-tokyo.ac.jp 

Te solid and liquid water stored at the land surface has a large infuence on the regional climate, its variability and 
its predictability, including efects on the energy and carbon cycles. Notably, snow and soil moisture afect surface 
radiation and fux partitioning properties, moisture storage and land surface memory. Recently, the Land Surface, 
Snow and Soil moisture Model Intercomparison Project (LS3MIP) was initiated as an intercommunity efort between 
Global Energy and Water Cycle Exchanges Project (GEWEX) and Climate and Cryosphere (CliC) to contribute to 
the 6th phase of Coupled Model Intercomparison Project (CMIP). 

Te experiment structure of the LS3MIP was designed to provide a comprehensive assessment of land surface, 
snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in 
the land modules of current Atmospheric-Ocean General Circulation Models and Earth System Models with the 
following objectives: 

» evaluate the current state of land processes including surface fuxes, snow cover and soil moisture representation in 
CMIP6 DECK runs; 

» estimate multi-model long-term terrestrial energy/water/carbon cycles, using the surface modules of CMIP6 
models under observation constrained historical (land reanalysis) and projected future (impact assessment) 
conditions considering land use/land cover changes; 

mailto:hjkim@iis.u-tokyo.ac.jp
mailto:forrest@climatemodeling.org
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» assess the role of snow and soil moisture feedbacks in the regional response to altered climate forcings, focusing on 
controls of climate extremes, water availability and high-latitude climate in historical and future scenario runs; 

» assess the contribution of land surface processes to the current and future predictability of regional temperature/ 
precipitation patterns. Te outcomes of the LS3MIP will eventually contribute to the improvement of climate 
change projections by reducing the systematic biases and representing better feedback mechanisms in 
coupled models. 

Further, the impacts of climate change on hydrological regimes and available freshwater resources including extreme 
events, such as foods and droughts, will be assessed based on multi-model ensemble estimates of long-term historical 
and projected future changes in energy, water, and carbon cycles over land surfaces. Tose achievements will 
contribute to the next cycle of the Intergovernmental Panel on Climate Change. 

P.12 Land-use and land-cover change model performance metrics for LUMIP 

Dave M. Lawrence1;†, George Hurtt2, and LUMIP SSC and members 
1National Center for Atmospheric Research, Boulder, Colorado, USA 
2University of Maryland, College Park, Maryland, USA 
†Author to whom correspondence should be addressed; e-mail: dlawren@ucar.edu 

Te main science questions that will be addressed by LUMIP (Lawrence et al. 2016), in the context of CMIP6 are: 

» What are the global and regional efects of land-use and land-cover change on climate and biogeochemical cycling 
(past-future)? 

» What are the impacts of land management on surface fuxes of carbon, water, and energy and are there regional 
land management strategies with promise to help mitigate and/or adapt to climate change? 

In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process 
level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than 
possible in a multi-model context to date. Tere will be particular focus on (1) the separation and quantifcation of 
the efects on climate from land-use change relative to fossil fuel emissions, (2) separation of biogeochemical from 
biogeophysical efects of land-use, (3) the unique impacts of land-cover change versus land management change, (4) 
modulation of land-use impact on climate by land-atmosphere coupling strength, and (5) the extent that direct efects 
of enhanced CO2 concentrations on plant photosynthesis (changes in water-use efciency and/or plant growth) are 
modulated by past and future land use. 

One of the activities of LUMIP is to develop a set of metrics and diagnostic protocols quantify model performance, 
and related sensitivities, with respect to land use. De Noblet-Ducoudr et al (2012) identifed the lack of consistent 
evaluation of a land model’s ability to represent a response to a perturbation such as land-use change as a key 
contributor to the large spread in simulated land-cover change responses seen in the LUCID project. As part of 
this activity, benchmarking data products will be identifed to help constrain models. Several recent studies have 
utilized various methodologies, including paired tower sites and reconstructed change maps from satellites, to infer 
observationally-based historical change in land surface variables impacted by LULCC or divergences in surface 
response between diferent land-cover types (Boisier et al. 2013, 2014; Lee et al. 2011; Lejeune et al. 2016; Li et al. 
2015; Teuling et al. 2010; Williams et al. 2012). 

P.13 Multi-scale Synthesis & Terrestrial Model Intercomparison Project: From cohort to insight 

Christopher R. Schwalm1,†, Deborah N. Huntzinger2, Anna M. Michalak3, Yuanyuan Fang3, Kevin M. Schaefer4, 
Andrew R. Jacobson5, Joshua B. Fisher6, Robert B. Cook7, and Yaxing Wei7 

1Woods Hole Research Center, Falmouth, Massachusetts, USA 
2Northern Arizona University, Flagstaf, Arizona, USA 
3Carnegie Institution for Global Ecology, Stanford University, Stanford, California, USA 
4National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA 
5National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado, USA 
6NASA Jet Propulsion Laboratory, Pasadena, California, USA 
7Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
†Author to whom correspondence should be addressed; e-mail: schwalm.christopher@gmail.com 

mailto:schwalm.christopher@gmail.com
mailto:dlawren@ucar.edu


127 

 
 

 

 
 

 
 

 

 

 

 

Earth system models (ESMs) are indispensable for extrapolating local observations and process level understanding 
of land–atmosphere exchange in both time and space. ESMs have and will continue to serve as predictive tools to 
understand carbon–climate interactions and global change. Te North American Carbon Program (NACP) Multi-
scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal intercomparison and evaluation 
efort focused on the land component of ESMs, i.e., land surface models (LSMs). MsTMIPs overarching goals are 
(1) to improve the diagnosis, attribution and prediction of carbon exchange at regional to global scales; and 
(2) to diagnose causes and consequences of inter-model variability. A key design tenet of MsMTIP is its standardized 
protocol. Forcing data, steady-state spin-up, and boundary conditions are uniform across all participating models. 
Modeler discretion is constrained to allow a mapping of skill to structure. Te MsTMIP efort formally consists of 
two phases: Phase I (now complete) assembled a cohort of ca. 20 modeling teams and has released results from 15 
LSMs. Tese results cover the 1901–2010 time period (half-degree resolution, monthly time step) and are based on 
a semi-factorial set of simulations; time-varying climate, land cover/land use change, carbon dioxide, and nitrogen 
deposition are sequentially enabled. Phase II (currently underway) extends Phase I models runs to 2100 using 
downscaled CMIP5 model output (5 ESMs and 2 RCPs [4.5 and 8.5]) as forcing data. With these predictive/forecast 
simulations MsTMIP can now serve as a platform to evaluate of how model structural diferences, key controls of 
carbon metabolism, and plausible climate futures alter predictions of future carbon dynamics. 

P.14 Processes Linked to Uncertainties Modelling Ecosystems (PLUME-MIP) 

Anders AhlstrÖm1,2,†, Benjamin Smith2, Almuth Arneth3, Yiqi Luo4, Jianyang Xia5, and Michael Mishurow2 

1Stanford University, Stanford, California, USA 
2Lund University, Lund, Sweden 
3Karlsruhe Institute of Technology, Karlsruhe, Germany 
4University of Oklahoma, Norman, Oklahoma, USA 
5East China Normal University, Shanghai, China 
†Author to whom correspondence should be addressed; e-mail: anders.ahlstrom@nateko.lu.se 

PLUME addresses DGVM/LSM responses to environmental drivers under current and future projections and 
attempts to advance the state-of-the-art in attributing modelled carbon cycle responses to underlying mechanisms, as 
represented in the models. 

Te project is divided into two main tiers. 

Tier 1 involves standard transient simulations using CMIP5 recent past and future climate as forcing. Te outcomes 
will be used to evaluate the diferent responses of the terrestrial C cycle to climate projections and CO2 pathways. 

Tier 2 adopts the transient Traceability Framework (TF) to identify underlying causes of diferences in the responses 
of diferent models to current and future climate forcing. Te framework is designed to facilitate model inter-
comparisons by tracking a few traceable components across models. 

Both Tiers contribute to the aim of isolating the processes responsible for diferences between models and their future 
projections, using a transparent and systematic methodology. Te TF represent the flows of carbon in the models and 
allows for a set of novel experiments. Tese experiments are based on replacing components and fluxes in the models 
with common or observed forcing, e.g. forcing the transient TF emulator of the models with NPP or vegetation 
inputs to soil, to isolate and estimate the relative contribution of processes to carbon storage uncertainties. 

Within the project we ofer assistance to help implementation of the framework, data harmonization and storage on a 
common database. 

F.2.5 Emergent Constraints and Evaluation Metrics II 

P.15 New benchmarks for northern high latitudes 

Charles D. Koven1,† 

1Lawrence Berkeley National Laboratory, Berkeley, California, USA 
†Author to whom correspondence should be addressed; e-mail: cdkoven@lbl.gov 

Te northern high latitudes, with large stocks of carbon, high anticipated rates of climate change, and importance 
of abrupt change in ecosystem state with warming due to the importance of freeze/thaw processes, are a crucial 

mailto:cdkoven@lbl.gov
mailto:anders.ahlstrom@nateko.lu.se


128 

2016 ILAMB WORKSHOP REPORT

 
 

 

 

 

 

 

component of the Earth system that global models must represent. Te CMIP5 ESMs fared particularly poorly in this 
region, due to the historical lack of attention paid to high latitude terrestrial processes in global models. I will discuss 
a variety of benchmarks focused around three areas: soil temperature dynamics and permafrost state, soil carbon 
stocks and turnover times, and hydrology dynamics. Each of these allow constraints on high latitude dynamics and 
may help to reduce uncertainty in model projections of the high latitude region. 

P.16 Permafrost Benchmark System (PBS) 

Kevin M. Schaefer1,†, Elchin Jafarov2, Mark Piper2, Christopher R. Schwalm3, Kang Wang2, and Lynn Yarmey1 

1National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA 
2Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA 
3Woods Hole Research Center, Falmouth, Massachusetts, USA 
†Author to whom correspondence should be addressed; e-mail: kevin.schaefer@nsidc.org 

Te Permafrost Benchmark System (PBS) will evaluate simulated permafrost dynamics against observed permafrost 
conditions. Te project goals are 1) to develop a set of generic benchmarking tools capable of calculating performance 
statistics in multiple benchmarking eforts, and 2) develop benchmark datasets of permafrost dynamics based on 
available observations and 3) apply the PBS by evaluating models that ran the CMIP5 and MsTMIP simulations. We 
will collaborate with ILAMB to optimize resources and maximize benifit to the modeling community. We will use 
the core ILAMB infrastructure for benchmark management and model scoring. We will integrate the benchmarks 
we develop into ILAMB and integrate ILAMB into the Community Surface Dynamics Modeling System (CSDMS) 
to provide and an online user interface. Tis will provide an easily accessible, online tool to quickly evaluate model 
performance and guide model development without having to invest large resources into data preparation and 
organization. Te chosen benchmark datasets include measurements of active layer thickness, permafrost temperature, 
snow conditions, and frozen soil biogeochemistry. We have formed an informal group of people already developing 
permafrost benchmarks to coordinate our activities and minimize duplication. Te ideal performance target is to 
match the observations within uncertainty, so the PBS benchmark datasets and evaluation metrics will account 
for observation uncertainty. Te combined IL AMB and PBS infrastructure fills a basic need of modeling teams to 
evaluate how well their models simulate permafrost dynamics, without a heavy investment in time and resources to 
organize the observations. 

F.2.6 Strategies for Improving Models Through Evaluation 

P.17 Theory-guided model evaluation and improvement 

Yiqi Luo1,† and many others 
1University of Oklahoma, Norman, Oklahoma, USA 
†Author to whom correspondence should be addressed; e-mail: yluo@ou.edu 

Global land models have become increasingly complicated over the past decades as more and more processes are 
incorporated into the models to simulate C cycle responses to global change. As a consequence, it becomes very 
difcult to understand or evaluate complex behaviors of these models. Diferences in predictions among models 
cannot be easily diagnosed and attributed to their sources. In the past few years, we have developed a new theoretical 
framework to quantify terrestrial carbon storage dynamics. Our theoretical analysis indicates that the ultimate force 
driving C storage change in an ecosystem is the equilibrium C storage capacity, which is jointly determined by 
ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time 
vary with time, the equilibrium C storage capacity is time-dependent and acts as a moving target that actual C storage 
chases. Te rate of change in C storage is proportional to the C storage potential, the diference between the current 
and equilibrium C storage. 

Te theoretical framework ofers a suite of new techniques for evaluating and improving global land carbon cycle 
models. Tose techniques include high-fidelity emulator, three- dimensional (3D) parameter space, traceability 
analysis, and semi-analytic spin-up (SASU). 

A high fidelity emulator is a matrix representation of soil carbon processes. Te matrix equation consists of carbon 
balance equations, each of which carbon input into and output from each of the individual carbon pools. We have 
developed emulators of CLM3.5, CLM4.5, CABLE, LPJ-GUESS, and regional TECO, which can exactly replicate 
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simulations of C pools and fluxes with their original models when driven by a limited set of inputs from the full 
model (GPP, soil temperature, and soil moisture). 

Te 3D parameter space can place outputs of any carbon cycle models with a common metric to measure diferences 
among models in terms of NPP, carbon residence time, and carbon storage potential. 

Te traceability analysis is to decompose a complex land model into traceable components based on mutually 
independent properties of modeled biogeochemical processes. By doing so, we can attribute model-model diferences 
to sources in model structure, parameter, and forcing fields. Te traceability analysis also can be used to evaluate 
efectiveness of newly incorporated modules into existing models, such as adding the N module on simulated 
C dynamics.

 Te semi-analytical spin-up (SASU) is the analytic solution to a set of equations that describe carbon transfers within 
ecosystems over time. 

F.2.7 Emergent Constraints and Evaluation Metrics III 

P.18 Evaluating the simulations of global nutrient cycles: Available observations and challenges 

Ying-Ping Wang1,†, Benjamin Houlton2, and Edith Bai3 

1Commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Aspendale, 
Victoria 3195, Australia 
2University of California Davis, Davis, California, USA 
3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China 
†Author to whom correspondence should be addressed; e-mail: yingping.wang@csiro.au 

Experimental evidence suggests that productivity of most land ecosystems is limited by supplies of major nutrients, 
particularly nitrogen at high latitudes and phosphorus at low latitudes. However, representation of nutrient limitation 
in diferent global land models has rarely been assessed systematically. 

Here, I will discuss three types of data for evaluating the performance of global nutrient cycles: spatially explicit data 
of soil nitrogen and phosphorus pools; nitrogen isotope composition; variations of C:N and N:P ratios of leaf, wood 
and root tissues by plant functional types or latitude; and field long-term (>10 years) fertilizing experiments or 15N 
tracer experiments. Examples from the published studies will be presented to show how each type of observations are 
used to assess global nutrient cycle simulations. Collectively, the combined benchmarking approaches substantially 
aid in model based projections of global carbon- nutrient interactions. 

Nevertheless, three major issue challenges remain. First, estimates of nitrogen fixation from the unmanaged land 
vary from 58 to over 200 Tg N/year, and the response of the observed of nitrogen fixation to CO2 can also be highly 
uncertain. Yet there is currently no globally integrated approach to reduce this uncertainty. 

Second, estimates of phosphorus input to land ecosystems through rock weathering and tectonic uplift vary by a 
factor of two. A recent study also found the phosphorus deposition input is significantly larger than previous estimate. 
Tese large uncertainties make the simulations of phosphorus cycles at global scale highly uncertain. 

Tird, most global nutrient models do not represent nutrient losses from particulate matter (both organic and 
inorganic). Tese models need to be coupled to hydraulic models to simulate the nutrient exports, in both organic 
and inorganic forms, from land to river, which have been measured over all major rivers in the world, and can be used 
to evaluate global nutrient cycles in the future. 

P.19 Empirically derived sensitivity of vegetation to climate as a possible functional constraint 
for process based land models 

Gregory R. Quetin1,† and Abigail L. S. Swann1 

1University of Washington, Seattle, Washington, USA 
†Author to whom correspondence should be addressed; e-mail: gquetin@uw.edu 

Vegetated land ecosystems are shaped by climate across the globe to best take advantage of the conditions and 
resources available. Acclimation to diferent climatological states changes how each ecosystem functions, with the 
supply of diferent resources determining constraints on growth. Here we derive an empirical global map of the 
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sensitivity of vegetation to climate using the response of satellite-based greenness to interannual variations in surface 
air temperature and precipitation. We infer constraints on ecosystem function by analyzing how the sensitivity of 
vegetation to climate varies across climate space. We find four broad climate regions of ecosystem function. Tere 
is a cold region below 15oC, which is generally greener during warmer and drier years. Tere is a transition region 
between cold climate regions and hotter regions where the sign of vegetation sensitivity changes along a line of 
0.017oC/mm/yr, indicative of constraints on productivity driven by a balance between water supply and temperature-
dependent atmospheric water demand. A hot dry region above 15oC and below ~1000 mm/year rainfall is browner 
in warm years and greener in wetter years. Finally, a region beyond 1500 mm/year rainfall greens during warmer 
years even at the hottest vegetated places on Earth. In this region we propose that increased stress from temperature-
dependent atmospheric water demand is ofset by increased insolation that increases photosynthesis. Tese broad 
empirical patterns of ecosystem function across climate have the potential to provide functional constraints for Earth 
system models, helping improve our ability to model and predict global vegetation under a changing climate. 

P.20 Some suggestions on emergent constraints and metrics on model evaluations over land 

Xubin Zeng1,†, William Lytle1, Patrick Broxton1, Nick Dawson1, and Aihui Wang 
1University of Arizona, Tucson, Arizona, USA 
2Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China 
†Author to whom correspondence should be addressed; e-mail: xubin@email.arizona.edu 

(1) We have developed global hourly 0.5 degree land surface 2 m temperature (T2m) datasets based on four reanalysis 
products and the CRUTS3.10 in situ dataset for 1948–2009. Our three-step adjustments ensure that our final 
products have exactly the same monthly-mean maximum (Tx) and minimum (Tn) temperature as the CRU data. 
One of the uncertainties in our final products can be quantified by their diferences (Wang and Zeng 2013). 

Based on these results, we make two suggestions for model land surface T2m evaluation metrics: 

» To evaluate model monthly mean temperature, which is averaged over all time steps, using the true monthly mean 
based on hourly values from our datasets, rather than using Tm = (Tx + Tn) /2 

» To save monthly averaged diurnal cycle from models and compare its range with that based on our datasets, rather 
than using DTR = T x − Tn . 

(2) We have used measurements for several years at five flux tower sites in the U.S. (with a total of 315,576 hours of 
data) along with in situ snow measurements for the coupled evaluation of both below- and above-ground processes 
from three global reanalysis products and six global land data assimilation products. While errors in T2m are highly 
correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are 
weaker, particularly over the sites with seasonal snow (Lytle and Zeng 2016). Terefore, one emergent constraint in 
model evaluation is the coupled evaluation of daily air, skin, and soil temperatures. 

(3) It is well known that snow depth or water equivalent (SWE) varies substantially horizontally and with elevations, 
but we found that four methods for the spatial interpolation of peak of winter SWE and snow depth based on 
distance and elevation can result in large errors based on (SNOTEL and COOP) in situ data. Tese errors are 
reduced substantially by our new method; i.e., the spatial interpolation of these quantities normalized by accumulated 
snowfall. Our method results in significant improvement in SWE estimates over interpolation techniques that do not 
consider snowfall, regardless of the number of stations used for the interpolation (Broxton et al. 2016). Terefore, one 
emergent constraint in model evaluation is the evaluation of daily SWE over the accumulated snowfall. 

P.21 Decomposition of CO2  fertilization effect into contributions by land ecosystem processes:  
Comparison among CMIP5 Earth system models 

Kaoru Tachiiri1,†, Tomohiro Hajima1, and Michio Kawamiya1 

1Japan Agency for Marine-Earth Science and Technology, Kanagawa Prefecture, Japan 
†Author to whom correspondence should be addressed; e-mail: tachiiri@jamstec.go.jp 

Increase in atmospheric CO2 concentration stimulates plant growth, and promotes carbon uptake by land ecosystems. 
Tis process, often called CO2 fertilization, causes a negative feedback between atmospheric CO2 concentration 
and terrestrial carbon uptake. Te feed back is considered to have a strong impact on the climate–carbon cycle 
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system, but that has large inter-model variation in exiting Earth system models (ESMs). In this study, we examined 
in detail the sensitivity of change in land carbon storage to that in atmospheric CO2 concentration (ΔCO2) for the 
CMIP5 participant ESMs by breaking that down into the ratios of ΔCO2, changes in gross primary production, 
leaf area index, net primary production, vegetation carbon, soil carbon, heterotrophic respiration, and land carbon 
storage. Te results showed that increase in atmospheric CO2 concentration stimulates plant production, litter fall, 
and heterotrophic respiration with diferent sensitivities to ΔCO2 among the models, and major part in sensitivity 
of land carbon storage to ΔCO2 could be explained by the sensitivity of plant productivity. Te result suggests that 
to constrain the CO2 fertilization efect we need to better understand plant primary production, and to do so more 
observations and experiments are needed. In case the number of ESMs incorporating the nitrogen cycle increases, we 
may need a new framework to evaluate the carbon and nitrogen cycles with integrated manner to analyze the CO2 

fertilization efect. 

F.2.8 Uncertainty Quantifcation (UQ) Methods 

P.22 An uncertainty quantifcation framework designed for land models 

Maoyi Huang1,†, Zhangshuan Hou1, Jaideep Ray2, Laura Swiler3, and L. Ruby Leung1 

1Pacific Northwest National Laboratory, Richland, Washington, USA 
2Sandia National Laboratories, Livermore, California, USA 
3Sandia National Laboratories, Albuquerque, New Mexico, USA 
†Author to whom correspondence should be addressed; e-mail: maoyi.huang@pnnl.gov 

Representing terrestrial processes and their exchanges with the atmosphere, land surface models are important 
components of Earth system models used to predict climate variations and change. Most land surface models 
include numerous sub-models, each representing key processes with mathematical equations and model parameters. 
Optimizing the parameter values may improve model skill in capturing the observed behaviors. In this presentation, 
we will discuss recent progress in quantifying uncertainty associated with hydrologic parameters in the Community 
Land Model (CLM) and calibrating those parameters using an uncertainty quantification (UQ) framework 
that features global sensitivity analysis, parameter screening, classifying the complex system into a few relatively 
homogeneous regions, and Bayesian inversion using Markov Chain Monte Carlo techniques. Te UQ framework has 
been applied it to flux towers and watersheds under diferent climate and site conditions in the contiguous United 
States. Trough these studies, they demonstrated that the CLM-simulated latent heat and sensible heat fluxes, and 
runof generation are highly sensitive to hydrologic parameters, which could be better constrained using in-situ 
and remotely-sensed measurements such as the benchmarking datasets available in the International Land Model 
Benchmarking framework (ILAMB) (e.g., data from AmeriFlux network, streamflow gages, data products from the 
Moderate Resolution Imaging Spectroradiometer), when integrated with the UQ framework developed by the team. 
Although only being integrated with CLM, the framework is general and therefore is portable to other land models. 

P.23 Use of emulators in uncertainty quantifcation 

George Shu Heng Pau1,†, Chaopeng Shen2, and William J. Riley1 

1Lawrence Berkeley National Laboratory, Berkeley, California, USA 
2Pennsylvania State University, State College, Pennsylvania, USA 
†Author to whom correspondence should be addressed; e-mail: gpau@lbl.gov 

Direct application of robust uncertainty quantification techniques, such as Monte Carlo methods, to high-resolution 
land models is typically infeasible even with existing high-end computing ecosystems. To reduce the computational 
burden of applying these techniques, we develop certified reduced order models, or emulators, to efciently 
approximate solutions to high-resolution land models at a significant reduced cost. For a watershed-scale land model, 
we demonstrated that the proper orthogonal decomposition mapping method led to an emulator that had the 
desired spatial and temporal accuracies. Te emulator then allows us to quantify uncertainties at scales relevant to 
decision support. 

mailto:gpau@lbl.gov
mailto:maoyi.huang@pnnl.gov


132 

2016 ILAMB WORKSHOP REPORT

 
 

 

 
 

 

P.24 Uncertainty quantifcation in the ACME land model 

Daniel M. Ricciuto1,†, Khachik Sargsyan2, and Peter E. Tornton1 

1Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 
2Sandia National Laboratories, Livermore, California, USA 
†Author to whom correspondence should be addressed; e-mail: ricciutodm@ornl.gov 

For computationally expensive climate models, Monte-Carlo approaches of exploring the in put parameter space 
are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive 
surrogates using uncertainty quantification (UQ) methods employing Polynomial Chaos (PC) expansions that 
approximate the input-output relationships using as few model evaluations as possible. However, when many 
uncertain input parameters are present, such UQ studies sufer from the curse of dimensionality. In particular, for 
50–100 input parameters non-adaptive PC representations have infeasible numbers of basis terms. To this end, we 
develop and employ Weighted Iterative Bayesian Compressive Sensing to learn the most important input parameter 
relationships for efcient, sparse PC surrogate construction with posterior uncertainty quantified due to insufcient 
data. Besides drastic dimensionality reduction, such uncertain surrogate can efciently replace the model in 
computationally intensive studies such as forward uncertainty propagation and variance-based sensitivity analysis, as 
well as design optimization and parameter estimation using observational data. 

We apply the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for 
Energy (ACME) Land Model for several output quantities of interest at model grid cells representing the locations 
of 100 FLUXNET sites, covering multiple plant functional types and a broad array of climates, varying 65 input 
parameters over ranges of possible values defined by literature and expert opinion. We find general consistency of the 
top 10–15 most sensitive parameters across sites and across quantities of interest, with some variation in the relative 
ranking of these parameters. We find especially strong sensitivity to parameters related to photosynthesis, nitrogen 
cycling, and allocation. Finally, we assess the quality of the surrogate model and the potential applications of UQ 
methods for model calibration and benchmarking. 

P.25 PEcAn: A community tool to enable synthesis, evaluation & forecasting 

Shawn P. Serbin1,†, Michael C. Dietze2, and the PEcAn Project team 
1Brookhaven National Laboratory, Upton, New York, USA 
2Boston University, Boston, Massachusetts, USA 
†Author to whom correspondence should be addressed; e-mail: sserbin@bnl.gov 

Models are our primary tool for synthesizing our understanding of ecosystems and projecting the impact of 
global change on ecosystem services associated with carbon, energy and water fluxes and storage. Recently the use 
of models as a scafold for data-driven synthesis has expanded and there is increasing interest in formal model– 
data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration of 
observations, and guide model developments as well as focus data collection on parameters that drive the greatest 
uncertainty. However, models remain inaccessible to most ecologists, in large part due to the informatics challenges 
of managing the flows of information in and out of such models, as well as access to the tools necessary to properly 
synthesize model results and quantify the uncertainties in projections. Managing the communication between 
models and data involves three distinct challenges: dealing with the volume of big data; processing unstructured and 
uncurated long tail data; and the need to capture and propagate uncertainties in model–data comparisons and formal 
data–model assimilation. Finally, model development has long been an academic cottage industry, with diferent 
models lacking compatible formats for inputs, outputs, and settings. Tis has lead to massive redundancies and 
minimal reproducibility. As a result, the pace of model improvement has been glacial. PEcAn (http://pecanproject. 
org/), a tool box for model–data ecoinformatics, tackles many of these challenges. Users interact with models through 
an intuitive Google-Map based interface, a simple application program interface (API) and standardized file formats. 
Standardization allows the development of common, reusable tools for processing inputs, visualizing outputs, and 
automating analyses. PEcAn includes state-of-the-art Hierarchical Bayes tools for model parameterization, data 
assimilation, uncertainty quantification (UQ) and variance decomposition (VD), as well as the ability to leverage 
tools for processing uncurated data. In addition to these tools, PEcAn leverages a PostGIS database network to 
track all inputs, outputs, and model runs, greatly increasing reproducibility and reliability. Within the PEcAn 
network, the database syncs all results and facilitates file sharing to allow models to talk to each other and enables the 
community to efectively analyze many models distributed across a global network, thereby increasing the ability to 
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conduct mulit-model, multi-institutional model comparisons and synthesis activities. In this talk, we will review the 
capabilities within PEcAn for formal UQ/VD to guide modeling activities but also discuss the many other features 
and provide an example of the capability for data assimilation and model–data experimentation. 
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B. Smith, T. Sueyoshi, and Q. Zhuang (2016), Variability in the sensitivity among model simulations of 
permafrost and carbon dynamics in the permafrost region between 1960 and 2009, Global Biogeochem. Cycles, 
30(7), 1015–1037, doi:10.1002/2016GB005405. 

Medlyn, B. E., S. Zaehle, M. G. De Kauwe, A. P. Walker, M. C. Dietze, P. J. Hanson, T. Hickler, A. K. Jain, Y. Luo, 
W. Parton, I. C. Prentice, P. E. Tornton, S. Wang, Y.-P. Wang, E. Weng, C. M. Iversen, H. R. McCarthy, 
J. M. Warren, R. Oren, and R. J. Norby (2015), Using ecosystem experiments to improve vegetation models, 
Nature Clim. Change, 5(6), 528–534, doi:10.1038/nclimate2621. 

Medlyn, B. E., M. G. De Kauwe, S. Zaehle, A. P. Walker, R. A. Duursma, K. Luus, M. Mishurov, B. Pak, B. Smith, 
Y.-P. Wang, X. Yang, K. Y. Crous, J. E. Drake, T. E. Gimeno, C. A. Macdonald, R. J. Norby, S. A. Power, 
M. G. Tjoelker, and D. S. Ellsworth (2016), Using models to guide feld experiments: a priori predictions for the 
CO2 response of a nutrient-and water-limited native Eucalypt woodland, Glob. Change Biol., 22(8), 2834–2851, 
doi:10.1111/gcb.13268. 



146 

2016 ILAMB WORKSHOP REPORT

 

 
 

 

 
 

 

Medvigy, D., S. C. Wofsy, J. W. Munger, D. Y. Hollinger, and P. R. Moorcroft (2009), Mechanistic scaling of 
ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, J. Geophys. Res. 
Biogeosci., 114(G1), doi:10.1029/2008JG000812. 

Meehl, G. A., R. Moss, K. E. Taylor, V. Eyring, R. J. Stoufer, S. Bony, and B. Stevens (2014), Climate model 
intercomparisons: Preparing for the next phase, Eos Trans. AGU, 95(9), 77–78, doi: 10.1002/2014EO090001. 

Milly, P. C. D., S. L. Malyshev, E. Shevliakova, K. A. Dunne, K. L. Findell, T. Gleeson, Z. Liang, P. Phillipps, 
R. J. Stoufer, and S. Swenson (2014), An enhanced model of land water and energy for global hydrologic and 
Earth-system studies, J. Hydrometeor., 15(5), 1739–1761, doi:10.1175/JHM-D-130162.1. 

Mishra, U., and W. J. Riley (2015), Scaling impacts on environmental controls and spatial heterogeneity of soil 
organic carbon stocks, Biogeosci., 12(13), 3993–4004, doi:10.5194/bg-12-3993-2015. 

Mishra, U., J. D. Jastrow, R. Matamala, G. Hugelius, C. D. Koven, J. W. Harden, C. L. Ping, G. J. Michaelson, 
Z. Fan, R. M. Miller, A. D. McGuire, C. Tarnocai, P. Kuhry, W. J. Riley, K. Schaefer, E. A. G. Schuur, 
M. T. Jorgenson, and L. D. Hinzman (2013), Empirical estimates to reduce modeling uncertainties of soil organic 
carbon in permafrost regions: A review of recent progress and remaining challenges, Environ. Res. Lett., 8(3), 
035,020, doi:10.1088/1748-9326/8/3/035020. 

Mishra, U., B. Drewniak, J. D. Jastrow, R. M. Matamala, and U. W. A. Vitharana (2016), Spatial representation 
of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models, Geoderma, 
doi:10.1016/j.geoderma.2016.04.017. 

Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala (2001), A method for scaling vegetation dynamics: Te Ecosystem 
Demography model (ED), Ecol. Monogr., 71(4), 557–586, doi:10.1890/00129615(2001)071[0557:AMFSVD]2. 
0.CO;2. 

Mu, M., J. T. Randerson, W. J. Riley, C. D. Koven, G. Keppel-Aleks, D. M. Lawrence, and F. M. Hofman (2016a), 
International Land model Benchmarking (ILAMB) package v001.00, Software package, doi: 10.18139/ILAMB. 
v001.00/1251597. 

Mu, M., et al. (2016b), Development of version 1 of the International Land Model Benchmarking (ILAMB) system 
and its application to CMIP5 Earth system models, J. Adv. Model. Earth Syst., in preparation. 

Mu, Q., M. Zhao, and S. W. Running (2011), Improvements to a MODIS global terrestrial evapotranspiration 
algorithm, Remote Sens. Environ., 115(8), 1781–1800, doi:10.1016/j.rse.2011.02.019. 

Müller, J., R. Paudel, C. A. Shoemaker, J. Woodbury, Y. Wang, and N. Mahowald (2015), CH4 parameter estimation 
in CLM4.5bgc using surrogate global optimization, Geosci. Model Dev., 8(10), 3285–3310, doi:10.5194/gmd-8-
3285-2015. 

Myneni, R. B., S. Hofman, Y. Knyazikhin, J. L. Privette, J. Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, 
G. R. Smith, A. Lotsch, M. Friedl, J. T. Morisette, P. Votava, R. R. Nemani, and S. W. Running (2002), Global 
products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 
83(1–2), 214–231, doi:10.1016/S0034-4257(02)00074-3. 

Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, S. V. Kumar, and Y. Xia (2016), Benchmarking NLDAS-2 
soil moisture and evapotranspiration to separate uncertainty contributions, J. Hydrometeor., 17(3), 745– 759, 
doi:10.1175/JHM-D-15-0063.1. 
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Appendix H. 
Acronyms and Abbreviations 
ACME Accelerated Climate Modeling for Energy 
AGU American Geophysical Union 
ALM ACME Land Model 
ALMA Assistance for Land-surface Modeling Activities convention for NetCDF fles 
AMIP Atmospheric Model Intercomparison Project 
API application programming interface 
ASCAT Advanced SCATterometer 

BCS Bayesian Compressive Sensing 

C carbon 
CESM Community Earth System Model 
CF Climate and Forecast convention for NetCDF fles 
C-LAMP Carbon-Land Model Intercomparison Project 
CLM Community Land Model 
C4MIP Coupled Climate-Carbon Cycle MIP 
CMIP Coupled Model Intercomparison Project 
CRU Climate Research Unit 
CTFS Center for Tropical Forest Science 
CZO Critical Zone Observatory 

DA data assimilation 
DECK Diagnostic, Evaluation, and Characterization of Klima 
DGVM dynamic global vegetation model 
DOE U.S. Department of Energy 
DVM dynamic vegetation model 

ECV essential climate variable 
ESGF Earth System Grid Federation 
ESM Earth System Model 
ESM-SnowMIP Earth System Model Snow Model Intercomparison Project 
ESMValTool Earth System Model Evaluation Tool 
ET evapotranspiration 

FACE Free-Air Carbon dioxide Enrichment 
FIA Forest Inventory and Analysis 
FLUXNET Global eddy covariance fux network of regional networks 
ForestGEO Forest Global Earth Observatory 

GEDI Global Ecosystem Dynamics Investigation 
GEM Global Ecosystem Monitoring network 
GFDL Geophysical Fluid Dynamics Laboratory 
GLACE Global Land-Atmosphere Coupling Experiment 
GPP gross primary production 
GRDC Global Runof Data Center 
GRACE Gravity Recovery And Climate Experiment 
GSA global sensitivity analysis 
GSWP3 Global Soil Wetness Project 3 
GUI graphical user interface 

HPC high-performance computing 
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ICOS Integrated Carbon Observation System 
ILAMB International Land Model Benchmarking 
IS imaging spectroscopy 
ITCZ Inter-Tropical Convergence Zone 
ITEX International Tundra Experiment 

JPL Jet Propulsion Laboratory 
JSON JavaScript Object Notation 

KL Karhunen-Loeve 

LAI leaf area index 
LH latent heat 
LiDAR Light Detection And Ranging 
LIS Land Information System 
LS3MIP Land Surface, Snow and Soil Moisture Model Intercomparison Program 
LSM land surface model 
LUCID Land-Use and Climate, IDentifcation of robust impacts 
LULCC land use and land cover change 
LUMIP Land Use Model Intercomparison Project 
LVT Land surface Verifcation Toolkit 

MC Monte Carlo 
MCMC Markov Chain Monte Carlo 
MDF model–data fusion 
MIP model intercomparison project 
ModEx Model–data experimentation 
MOPEX Model Parameter Estimation Experiment 
MSE mean-square error 
MsTMIP Multi-scale Synthesis & Terrestrial Model Intercomparison Project 
MTE model tree ensemble 

NACP North American Carbon Program 
NASA National Aeronautics and Space Administration 
NBP net biosphere productivity 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NCL NCAR Command Language 
NDVI Normalized Diference Vegetation Index 
NEE net ecosystem exchange 
NEON National Ecological Observatory Network 
NEP net ecosystem productivity 
NetCDF Network Common Data Form 
NGEE Next Generation Ecosystem Experiments 
NOAA National Oceanic and Atmospheric Administration 
NSE Nash-Sutclife Efciency 
NPP net primary productivity 

OAT one at a time 

PalEON Paleo-Ecological Observatory Network 
PALS Protocol for the Analysis for Land Surface models 
PC polynomial chaos 
PCMDI Program for Climate Model Diagnosis and Intercomparison 
PCN Permafrost Carbon Network 
PDA Parameter data assimilation 
PDF probability density function 
PEcAn Predictive Ecosystem Analyzer 
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PF particle flter 
PFT plant functional type 
PLUMBER PALS Land Surface Model Benchmarking Evaluation Project 
PLUME Processes Linked to Uncertainties Modelling Ecosystems 
PMP PCMDI Metrics Package 

QOIs quantities of interest 

RAINFOR Amazon Forest Inventory Network 
Re ecosystem respiration 
RECCAP REgional Carbon Cycle Assessment and Processes 
RMSE root-mean-square error 
RTM radiative transfer model 

SA sensitivity analysis 
SAChES Scalable Adaptive Chain Ensemble Sampling 
SavMIP MIP focused on Australian savannas 
SDA state-variable data assimilation 
SFA Scientifc Focus Area 
SH sensible heat 
SIF solar-induced fuorescence 
SMAP Soil Moisture Active Passive mission 
SMOS Soil Moisture and Ocean Salinity mission 
SOM soil organic matter 
SPRUCE Spruce and Peatland Responses Under Climatic and Environmental Change 
SST sea surface temperature 
SWE snow water equivalent 

TBM terrestrial biosphere model 
TES Terrestrial Ecosystem Science 
TF Traceability Framework 
TIR thermal infrared 
TRACE Tropical Responses to Altered Climate Experiment 
TRIP Total Runof Integrating Pathways 
TRMM Tropical Rainfall Measurement Mission 
TWS total water storage 
TWSA total water storage anomaly 

UK United Kingdom 
UQ uncertainty quantifcation 
US United States 
USA United States of America 
USDA US Department of Agriculture 

VD Variance Decomposition 
VDM vegetation demographic model 

WCE weather and climate extreme 
WIBCS Weighted Iterative Bayesian Compressive Sensing 
WMO World Meteorological Organization 

XML eXtensible Markup Language 

ZPW Zero Power Warming 
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	Model evaluation and benchmarking tools currently employed by international modeling centers were assessed at the workshop. Features of current benchmarking tools—including the Protocol for the Analysis for Land Surface models (PALS), the Program for Climate Model Diagnosis and Intercomparison (PCMDI) Metrics Package (PMP), the Earth System Model Evaluation Tool (ESMValTool), and the Land surface Verification Toolkit (LVT)—were reviewed, and the new ILAMB benchmarking systems were described and demonstrated
	The ILAMB version 1 (v1) and ILAMB version 2 (v2)  benchmarking systems compare model results with best-available observational data products, focusing on atmospheric CO, surface fluxes, hydrology, soil carbon and nutrient biogeochemistry, ecosystem processes and states, and vegetation dynamics. ILAMBv2 is expected to become an integral part of the workflow for model frameworks, including the Accelerated Climate Modeling for Energy (ACME) model and the Community Earth System Model (CESM). Moreover, ILAMBv2 
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	Benchmarking Challenges and Priorities 
	Benchmarking Challenges and Priorities 
	A variety of statistical approaches have been adopted to evaluate model accuracy through comparison with observations, including calculations of bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor diagrams and scores, functional relationship metrics, and perturbation and sensitivity tests. While many of these statistical measures are not independent, each provides slightly different information about contemporary model performance with respect to observational data and about 
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	However, developing metrics that make appropriate use of observational data remains a scientific challenge because of the spatial and temporal mismatch between models and measurements, poorly characterized uncertainties in observationally constrained data products, biases in reanalysis and forcing data, model simplifications, and structural and parametric uncertainties. A variety of benchmarking challenges and opportunities emerged from workshop breakout group meeting reports. Common themes included the fol
	› Need for collocated measurements, particularly around a core set of AmeriFlux and FLUXNET sites with a sustained record of observations for repeated model testing 
	› Lack of quantified uncertainty information for observational data 
	› Utility of functional response metrics and variable-to-variable comparisons 
	› Value of metrics for future projections based on emergent constraints 
	› Unrealized opportunities for global observational data sets based on satellite remote sensing synthesized with ancillary databases, using new algorithms 
	› Importance of applying statistical and machine learning methods to upscaling sparse measurements from sites to regions to the globe 
	› Need for process-level benchmarks and metrics for extreme events 
	› Opportunities for collaboration with earth system model developers (e.g., ACME, CESM, and others) 
	› Opportunities for collaboration with important field and laboratory experiments and monitoring activities, including AmeriFlux and FLUXNET, Integrated Carbon Observation System (ICOS), Next Generation Ecosystem Experiments (NGEE) Arctic, Arctic– Boreal Vulnerability Experiment (ABoVE), Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project, Critical Zone Observatories (CZOs), Long-Term Ecological Research (LTER) sites, National Ecological Observatory Network (NEON), NGEE Tr
	Recommendations for next-generation Benchmarking Challenges and Priorities included the following: 
	› Develop supersite benchmarks integrated with AmeriFlux and FLUXNET 
	› Create benchmarks for soil carbon turnover and vertical distribution and transport 
	› Develop benchmark metrics for extreme event statistics and response of ecosystems 
	› Synthesize data for vegetation recruitment, growth, mortality, and canopy structure 
	› Create benchmarks focused on critical high latitude and tropical forest ecosystems 
	› Leverage observational projects and create a roadmap for remote sensing methods. 
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	Model Intercomparison Project (MIPs) 
	Model Intercomparison Project (MIPs) are important activities for assessing the coherence and reliability of ESMs. Ongoing and future MIPs focused on modeling terrestrial water, energy, and carbon cycles are particularly relevant to ILAMB. Benchmarking needs were evaluated for the CMIP6 historical and Diagnostic, Evaluation, and Characterization of Klima (DECK) experiments; the Coupled Climate–Carbon Cycle MIP (CMIP); the Land Surface, Snow and Soil Moisture MIP (LS3MIP); and the Land Use MIP (LUMIP). Oppor
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	Key recommendations that emerged on MIP benchmarking needs were the following: 
	› Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specific processes through emergent constraint and traceability approaches 
	› Benchmark across coupling and complexity hierarchies—from offline land-only simulations to fully coupled ESMs—to attribute model biases and uncertainties to specific domains and identify feedbacks between domains 
	› Develop paired site data sets for benchmarking model representations of subgrid scale heterogeneity. 

	Benchmarking Approaches 
	Benchmarking Approaches 
	New and existing Benchmarking Approaches were identified from the workshop. While traditional statistical comparisons with observations offer a great deal of information about model performance, metrics based on functional responses or variable-to-variable comparisons often suggest why models produce incorrect results. Benchmarking future projections can be accomplished through careful use of emergent constraints. Reduced complexity models and traceability frameworks are usefully applied to enable greater p

	Enabling Capabilities 
	Enabling Capabilities 
	To address the identified next generation Benchmarking Challenges and Priorities, certain Enabling Capabilities are needed. New model development focused on improving process representations is required, and additional model variables should be saved for comparison with data. A new Land Model Testbed (LMT) capability employing community benchmarks and supporting UQ frameworks would enable more rapid model development and verification, particularly for major ESM frameworks like ACME and CESM. 
	Additional field measurements and monitoring activities, as well as perturbation experiments and lab studies, could provide valuable observational data for constraining models. High priority measurement needs for developing benchmarks and improving ESMs include the following: 
	› 
	› 
	› 
	Long-term energy, carbon, and water flux measurements at AmeriFlux and FLUXNET sites with standardized instrumentation and methods, and additional frequent or continuous ancillary in situ measurements of soil moisture, sap flow, tree height and diameter, litterfall, and soil nutrients 
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	› 
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	Improved observational data archives (e.g., DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility and Environmental System Science (ESS) archives, NASA Distributed Active Archive Centers (DAACs)) and repositories (e.g., Obs4MIPs) are needed that offer data discovery, server-side analysis, and advanced distribution capabilities. Finally, new computational resources and cyber infrastructure will be required to realize the promise of new benchmarking capabilities. This infrastructure needs to o

	Conclusions and Next Steps 
	Conclusions and Next Steps 
	The 2016 ILAMB Workshop was successful in bringing together the international community to identify scientific challenges and priorities for future research. The workshop demonstrated broad interest on the part of a vibrant community of scientists spanning many disciplines that are committed to reducing barriers for information flow between the measurement and modeling communities. 
	To effectively address the individual processes and cross-cutting themes discussed above, small, targeted working groups should be formed to research and publish supporting analyses. A top priority is supporting CMIP6 activities, where additional development of ILAMB functionality could yield powerful automated analyses and model intercomparison capabilities for such national and international assessment efforts. 
	Over the next decade, the community envisions the ILAMB system to serve as a core capability within a U.S. or international center that will provide a home to focused synthesis working groups, host MIP-related activities, and support expanded use of, and access to, ESMs by a broader cross section of scientists within disciplines of ecosystem ecology, biogeochemistry, and hydrology. 
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	1.0 Model Benchmarking Principles and Workshop Introduction 
	1.0 Model Benchmarking Principles and Workshop Introduction 
	As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide (Figure 1.1), new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations
	Figure
	Figure 1.1. Today’s advanced Earth system models must represent the interacting energy and radiation dynamics and water cycle processes (left) as well as the geochemical and biological processes that control global carbon and nutrient cycles (right) under conditions of increasing atmospheric carbon dioxide. 
	Figure 1.1. Today’s advanced Earth system models must represent the interacting energy and radiation dynamics and water cycle processes (left) as well as the geochemical and biological processes that control global carbon and nutrient cycles (right) under conditions of increasing atmospheric carbon dioxide. 


	Building upon past model evaluation studies, the goals of the International Land Model Benchmarking (ILAMB) activity (Section 3; /) are the following: 
	https://www.ilamb.org

	1. 
	1. 
	1. 
	Develop internationally accepted benchmarks for land model performance by drawing upon international expertise and collaboration. 

	2. 
	2. 
	Promote the use of these benchmarks by the international community for model intercomparison. 

	3. 
	3. 
	Strengthen linkages among experimental, remote sensing, and climate modeling communities in the design of new model tests and new measurement programs. 

	4. 
	4. 
	Support the design and development of a new, open source, benchmarking software system for use by the international community. 


	To further these goals and advance the development of benchmarking software tools for use by the international community, a diverse team of national laboratory and university researchers sponsored by the US Department of Energy is engaged in developing new diagnostic approaches and model benchmarking tools for evaluating Earth System Model (ESM) hydrological and biogeochemical process representations. Collaborating through the Biogeochemistry–Climate Feedbacks Scientific Focus Area (BGC Feedbacks SFA) proje
	https://www.bgc-feedbacks.org

	Figure 1.2. The Biogeochemistry–Climate Feedbacks Scientific Focus Area (SFA) uses best-available observational data sets to evaluate the fidelity of Earth system models. Open source benchmarking tools are produced to support model testbeds for Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM) frameworks. The project identifies model gaps and weaknesses, informs new model development, and suggests new measurement and field campaigns. 
	Figure
	The benchmarking system developed by the BGC Feedbacks SFA compares model results with best-available observational data products, focusing on atmospheric CO, surface fluxes, hydrology, soil carbon and nutrient biogeochemistry, ecosystem processes and states, and vegetation dynamics. The system is expected to become an integral part of model verification for future rapid model development cycles for the model frameworks from the Accelerated Climate Modeling for Energy (ACME) project and the Community Earth 
	2

	The second ILAMB Workshop in the United States was convened on May 16–18, 2016, in Washington, District of Columbia, USA. The overarching goal of the workshop was to engage the international research community in defining the scientific priorities for the design of new metrics, the identification of model development and workflow practices, and CMIP6 evaluation needs, and to learn about new observational data sets and measurement campaigns. The workshop drew more than 60 on-site participants and included at
	SECOND ILAMB WORKSHOP IN THE U.S. 
	SECOND ILAMB WORKSHOP IN THE U.S. 
	More than 5 years after the first ILAMB workshop in the United States in 2011, the 2016 ILAMB workshop, jointly sponsored by the U.S. Department of Energy’s Regional & Global Climate Modeling (RGCM) and Earth System Modeling (ESM) Programs, was convened to: 
	» Highlight new techniques and metrics for model evaluation, including applications of the emergent constraints approach. 
	» Enable coordination among the Coupled Climate–Carbon Cycle Model Intercomparison Project; Land Surface, Snow, and Soil Moisture Model Intercomparison Project; and the Land Use Model Intercomparison Project. 
	» Increase awareness of new tools that will be available for model verification and benchmarking, drawing upon data streams from field experiments, remote sensing, in situ measurements, and synthesis activities. 
	» Increase the use and sharing of information and community tools for model evaluation and benchmarking. 
	» Design new metrics and evaluation approaches for integration into the next generation ILAMB system. 
	» Create new metrics that integrate across carbon, surface energy, hydrology, and land use disciplines. 
	Figure
	Figure 1.3. Model simulations and benchmarking play a critical role in the model–data experimentation (ModEx) enterprise outlined in this diagram. By identifying model weaknesses and knowledge gaps, benchmarking helps inform process research and experimental design, which generate data that drives new model development in a cyclic fashion. All of these steps both use and produce data, models, and analysis capabilities and tools that can be shared and used by the larger international research community. 
	Figure 1.3. Model simulations and benchmarking play a critical role in the model–data experimentation (ModEx) enterprise outlined in this diagram. By identifying model weaknesses and knowledge gaps, benchmarking helps inform process research and experimental design, which generate data that drives new model development in a cyclic fashion. All of these steps both use and produce data, models, and analysis capabilities and tools that can be shared and used by the larger international research community. 


	The white papers in the Appendix of this report were authored through “crowdsourcing” for the widest possible engagement with researchers at the workshop, attending remotely, or with general interest in model evaluation. Breakout group co-leads and plenary presenters, listed as authors of the respective white papers, contributed additional effort to resolve comments and produce the combined draft form of the report. In addition to transmitting audio and slides over the Internet from all plenary sessions, wo
	This report provides a synopsis of the current state of the science and highlights challenges and opportunities for benchmarking, model development, and field and laboratory measurements needed to advance climate science. The main text provides a synthesis of the ideas, concepts, and scientific priorities presented and discussed at the workshop. Section 4 highlights benchmarking priorities identified by the scientific community. Categorized as Major Processes (detailed in Appendix B) and Integrating and Cro
	Major Processes 
	Major Processes 
	Major Processes 

	» 
	» 
	ecosystem processes and states 
	» 
	soil carbon and nutrient biogeochemistry 

	» 
	» 
	hydrology 
	» 
	surface fluxes (energy and carbon) 

	» 
	» 
	atmospheric CO2 
	» 
	vegetation dynamics 


	Integrating and Cross-cutting Themes 
	Integrating and Cross-cutting Themes 
	» process-specific experiments » tropical processes » metrics from extreme events » remote sensing » design of new perturbation experiments » eddy covariance flux networks » high latitude processes 
	The Appendix of this report summarizes the invited presentations, describes breakout group proceedings and recommendations, and identifies critical gaps and opportunities in measurement programs, new approaches for model evaluation, and synergies among research teams and tools being constructed to support model development, parameter estimation, and model–data integration. 
	Figure
	Figure 1.4. The topical white papers within the categories of Major Processes and Integrating and Cross-cutting Themes were synthesized with those on the needs of Model Intercomparison Projects (MIPs) to produce a set of next generation Benchmarking Challenges and Priorities resulting from the workshop. In addition, Benchmarking Approaches for addressing these challenges were identified and Enabling Capabilities needed to facilitate next generation benchmarking and model development were distilled from the 
	Section 2 describes a collection of existing land model evaluation or benchmarking tools and identifies other model evaluation capabilities currently employed in international climate modeling centers. Strengths and weaknesses of these existing approaches are considered in the discussion of potential synergies for future development across varied benchmarking packages. Section 3 presents an overview of the ILAMB Software Packages (ILAMBv1 and ILAMBv2) released to the community at the workshop. Section 4 foc
	Section 6 describes a proposed land model development and evaluation testbed methodology and highlights specific metrics and datasets identified for evaluating new process parameterizations being developed for the ACME Land Model (ALM). Section 7 illustrates a mathematical methodology for evaluating structural components of carbon cycle models and describes approaches for integration of uncertainty quantification techniques into model benchmarking activities and tools. Section 8 presents computational needs


	THE CLOUD AND SOCIAL MEDIA AT THE ILAMB WORKSHOP 
	THE CLOUD AND SOCIAL MEDIA AT THE ILAMB WORKSHOP 
	Conferencing technology, document crowdsourcing in the Cloud, and social media were all employed at the ILAMB Workshop to maximize community participation. Audio and slides from plenary sessions all three days were transmitted over the Internet through software called BlueJeans. 
	Figure
	All slides and meeting notes were developed and edited by workshop participants using Google Slides and Google Docs, allowing local and remote attendees to contribute notes and comments for any plenary or breakout group session. Twitter was employed by many participants to make comments, post ideas, or ask questions during the workshop. A sampling of these tweets is shown here. 
	This workshop report was developed by crowdsourcing through the community using Google Docs, which enabled participants to continue contributing new ideas, figures, and references to relevant research right up until final production. 
	The use of technology even helped reduce gender, racial, and cultural imbalances among workshop participants since female caretakers could attend from their homes and researchers in foreign countries could attend without traveling long distances. 


	2.0 Benchmarking Tools 
	2.0 Benchmarking Tools 
	2.1 Evaluation and Benchmarking Tools 
	2.1 Evaluation and Benchmarking Tools 
	To prepare ILAMB Workshop participants for discussions of model evaluation and benchmarking, several of the leading benchmarking tools being employed by the research community were reviewed and presented by invited workshop speakers. These tools, some of which were designed specifically for evaluating land models and others for general applicability to Earth system models, are described here. The Protocol for the Analysis for Land Surface models (PALS; Abramowitz, 2012) is an online web application for the 
	The ESM community agrees that systematic model assessment should be a routine component of the model development process. Benchmarking systems should provide a mechanism for archiving of previous results in a manner that allows for ease of viewing later. For example, ILAMB facilitates the comparison of multiple models or model versions simultaneously (e.g., Figure 2.1). Scores for individual metrics can easily be compared to determine the tradeoffs resulting from model modifications. Likewise, the PALS syst
	Model evaluation tools should be designed to test the predictive power of a model under conditions of a changing climate. Given that direct model evaluation is possible only with contemporary observations, it is difficult to establish whether a model has predictive skill. However, within the ILAMB system, development of functional benchmarks to relate biogeochemical or biogeophysical responses to a physical driver will test whether a model can accurately simulate the relationship between a model variable an
	KEY RECOMMENDATIONS 
	» Well-established aspects of model assessment should be a routine component of the model development process that over time becomes increasingly comprehensive. 
	» Evaluation tools should include testing the predictive power of models under a changing climate. 
	» Benchmarking packages should span a wide range of spatial and temporal scales and extents. 
	» Integration of a diversity of evaluation tools into a common workflow framework could lead to new insights into climate processes and phenomena. 
	» Evaluation and benchmarking systems should be open source and freely distributed to leverage the work of many modeling teams and to minimize redundancy. 
	» Benchmarking tools should be integrated with data repositories that support standardized access through an applications programming interface. 
	Figure 2.1. The ILAMBv2 package produces a summary graphic depicting model performance across a wide variety of variables, emphasizing absolute performance (left) as well as relative performance (right) with respect to comparisons with observations. This figure compares results from the ACME Land Model (ALM) run offline with carbon–nitrogen (CN) biogeochemistry (ALM_CN), run offline in satellite phenology (SP) mode (ALM_SP), and fully coupled in SP mode (ALM_WCYCL) with the Community Land Model (CLM) run of
	theory. By considering entropy or information content within model output, a package may be able to evaluate the robustness of model predictions to a different mean state. 
	Building a benchmarking system that spans spatial and temporal scales is crucial. Land surface processes are heterogeneous, but the climate impact of biogeochemical exchange with the atmosphere is global. ILAMB currently incorporates both global gridded observations and site-level time series and offers a scheme for scoring performance on both kinds of comparisons, representing both spatial and temporal aspects of model performance. The LVT system dynamically transforms model output to match the scale of ob
	Ultimately, linking ILAMB to existing model evaluation tools for physical climate will facilitate improved prediction in fully coupled Earth system models. The PCMDI Metrics Package and the ESMValTool are community tools designed to evaluate a set of outputs complementary to ILAMB, especially from non-terrestrial components of the Earth system. We see opportunities for linking with these packages because a lack of fidelity in the simulation of physical climate in biogeochemical hotspots, such as the Amazon,
	Figure
	Figure
	Figure 2.2. A metric for heat transfer through snow. The dashed line and gray shading show observed relation between the normalized difference in the amplitude of the annual cycle of air temperature versus near-surface soil temperature at different levels of effective mean snow depth. Colored lines represent the snow heat transfer relationship as obtained from CMIP5 models (Figure 4 of Slater et al., 2016). 
	Figure 2.2. A metric for heat transfer through snow. The dashed line and gray shading show observed relation between the normalized difference in the amplitude of the annual cycle of air temperature versus near-surface soil temperature at different levels of effective mean snow depth. Colored lines represent the snow heat transfer relationship as obtained from CMIP5 models (Figure 4 of Slater et al., 2016). 


	Many model evaluation packages are open source community tools, and such a free and open framework facilitates wide use of the benchmarking system because users can add evaluation metrics or sub-select from existing metrics as desired. Challenges to adoption, integration with other tools, and cooperative development include standards for file formats and data conventions, programming languages, and the diversity of computational architectures required to support single-point to high resolution global analys

	2.2 Other Model Evaluation Capabilities in Use at Modeling Centers 
	2.2 Other Model Evaluation Capabilities in Use at Modeling Centers 
	Modeling centers presently employ a patchwork of model evaluation methodologies. A survey conducted prior to the 2016 ILAMB Workshop, designed to gauge the philosophies and approaches used for model evaluation, confirmed unanimous community interest in comprehensive evaluation tools, with all modeling centers reporting that evaluation played multiple roles in the model development process. Although the primary reported use for model evaluation was to diagnose errors in the model, modeling centers also use t
	Responses from the modeling centers also revealed the need for community-based approaches to share best practices. Although most modeling centers had their own model evaluation package, some of these packages are slanted toward general diagnostics rather than land-specific diagnostics. Of these packages, roughly half included quantitative metrics and scoring; however, most of the packages also relied significantly on expert judgment, such as for interpreting graphical comparisons between model output and ob
	Responses from the modeling centers also revealed the need for community-based approaches to share best practices. Although most modeling centers had their own model evaluation package, some of these packages are slanted toward general diagnostics rather than land-specific diagnostics. Of these packages, roughly half included quantitative metrics and scoring; however, most of the packages also relied significantly on expert judgment, such as for interpreting graphical comparisons between model output and ob
	gauging the relative importance of an observational constraint that had already been incorporated into the package. An important contribution from ILAMB may therefore be parsing the appropriate uses and limitations of various datasets that can be used for model evaluation. 

	Figure
	Figure 2.3. Ranking system employed by UKMO in determining land variables to incorporate into their metrics package. Adapted with permission from Martin Best and Chris Jones (UK Met Office). 
	Figure 2.3. Ranking system employed by UKMO in determining land variables to incorporate into their metrics package. Adapted with permission from Martin Best and Chris Jones (UK Met Office). 


	The workflow through which model evaluation packages are employed suggests that another important contribution from a system like ILAMB is in facilitating comparisons for both coupled and uncoupled model runs. Most modeling centers reported that they develop their model sequentially, first focusing on uncoupled simulations, and later tuning for coupled simulations. A challenge for this sequential approach is that there are significant uncertainties in driver datasets that likely propagate to biases in land 
	A crucial component of benchmarking workflows is the ability to confront models with observational datasets that may reside in one or more data archives or repositories, and may evolve in time as new observations are added or as data processing methods are improved. Currently, this process is ad hoc, with modeling centers or individual scientists typically accessing a given dataset once, possibly converting its format to one that is most consistent with model output, and then storing the data locally for us
	ILAMB promises to address barriers to sharing model evaluation packages across centers. A few modeling centers have already adopted ILAMB as a primary or secondary model evaluation package. Several centers desired better integration with other centers; however, a difficulty is that a diversity of software is used, including the NCAR Command Language (NCL), Ferret, Fortran, R, and Python. Thus, an open source evaluation system will likely facilitate cross-center interactions and drive community standards for

	2.3 Synergies Across Different Benchmarking Activities 
	2.3 Synergies Across Different Benchmarking Activities 
	Several modeling groups have well-developed efforts focusing on land model assessment and benchmarking. These projects are all moving forward in parallel with ILAMB development. While some overlap exists across these projects, each package has a particular set of capabilities and strengths. PALS focuses on benchmarking in the true sense of the word by defining, through statistical models, an a priori expectation of minimum land model performance and assessing the prognostic models against that a priori expe
	At this stage, coordination of these distinct and international land model benchmarking/assessment activities is challenging due to the diversity of approaches and the complexities of the international funding environment. Nonetheless, the 2016 ILAMB Workshop provided a good opportunity for everyone to share progress and ideas. 
	Over the longer term, it may be possible and beneficial to integrate existing land diagnostics packages under a loosely coordinated framework, potentially in a manner similar to that employed by ESMValTool for analysis of the coupled climate system. Under this scenario, the independently developed diagnostics packages (ILAMB, PALS, LVT) could be brought together under a single umbrella. Transitioning to this mode of operation would have the benefit of reducing effort related to the overhead of benchmarking 


	3.0 Current Status of the ILAMB Software Packages 
	3.0 Current Status of the ILAMB Software Packages 
	The complexity of today’s process-rich Earth system models poses a verification challenge to developers implementing new parameterizations or tuning process representations, and a validation challenge to modelers for comprehensive and multifaceted evaluation of model predictions. Model developers and software engineers require a systematic means for evaluating changes in model results to ensure that their developments improve the fidelity of the target process representations while not adversely affecting r
	At the previous ILAMB Workshop in the United States—held in Irvine, California, in January 2011—a methodology was developed for targeting aspects of model performance to be evaluated, identifying a set of benchmarks to test model performance, and guiding model improvements (Luo et al., 2012). Since that workshop, which advocated for near-term research efforts directed at developing a set of widely accepted benchmarks, the team of ILAMB developers and contributors have worked to design critical metrics for t
	https://www.bgc-feedbacks.org

	Both ILAMBv1 and ILAMBv2 assess model performance for variables in categories of biogeochemistry (aboveground live biomass, burned area, carbon dioxide, gross primary production, leaf area index, global net ecosystem carbon balance, net ecosystem exchange, ecosystem respiration, and soil carbon), hydrology (evapotranspiration, latent heat, and terrestrial water storage anomaly), radiation and energy (albedo, surface upward shortwave radiation, surface net shortwave radiation, surface upward longwave radiati
	Model performance scores are calculated for each metric and variable and are further scaled based on the degree of certainty of the observational data set, the scale appropriateness and spatial and temporal coverage, and the overall importance of the constraint or process to model predictions. Scores are aggregated across metrics and data sets, producing a single scalar score for each variable for every model or model version. In ILAMBv2, these scores are also presented graphically to indicate absolute perf
	ILAMBv1 has been applied to analyze results from a suite of models that participated in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and new model development underway for ALM and the Community Land Model (CLM). ILAMBv2 is routinely used to study the evolving performance of both ALM and CLM. While ILAMBv1 is continuing to be used for individual studies, all new metrics development is expected to take place in the ILAMBv2 package because it runs in parallel across multiple compute nodes
	Figure
	Figure 3.1. Shown here is the year 2000 pantropical forest biomass benchmark data (Saatchi et al., 2011) (top row left) and the Accelerate Climate Modeling for Energy (ACME) Land Model version 1 (ALMv1) annual mean biomass for years 1996 to 2005 (top row right). Below the horizontal line are maps of the bias from four models (CLM4.0-CN, CLM4.5-BGC, CLM4.5-BGC forced with GSWP3, and ALMv1). These biases are computed by subtracting the benchmark from the model annual mean biomass for years 1996 to 2005. 
	Figure 3.1. Shown here is the year 2000 pantropical forest biomass benchmark data (Saatchi et al., 2011) (top row left) and the Accelerate Climate Modeling for Energy (ACME) Land Model version 1 (ALMv1) annual mean biomass for years 1996 to 2005 (top row right). Below the horizontal line are maps of the bias from four models (CLM4.0-CN, CLM4.5-BGC, CLM4.5-BGC forced with GSWP3, and ALMv1). These biases are computed by subtracting the benchmark from the model annual mean biomass for years 1996 to 2005. 


	Figure 3.2. The ILAMBv1 prototype compares the model and FLUXNET (Lasslop et al., 2010) mean annual amplitude and phase of gross primary production (GPP) (top left); computes the annual mean, bias, and root-mean-square error (RMSE) of GPP (top right), and compares the full time series of GPP for prescribed regions. 
	Figure
	Within US Department of Energy (DOE)-sponsored projects, the ILAMB framework is not only being leveraged by the ACME project but is bridging with large measurement and modeling projects in DOE’s Terrestrial Ecosystem Science (TES) Program, including the Next Generation Ecosystem Experiments (NGEE) Arctic, NGEE Tropics, and Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE). The ILAMB framework is developing and implementing metrics for new features of ALM, as a standard means for
	Figure
	Figure 3.3. The ILAMBv2 package produces a summary graphic depicting model performance across a wide variety of variables, emphasizing absolute performance (left) as well as relative performance (right) with respect to comparisons with observations. This figure compares results from the ACME Land Model (ALM) run offline with carbon–nitrogen (CN) biogeochemistry (ALM_CN), run offline in satellite phenology (SP) mode (ALM_SP), and fully coupled in SP mode (ALM_WCYCL) with the Community Land Model (CLM) run of

	4.0 Next Generation Benchmarking Challenges 
	4.0 Next Generation Benchmarking Challenges 
	Maintaining and improving the scientific performance of today’s complex Earth system models (ESMs) requires comprehensive, multifaceted, and systematic evaluation, analysis, and diagnosis of model results. A widening range of in situ measurements and remote sensing observations is available for use in judging the fidelity of land surface and terrestrial ecosystem models. A variety of statistical approaches have been adopted to evaluate model accuracy, including calculations of bias, root-mean-square error (
	Developing metrics that make appropriate use of observational data remains a scientific challenge because of the spatial and temporal mismatch between models and measurements, poorly characterized uncertainties in observationally constrained data products, biases in reanalysis and forcing data, model simplifications, and structural and parametric uncertainties. The modeling community, in direct collaboration with the observation community, should develop clear guidelines on how these measures may best be us
	This chapter outlines important challenges and benchmarking opportunities identified by the research community for assessing the performance of ESMs. At the workshop, a set of breakout group meetings was held on benchmarking major Earth system processes and another set focused on cross-cutting benchmarking themes. For this report, the summary of a separate plenary presentation and discussion about eddy covariance flux networks was added to the section on Integrating and Cross-cutting Themes. The breakout gr
	KEY RECOMMENDATIONS 
	KEY RECOMMENDATIONS 
	» Developing metrics that make appropriate use of observational data remains a scientific challenge that should be addressed through synthesis activities in collaboration with the modeling and observational communities. 
	» Common benchmarking challenges highlighted the need for collocated measurements and uncertainty information, 
	functional response metrics, emergent constraints, combining observational products, upscaling measurements, and 
	collaborations with modeling and measurement communities. 
	» Develop “super site” benchmarks—integrated with AmeriFlux and FLUXNET—with detailed process-specific observations and robust model driving data to attribute model biases to underlying mechanisms. 
	» Create benchmarks for soil carbon turnover and the vertical distribution and transport of soil organic matter. 
	» Develop benchmark metrics for extreme event statistics, and on the response of ecosystems to extreme events. 
	» Synthesize data for vegetation recruitment, growth, mortality, and canopy structure, including disturbances, for benchmarking forthcoming demographic models. 
	» Develop a set of focused benchmarks for critical high latitude ecosystems, focusing on the dynamics of the coupled soil physical and biogeochemical system in permafrost-affected ecosystems. 
	» Create a set of focused benchmarks for tropical forest ecosystems, including observational targets for size-structured vegetation models, and coupled carbon–nitrogen–phosphorus cycle models. 
	» Leveraging efforts in observational projects, construct a roadmap and new methods for creating remote sensing data products for benchmarking models. 
	» Develop meta-analyses of perturbation experiments (e.g., nutrients, hydrology, temperature, CO) and related protocol for model comparisons. 
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	Major Processes (Appendix B) 
	Major Processes (Appendix B) 
	Major Processes (Appendix B) 

	» 
	» 
	ecosystem processes and states (Appendix B.1) 
	» 
	soil carbon and nutrient biogeochemistry (Appendix B.4) 

	» 
	» 
	hydrology (Appendix B.2) 
	» 
	surface fluxes (energy and carbon) (Appendix B.5) 

	» 
	» 
	atmospheric CO (Appendix B.2) 2
	» 
	vegetation dynamics (Appendix B.6) 


	Integrating and Cross-cutting Themes (Appendix C) 
	Integrating and Cross-cutting Themes (Appendix C) 
	» process-specific experiments (Appendix C.1) » tropical processes (Appendix C.5) » metrics from extreme events (Appendix C.2) » remote sensing  (Appendix C.6) » design of new perturbation experiments (Appendix C.3) » eddy covariance flux networks (Appendix C.7) » high latitude processes (Appendix C.4) 
	The most important new metrics, benchmarking approaches, and observational data needs—distilled from the workshop breakout group meeting reports—are identified below. A number of common challenges and opportunities emerged from these reports, and they are described in the sidebar on Common Benchmarking Challenges and Opportunities. Workshops or sustained research working groups organized to address these topics could be conducted in the same fashion as working group meetings offered by national research syn

	4.1 Major Processes 
	4.1 Major Processes 
	4.1.1 Carbon and Energy Fluxes 
	4.1.1 Carbon and Energy Fluxes 
	Surface fluxes of carbon and energy are key inputs from land to atmosphere models, and observations of these variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. Routine observations of these fluxes come primarily from eddy covariance flux measurement tower sites. Networks of 
	COMMON BENCHMARKING CHALLENGES AND OPPORTUNITIES 
	A variety of common challenges and opportunities emerged from the individual breakout group meeting reports. Common themes focused on the following: 
	» need for collocated measurements, particularly around a core set of FLUXNET sites with a sustained record of observations for repeated model testing; 
	» lack of quantified uncertainty information for observational data; 
	» utility of functional response metrics and variable-to-variable comparisons; 
	» value of metrics for future projections based on emergent constraints; 
	» unrealized opportunities for global observational datasets based on satellite remote sensing synthesized with ancillary databases, using new algorithms; 
	» importance of applying statistical and machine learning methods to upscaling sparse measurements from sites to regions to the globe; 
	» need for process-level benchmarks and metrics for extreme events; 
	» opportunities for collaboration with Earth system model developers (e.g., ACME, CESM, and others); and 
	» opportunities for collaboration with important field and laboratory experiments and monitoring activities, 
	including AmeriFlux and FLUXNET, the Integrated Carbon Observation System (ICOS), Next Generation 
	Ecosystem Experiments (NGEE) Arctic, the Arctic–Boreal Vulnerability Experiment (ABoVE), the Spruce 
	and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project, Critical Zone 
	Observatories (CZOs), Long-Term Ecological Research (LTER) sites, the National Ecological Observatory 
	Network (NEON), NGEE Tropics, and the Tropical Responses to Altered Climate Experiment (TRACE). 
	these sites, such as AmeriFlux (/) and the FLUXNET (/) network-of-networks, have expanded rapidly over the last 25 years, and the data and meta-data they collect have been used in numerous model intercomparison and model–data comparison studies. Long term observations (>15 years) are available from an increasing number of sites, offering the opportunity to consider new studies of interannual to decadal variability, long term flux trends, ecological succession, multivariate climate response, and regional to 
	http://ameriflux.lbl.gov
	https://fluxnet.ornl.gov
	http://www.icos
	-
	infrastructure.eu
	http://www.neoninc.org

	Scaling flux observations to regions or the globe produces very important data products for constraining models. Machine learning techniques that account for nonlinearities, like artificial neural networks and model tree ensembles, have produced the most promising results, but provide limited explanatory information. The FLUXNET-MTE product (Beer et al., 2010), considered to be a best estimate of global GPP distribution, is widely used both for model evaluation—including within the existing ILAMB system (Gh
	These data and improved process representation in ESMs present opportunities for new synthesis activities directed toward carbon and energy benchmarking. Significant progress in improving process understanding and constraining models could be made through studies focused on the following: 
	» Multifactor ecosystem responses to climate change, extreme events, and changes in seasonality, which should 
	integrate new phenocam observations (Brown et al., 2016), remote sensing products (Reed et al., 2009), data from 
	the National Phenology Network (NPN; /; Schwartz et al., 2012), similar observations 
	https://www.usanpn.org

	from citizen science programs (Fuccillo et al., 2015), and ancillary databases 
	» Roles of extreme events and “return times” on ecosystem resilience (Zscheischler et al., 2013) 
	» Long term trends in light use efficiency, water use efficiency, evapotranspiration, and other quantities, some of which may yield new emergent constraints 
	» Relationships between forcing and response variables (e.g., stand age and net ecosystem exchange; Noormets et al., 2007) 
	» Top-down approaches to constraining surface fluxes using vertical measurements of atmospheric CO and other trace gases, and employing atmospheric inversion models (Xu et al., 2016) 
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	» Synthesizing new observations from many data sets across space and time scales (e.g., FLUXNET, remote sensing, disturbance maps, etc.) 
	» “Super site” benchmarks developed around stable, long-running flux tower sites with a diversity of collocated measurements (e.g., AmeriFlux and FLUXNET, CZOs, LTER sites, or NEON sites) 
	» Upscaling point measurements, incorporating ancillary databases, to study areas, regions, continents, and the globe (Beer et al., 2010; Langford et al., 2016; Kumar et al., 2016) 
	A long-standing challenge to synthesis has been the reluctance of some researchers to share their eddy covariance flux data through openly distributed databases, like the FLUXNET2015 Dataset (/ fluxnet2015-dataset/). While flux tower operators are increasingly convinced contributing their data is to their advantage, many researchers prefer direct involvement in synthesis working groups or workshops, which typically demonstrate the value of integrated analyses through high profile publications. Synthesis wor
	http://fluxnet.fluxdata.org/data


	4.1.2 Soil Carbon and Nutrient Biogeochemistry 
	4.1.2 Soil Carbon and Nutrient Biogeochemistry 
	Earth’s soil holds roughly 2,000 Pg C, and soils have sequestered a significant fraction of CO emissions from fossil fuel burning and human land use change since the start of the industrial era. However, under continued climate change and human intervention, soil carbon (C) is expected to have strong feedbacks to the atmosphere, shifting the balance to make soil a significant source instead of sink of carbon. The soil sequestration strength is determined by turnover rates, which are functions of plant input
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	Traditionally, model evaluations have focused primarily on whether models can reproduce observed time series or spatial patterns in observational data (e.g., soil C stocks). Such benchmarks provide initial insights in model–data discrepancies, but offer limited insights into the sources of these differences. Benchmarks should be designed to test the representation of important controlling mechanisms (e.g., soil carbon age determined from isotope measurements; He et al., 2016) and environmental factors (Mish
	» Developing improved benchmarks of soil C turnover through evaluation of soil nutrient biogeochemical processes, 
	including (1) cycling of nitrogen (N) and phosphorus (P) and their interactions with ecosystem productivity and 
	decomposition (e.g., Bouskill et al., 2014; Zaehle et al., 2014; Yang et al., 2016) and (2) competition for nutrients 
	among microbes, plants, and mineral surfaces (Tang and Riley, 2013; Zhu et al., 2016) 
	» Representing the vertical distribution and transport (e.g., bioturbation and cryoturbation of soil organic matter 
	(SOM), particularly at high latitudes, and synthesizing data on radiocarbon ages and C stocks to evaluate these 
	parameterizations (Braakhekke et al., 2014; Koven et al., 2013; 2015; Riley et al., 2014; Tang et al., 2013; 
	He et al., 2016) 
	» Evaluating models on their ability to simulate ecosystem responses to natural or anthropogenic disturbances and extreme events to highlight or expose processes critical to important phenomena 
	» Developing and applying emergent constraints based on carbon storage and turnover times to provide limits or bias corrections on future projections (Hoffman et al., 2014; He et al., 2016) 
	» Improving and harmonizing mapping and upscaling of global soil properties, especially for wetlands, tropical and boreal peatlands, and permafrost regions (Mishra et al., 2013; 2016; Mishra and Riley 2015) 
	Synthesis activities involving modelers, soil biogeochemists, microbial ecologists, and mathematicians could address the topics above. New collaborative research in these areas should focus on meta-analyses and developing new datasets useful for benchmarking models. Additional details are contained in Appendixes B.4, B.1, and C.2. 

	4.1.3 Hydrology 
	4.1.3 Hydrology 
	The key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into evapotranspiration, runoff (streamflow), and changes in soil moisture storage. These water cycle calculations are intrinsically tied to energy and carbon balance calculations. Soil moisture lies at the heart of land surface control over moisture fluxes, including both evapotranspiration and runoff. Hydrological processes operate across a range spatial and temporal scales, and LSMs in most ESMs attempt t
	» Benchmarking runoff and streamflow-related processes with Model Parameter Estimation Experiment (MOPEX; 
	Duan et al., 2006) data for headwater watersheds in the US and Global Runoff Data Center (GRDC; Fekete et 
	al., 2002) data globally 
	» Evaluating model performance in reproducing slow versus fast hydrological responses and capturing the impact of managed streamflow, including mapping of unmanaged watersheds 
	» Producing benchmark datasets for weather and climate extremes (WCEs), including shifts of the ITCZ and 
	other circulation patterns, hydroclimatic intensity, flood inundation extent and duration, rainfall deficits, and 
	experimentally induced extremes (e.g., throughfall exclusion and warming) 
	» Synthesizing many in situ soil moisture measurements from a wide collection of field activities with satellite remote sensing (e.g., SMOS, SMAP, ASCAT, GRACE) into a long-term dataset 
	» Developing a global-scale snow water equivalent (SWE) dataset 
	» Designing indirect benchmarking metrics for global-scale hydrology (e.g., estimate evapotranspiration from streamflow and diurnal temperature cycles from latent heat flux) 
	Synthesis studies involving modelers, hydrologists, ecohydrologists, and mathematicians could address the topics above. New collaborative research in these areas should focus on collecting and constructing new datasets, particularly for managed systems, and on developing new indirect metrics, particularly from remote sensing, for benchmarking models. Additional details are contained in Appendixes B.2, C.2, C.3, C.6, and B.1. 

	4.1.4 Vegetation Dynamics and Biomass 
	4.1.4 Vegetation Dynamics and Biomass 
	Vegetation dynamics refers to changes in ecosystem composition and structure through processes that include recruitment, succession, growth, mortality, and disturbance. In many LSMs, vegetation distribution is prescribed, making metrics of vegetation dynamics valuable only for testing model behavior of dynamic vegetation models (DVMs) that prognostically redistribute plants, or plant functional types (PFTs), across the landscape. In the last decade, vegetation demographic models (VDMs) have emerged that sim
	Over time, new data suggest that previous estimates of global vegetation biomass, both above and belowground combined, may be too high. Since most ESMs project higher global live biomass in the contemporary era than recent observations, the carbon storage potential in terrestrial vegetation and the turnover time of vegetation are in question (Negron-Juarez et al., 2015; Koven et al., 2015) . Many regional biomass products exist, but they tend to be limited to forests only or account only for aboveground liv
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	» Developing synthesis datasets for recruitment, mortality, and canopy structure from plot-scale measurements 
	(e.g., Forest Inventory and Analysis (FIA); Johnson, Xu, McDowell et al., in prep.), AmeriFlux and FLUXNET, 
	ForestPlots, ForestGEO, and national inventories for constraining models 
	» Comparing models with multiple burned area fire products, including GFED3, L3JRC, MCD45A1, Fire_cci, and the Global Fire Assimilation System 
	» Developing metrics based on multiple satellite remote sensing products for phenology, canopy height, and land cover to allow for characterization of uncertainties across classifications 
	» Creating metrics for vegetation responses to weather and climate extremes (WCEs), including disturbances from tornadoes and straight line winds, early/last frosts, hail streaks, and flooding 
	» Searching for emergent constraints based on organic carbon inventories and turnover times to provide limits or bias corrections on future projections (Hoffman et al., 2014) 
	» Developing benchmark datasets on repeated observations of remotely-sensed biomass to constrain biomass change 
	over time (the most direct cumulative measure of carbon sink activity over time and a high priority to distinguish 
	between different model predictions of the control of the terrestrial carbon sink) 
	» Participating in FireMIP to support new fire-related metrics and encouraging similar model intercomparisons for ecological networks like Drought-Net and Nutrient Network (NutNet) 
	» Developing maps of plant traits, land use change, disturbance, and mortality from wildfire, deforestation, drought stress, insects, and disease 
	Working groups involving modelers, ecosystem ecologists, foresters, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing meta-analyses from widely dispersed field measurements to characterize recruitment, mortality, canopy structure, and biomass inventories, and developing metrics from remote sensing products for phenology, canopy height, and land use/land cover change. Additional details are contained in Appendixes B.6, C.2, C.6, B.5, C.7, 


	4.2 Integrating and Cross-cutting Themes 
	4.2 Integrating and Cross-cutting Themes 
	4.2.1 High Latitude Processes 
	4.2.1 High Latitude Processes 
	Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). This enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. For example, active-layer dynamics, thermokarst
	Because high latitude ecosystems are governed by extremely strong gradients in temperature and moisture, both vertically and horizontally, benchmarks must assess the coupled nature of biophysical and biogeochemical processes through variable-to-variable relationships in these regions (Harden et al., 2012; Koven et al., 2013; Bouskill et al., 2014). A wide variety of datasets are needed for next-generation benchmarking of ESMs at high latitudes, including maps of soil carbon that provide vertical profiles of
	» Leading or strongly contributing to an independent research working group addressing synthesis of existing 
	research and assessment of high latitude terrestrial processes affecting permafrost stability and feedbacks and 
	developing potential emergent constraints in similar fashion to the Permafrost Carbon Network (PCN; 
	/) 
	http://www.permafrostcarbon.org

	» Developing meta-analyses and synthesizing data to create high latitude benchmarks from in situ field 
	measurements and experiments and remote sensing data in direct collaboration with researchers from DOE’s 
	NGEE Arctic, NASA’s ABoVE (Xu et al., 2016), and NSF’s Arctic science, observational, and monitoring projects 
	» Improving and harmonizing mapping of SOM and other soil properties in boreal peatlands and permafrost regions (Mishra et al., 2013; 2016) 
	» Improving and harmonizing mapping of SOM and other soil properties in boreal peatlands and permafrost regions (Mishra et al., 2013; 2016) 
	» Developing and improving benchmarks of the coupled physical–biogeochemical dynamics of energy, moisture, nutrient, and carbon exchange across the permafrost–organic layer–snow–atmosphere system, and across heterogeneous landscape features that characterize patterned ground, to test models that increasingly represent the complex feedbacks that result from these coupled processes 

	» Applying statistical and machine learning methods to remote sensed and in situ data to understand the representativeness of measurements and intelligently scale sparse, difficult-to-obtain observations across the Arctic (Hoffman et al., 2013; Kumar et al., 2016) 
	» Implementing a model–data integration framework that addresses key indicators of high latitude ecosystem change as part of NASA's ABoVE program 
	Synthesis activities involving modelers, Arctic ecosystem ecologists, soil biogeochemists, hydrologists, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing datasets and evaluating ESM fidelity for high latitude processes related to vegetation, soil biogeochemistry, and the physical snow-soil-hydrological system. In particular, functional relationships between biological, chemical, and physical variables and emergent characteristics (e.g., 

	4.2.2 Tropical Processes 
	4.2.2 Tropical Processes 
	Tropical ecosystems present many processes that overlap with those in other biomes but also have additional complexity that makes modeling and benchmarking a distinct challenge from that of other regions. These include challenges related to high biodiversity, its representation in simulations, and its role in buffering ecosystem responses to perturbations. Advanced modeling and benchmarking have revealed challenges in representing carbon metabolism and the wide variety of above and belowground traits as the
	Representing these processes is particularly crucial since tropical forests are predicted by the CMIP5 generation of ESMs to be particularly important for both the carbon–climate and carbon–concentration feedbacks. This importance led to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the representations of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling approaches for representing these processes. To advance benchm
	» Synthesizing spatially distributed inventories of size distributions, recruitment, growth, mortality, litterfall, and other ecosystem processes from the RAINFOR, CTFS-ForestGEO, AmeriFlux and FLUXNET, and GEM networks in direct collaboration with the NGEE Tropics project 
	» Collecting and developing benchmarking datasets for perturbation experiments and extremes in the tropics, including drought (e.g., Drought-Net), increased atmospheric CO (e.g., Amazon FACE), nutrients (e.g., N, P), and increased temperature 
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	» Modeling climate change to search for carbon cycle tipping points and possible emergent constraints associated with tropical ecosystems 
	» Taking advantage of naturally occurring events, (e.g., El Niño-induced tropical drought) to synthesize observational data for comparison with ecological forecast and retrospective modeling 
	» Combining inventory estimates, in situ process measurements, flux data, and remote sensing to characterize plant traits and physiological processes at larger scales and for regions with poor spatial coverage (e.g., western Amazon, tropical Africa, and Indo-Pacific) through statistical and machine learning upscaling methods 
	Research teams involving modelers, tropical ecosystem ecologists, soil biogeochemists, hydrologists, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing improved inventory datasets and creating benchmarks for new demographic models for growth and mortality, tree 
	Research teams involving modelers, tropical ecosystem ecologists, soil biogeochemists, hydrologists, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing improved inventory datasets and creating benchmarks for new demographic models for growth and mortality, tree 
	height and biomass, turnover of litter and stemwood, sap flow, tissue water potential and root water uptake, and nutrient constraints on carbon cycling. Additional details are contained in Appendixes C.5, B.6, B.5, C.7, B.2, C.2, B.1, and C.6. 


	4.2.3 Remote Sensing 
	4.2.3 Remote Sensing 
	The large extent and high diversity of vegetation comprising Earth’s biomes present a significant challenge for local to global-scale terrestrial ecosystem process modeling efforts, including benchmarking and evaluation of model projections. To provide the knowledge and understanding necessary to improve model parameterizations, representation and evaluation of alternative model structures and observations are needed at the relevant spatial and temporal scales for controlling processes. The general goal of 
	Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products such as surface albedo (Schaaf et al.,
	» Constructing a roadmap for remote sensing data product generation that takes into account enhanced 
	cyberinfrastructure for large-scale remote sensing data (Williams et al., 2016) and new data product development 
	for evaluation of process models from site to global scales (Schimel et al., 2015) 
	» Developing satellite simulators within ESMs that calculate an observable variable expected from remote sensing instruments under the given conditions 
	» Leveraging remote sensing efforts in DOE’s NGEE Arctic, NGEE Tropics, and SPRUCE projects (and in 
	collaboration with NASA’s ABoVE and NSF’s NEON projects) to develop and test algorithms for image 
	processing, calibration, and uncertainty characterization, and to evaluate approaches for data retrieval and scaling 
	» Developing community guidelines for appropriate use of remote sensing data as benchmarks and observations for data assimilation 
	» Fusing data from multiple instruments (e.g., visible, TIR, LiDAR), data streams, or products for new synthetic observational datasets for hydrologic states and fluxes, carbon cycle fluxes, and vegetation trait and other properties 
	Remote sensing working groups involving modelers, ecosystem ecologists, geographers, remote sensing experts, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing remote sensing products for plant traits, canopy structure, ecosystem responses to extreme events, solar-induced fluorescence, and carbon cycle fluxes (e.g., GPP, NPP, NEE). Additional details are contained in Appendixes C.6, C.1, C.3, C.4, C.5, B.2, B.6, and B.3. 

	4.2.4 Process-specific and Perturbation Experiments 
	4.2.4 Process-specific and Perturbation Experiments 
	To become more robust, Earth system models should undergo structural improvements to represent more real world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of Earth system processes, it is still challenging to (1) specify which processes are more critical than others in regulating Earth system dynamics, such as climate change; and (2) evaluate representation of processes that have been widely incorporated but diversely parameterized in different models. One promisin
	Direct perturbation of environmental properties is one of the most direct ways of assessing ecosystem responses to environmental change. Such experiments—which include perturbation of nutrients, species composition, precipitation, temperature, atmospheric chemistry, CO concentration, or multiples of these factors—have been conducted across a wide range of experimental systems. In some cases, the resulting datasets have been synthesized and are ready for model benchmarking, while others require effort to syn
	2

	To advance process-level benchmarking of ecosystem models, collaborative research and synthesis activities should be focused on the following: 
	» Selecting a core set of AmeriFlux and FLUXNET sites that span major biomes to serve as long-term testbeds 
	for ILAMB, collecting all associated data and metadata (e.g., meteorological forcing, soil texture, land use 
	history, and plant traits) necessary for conducting model simulations, and constructing or synthesizing a series 
	of independent benchmark datasets (e.g., net fluxes, biometrics, and experimental data) for diagnosis of model 
	process representations 
	» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of model responses to prescribed perturbations for a northern peatland 
	» Collaborating with DOE’s NGEE Arctic project (i.e., small-scale warming and isotopic tracers) to collect data and synthesize benchmark datasets 
	» Collaborating with DOE’s LBNL TES soil perturbation project to collect data and synthesize benchmark datasets for soil organic matter responses to temperature and moisture 
	» Synthesize existing nutrient (e.g., Bouskill et al., 2014; Zhu et al., 2016), temperature, and moisture perturbation 
	experiments with meta-analyses appropriate for model benchmarking, and concurrently developing guidance for 
	performing relevant model analyses 
	» Opportunistically using measurements during weather and climate extremes in lieu of perturbation experiments to develop benchmarks for vegetation and soil biogeochemical responses 
	» Incorporating the FACE Synthesis (Zaehle et al., 2014) protocol and data into ILAMB in collaboration with original synthesis participants 
	» Collaboration with TRACE, ITEX, and other soil warming experiment teams to develop modeling protocols, collect forcing data, and synthesis results for benchmarking 
	Synthesis activities involving modelers, ecosystem ecologists, field and laboratory experimentalists, remote sensing experts, and mathematicians could address the topics above. New collaborative research in these areas should focus on developing simulation protocols, forcing datasets that correspond to the observed meteorology and any perturbation applied, and data for benchmarking ecosystem responses. Additional details are contained in Appendixes C.1, C.3, B.5, C.7, B.4, and C.2. 




	5.0 Model Intercomparison Projects (MIPs) 
	5.0 Model Intercomparison Projects (MIPs) 
	5.1 The Roles of Benchmarking in MIPs 
	5.1 The Roles of Benchmarking in MIPs 
	Model Intercomparison Projects (MIPs) are important activities for assessing the coherence and reliability of Earth system models. By adopting a common set of protocols with clearly defined inputs and outputs, model predictions can be compared systematically to each other and benchmarked with observations. A number of ongoing and future MIPs are directly relevant to the modeling of the terrestrial water, energy, and carbon cycles, and many of these were discussed at the ILAMB Workshop. Some are conducted un

	5.2 Descriptions of MIPs and Their Benchmarking Needs 
	5.2 Descriptions of MIPs and Their Benchmarking Needs 
	5.2.1 CMIP6 Historical and DECK 
	5.2.1 CMIP6 Historical and DECK 
	As part of the CMIP6 process, each participating model will conduct a set of runs called the Diagnostic, Evaluation, and Characterization of Klima (DECK) experiments (Eyring et al., 2016b). These simulations comprise four experiments: a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., Atmospheric Model Intercomparison Project (AMIP)), a coupled land–atmosphere–ocean preindustrial control, an abrupt quadrupling of CO, and an idealized 1% per year CO increase. Furt
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	5.2.2 CMIP 
	5.2.2 CMIP 
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	To isolate carbon feedbacks in the Earth system, the Coupled Climate–Carbon Cycle MIP (CMIP) (Jones et al., 2016) will separately force the coupled land–atmosphere–ocean system with CO that acts only on plant-physiological and ocean-solubility processes, and separately only on radiative processes. This allows separating the carbon–concentration feedback, which acts to stabilize the climate system, from the carbon–climate feedback, which acts to destabilize the climate system. Furthermore, fully-coupled futu
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	KEY RECOMMENDATIONS 
	» Develop methods to attribute emergent model behaviors such as carbon feedback parameters to specific processes through emergent constraint and traceability approaches. 
	» Benchmark across coupling and complexity hierarchies—from offline land-only simulations to fully 
	coupled ESMs—to attribute model biases and uncertainties to specific domains and identify feedbacks 
	between domains. 
	» Develop paired site datasets for benchmarking mode representations of subgrid scale heterogeneity. 
	on the basic trajectory of terrestrial carbon budgets in response to global change, and this lack of agreement has provided a strong impetus for better benchmarking and validating terrestrial carbon cycle models over the historical period to constrain future trajectories. Furthermore, the CMIP6 iteration of CMIP has identified key uncertainties that were poorly represented in prior generation ESMs, including nutrient cycles, permafrost-related processes, and the use of carbon isotopes as a possible diagnost
	4


	5.2.3 LS3MIP 
	5.2.3 LS3MIP 
	The Land Surface, Snow and Soil Moisture Model Intercomparison Program (LS3MIP) (van den Hurk et al., 2016) contains a series of coupled and offline experiments to isolate the roles of terrestrial energy, water, and carbon cycles in leading to inter-model differences and biases. Included in the LS3MIP protocol are a series of offline experiments, in which the land models will be forced with a common set of meteorological drivers: Tier 1 experiments will be driven by GSWP3 (Kim et al., in preparation); Tier 
	-


	5.2.4 LUMIP 
	5.2.4 LUMIP 
	The Land Use Model Intercomparison Project (LUMIP) is focused on understanding the complex roles of land use and land cover change (LULCC) as forcing agents in the Earth system. LUMIP includes a series of experiments to better identify and attribute physical and biogeochemical effects of land use, including offline and coupled experiments that are performed with and without land-use change, and a detailed reporting specification of subgrid land model states and fluxes in other CMIP6 experimental runs. Key t
	5.2.5 MsTMIP 
	5.2.5 MsTMIP 
	The Multi-scale Synthesis & Terrestrial Model Intercomparison Project (MsTMIP) is designed to evaluate land model skill as driven by common meteorology, spinup, land surface, and other drivers. Experiments include a sequentially-added forcing design, including drivers of climate, CO concentrations, land cover, and nitrogen deposition. MsTMIP is not a CMIP6 project and thus includes participation of models that are run only offline. Phase 1 MsTMIP experiments were focused on the historical period, and Phase 
	2



	5.2.6 PLUME-MIP 
	5.2.6 PLUME-MIP 
	Processes Linked to Uncertainties Modelling Ecosystems (PLUME-MIP) also uses a set of offline climate-driven land models to attribute changes in modeled carbon cycle responses to global change to its underlying drivers. The novel aspect of this MIP is the use of a recently developed traceability framework (Xia et al., 2013) to disaggregate the differences between models into underlying drivers, such as changes in productivity and changes in turnover of various pools (Ahlström et al., 2015; Koven et al., 201


	5.3 New Metrics, Approaches, and Model Output Requirements 
	5.3 New Metrics, Approaches, and Model Output Requirements 
	A variety of benchmarking metrics approaches have been integrated into the first version of ILAMB to allow testing of models at multiple spatial, temporal, and complexity scales. These include: (1) site-level comparison of water and energy fluxes between model gridcells and flux towers; (2) global- and regional-scale comparison of gridded data products from remote sensing, point-based upscaling, or data assimilation approaches with corresponding fields from offline and coupled land models; (3) comparison of
	2

	These multiscale approaches are useful for covering the broad range of scales that encompass observational networks and over which the relevant processes represented in ESMs operate. However, model configurations used in the first generation of ILAMB span only three configurations: (1) offline global model runs forced by bias-corrected historical reanalysis data and historical land use data; (2) coupled global atmosphere–ocean–land model runs forced by time-varying land use and trace gas concentrations; and
	2

	The larger diversity of model couplings and experimental protocols in the current and upcoming generation of MIPs suggests that a more comprehensive strategy is needed for both model–data benchmarkings and model–model comparisons to best utilize the information in these MIPS. Benchmarking approaches require a high degree of correspondence between the periods of observation and model scenarios, and the ability to benchmark models is always contingent on the fidelity with which the inputs required to simulate
	New models outputs will be required for effectively using many of these MIP activities as benchmarking tools. Among the new outputs are model subgrid information, as specified in the LUMIP protocol. This will enable benchmarking with consideration that site-level observations correspond only to a subset of a model gridcell, and of LULCC-related heterogeneity in ESMs. Further, whereas benchmarking with observational datasets can only occur for model variables that correspond directly to observable quantities

	5.4 Available Observations and Data Gaps 
	5.4 Available Observations and Data Gaps 
	ILAMB as it is currently built is able to use a wide variety of global-scale and regional-scale gridded observations, site-specific observations, and integrative observations. Increased use of each of these types of observations would allow a more robust model benchmarking framework. For offline models and MIPS, key required observations are better meteorological driving datasets for the models. These include both global-scale bias-corrected reanalysis products and 
	ILAMB as it is currently built is able to use a wide variety of global-scale and regional-scale gridded observations, site-specific observations, and integrative observations. Increased use of each of these types of observations would allow a more robust model benchmarking framework. For offline models and MIPS, key required observations are better meteorological driving datasets for the models. These include both global-scale bias-corrected reanalysis products and 
	site-scale driving data to allow better comparisons of models with site-scale data. Furthermore, driving data of other anthropogenic forcings, such as LULCC, nutrient deposition, aerosol effects, and other processes, have considerable uncertainty that propagates through models and complicates the interpretation of model-benchmark differences. Observations of subgrid scale heterogeneity, for example through the use of remote sensing approaches and paired site-scale observations, will enable better testing of


	5.5 Expected results from MIPs and ILAMB 
	5.5 Expected results from MIPs and ILAMB 
	The key goal of benchmarking activities is to reduce the uncertainty associated with directly testable model predictions. Although there will always remain an irreducible uncertainty arising from issues such as equifinality, uncertainty in future drivers, and uncertainty in current observations, there is currently a wide divergence in model predictions for things that can be directly and robustly observed that is contributing to the poor predictive capability of terrestrial models (e.g., Hoffman et al., 201


	6.0 Model Development and Evaluation Testbeds 
	6.0 Model Development and Evaluation Testbeds 
	Land surface model components of ESMs are experiencing dramatic changes as new process representations are added and software infrastructures are altered to support more detailed demographic and plant trait formulations. Moreover, alternative parameterizations for major submodel components (e.g., soil biogeochemistry) are being introduced into land models to test competing model structures and parameterizations at different spatial and temporal scales. To support this degree of rapid model development, a la
	One of the key findings of this report is the need to select a core set of AmeriFlux and FLUXNET sites spanning major biomes to serve as the “gold standard” targets of long-term testbeds for ILAMB. A LMT should contain the collection of all associated data and metadata (e.g., meteorological forcing, soil texture, land use history, and plant traits) necessary for conducting model simulations, and have encoded the series of independent benchmark datasets (e.g., net fluxes, biometrics, and experimental data) f
	In an effort to consider how a LMT may be useful for supporting rapid development of the ACME Land Model (ALM), a table of evaluation variables and benchmark datasets was organized. Table 6.1 contains this sample list of variables and corresponding datasets designed to prioritize incorporation and synthesis of observational data for evaluating the ALM. For each dataset, the citation and data source are listed (when available), and a decision was made about whether the data would be useful as model input or 
	KEY RECOMMENDATIONS 
	» Design and build a land model testbed (LMT) for execution, calibration, and evaluation of alternative model formulations and process representations to support rapid model development and testing. 
	» An initial LMT should be designed around a small number of AmeriFlux and FLUXNET “super sites” for which single point simulations can be executed and evaluated quickly in parallel. 
	» Eventually a LMT capability should be incorporated into routine model development testing. 
	Table 6.1. Listed here are example datasets identified for benchmarking the ACME Land Model. 
	Table 6.1. Listed here are example datasets identified for benchmarking the ACME Land Model. 
	Table 6.1. Listed here are example datasets identified for benchmarking the ACME Land Model. 

	Data Set 
	Data Set 
	Reference 
	Source 
	Input or Evaluation 
	Ready or Synthesis 

	Soil Nutrients and Age 
	Soil Nutrients and Age 

	Hedley P database 
	Hedley P database 
	Yang and Post (2011) 
	http://daac.ornl.gov/ cgi-bin/dsviewer. pl?ds_id=1223 
	Input 
	Ready 

	Global soil respiration database 
	Global soil respiration database 
	Bond-Lamberty and Thomson (2010) 
	https://github.com/ bpbond/srdb 
	Evaluation 
	Ready 

	Microbial P database 
	Microbial P database 
	Xu et al. (2013); Hartman et al (2013) 
	Evaluation 
	Ready 

	Vertical soil P profile 
	Vertical soil P profile 
	Input 
	Synthesis 

	Radiocarbon database 
	Radiocarbon database 
	He et al. (2016) 
	Evaluation 
	Ready 

	Soil nitrification, denitrification 
	Soil nitrification, denitrification 
	Ojima et al. (2000) 
	https://www.nrel. colostate.edu/ projects/tragnet 
	Evaluation 
	Ready 

	Soil N deposition and leaching 
	Soil N deposition and leaching 
	Suddick and Davidson (2012) 
	Evaluation 
	Ready 

	Sorption-desorption for P by soil order 
	Sorption-desorption for P by soil order 
	Agriculture literature 
	Evaluation 
	Synthesis 

	Vegetation Measurements 
	Vegetation Measurements 

	Leaf N and P 
	Leaf N and P 
	Kattge et al. (2011) 
	TRY database 
	Evaluation 
	Ready 

	Fine root N and P 
	Fine root N and P 
	Yuan et al. (2011); Gordon and Jackson (2000) 
	Evaluation 
	Ready 

	Carbon stocks (MgC/ ha) tree, root, CWD/ dead wood 
	Carbon stocks (MgC/ ha) tree, root, CWD/ dead wood 
	Forest Carbon Database (CiFOR) 
	Evaluation 
	Ready 

	Fire (burned area) 
	Fire (burned area) 
	GFED3 (annual mean, seasonal cycle, interannual variability) 
	Evaluation 
	Ready 

	Wood harvest 
	Wood harvest 
	Hurtt (annual mean) 
	Input 
	Ready 

	Land cover 
	Land cover 
	MODIS PFT fraction 
	Input 
	Ready 

	Live biomass 
	Live biomass 
	Global: Saatchi et al. (2011); Amazonia: Malhi et al. (2006) 
	Evaluation 
	Ready 

	Vegetation Demography 
	Vegetation Demography 

	Demographic data (DBH census, basal area, abundance, species name) 
	Demographic data (DBH census, basal area, abundance, species name) 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO 
	Input and Evaluation 
	Synthesis 

	Basal area by diameter class 
	Basal area by diameter class 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO, LTER, BOREAS, INPA 
	Evaluation 
	Synthesis 


	Data Set 
	Data Set 
	Data Set 
	Reference 
	Source 
	Input or Evaluation 
	Ready or Synthesis 

	Basal area by wood density class 
	Basal area by wood density class 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO, LTER, BOREAS, INPA 
	Evaluation 
	Synthesis 

	Basal area by leaf N content 
	Basal area by leaf N content 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO, LTER, BOREAS, INPA 
	Evaluation 
	Synthesis 

	Seasonal LAI 
	Seasonal LAI 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO, LTER, BOREAS, INPA 
	Evaluation 
	Synthesis 

	Mean mortality rate (with modes of death captured in RAINFOR database) 
	Mean mortality rate (with modes of death captured in RAINFOR database) 
	http://ctfs.arnarb. harvard.edu/Public/ pdfs/Condit_1998_ Census PlotsmethodsBook. pdf 
	ForestGEO, LTER, RAINFOR 
	Evaluation 
	Synthesis 

	Disturbance and mortality 
	Disturbance and mortality 
	Midrexler et al. (2009) 
	MODIS Global Disturbance Index (MGDI) 
	Input and Evaluation 
	Synthesis 

	Hydrology 
	Hydrology 

	Soil moisture 
	Soil moisture 
	De Juer, SMAP 
	Evaluation 
	Synthesis 

	Water storage anomaly 
	Water storage anomaly 
	GRACE 
	Evaluation 
	Ready 

	River flow/runoff 
	River flow/runoff 
	Syed/Famiglietti, GRDC, Dai, GFDL, GSCD 
	Evaluation 
	Ready 

	River temperature 
	River temperature 
	Evaluation 
	Synthesis 

	Snow cover 
	Snow cover 
	AVHRR, GlobSnow 
	Evaluation 
	Ready 

	Snow depth 
	Snow depth 
	CMC (North America) 
	Evaluation 
	Ready 

	Snow water equivalent 
	Snow water equivalent 
	North America: Ghan et al (2006) 
	National Operational Hydrologic Remote Sensing Center 
	Evaluation 
	Ready 

	Surface Energy Budget 
	Surface Energy Budget 

	Surface skin temperature 
	Surface skin temperature 
	MODIS LST, GOES LST 
	Evaluation 
	Ready 

	NLDAS-2 surface air temperature, downward SW and LW 
	NLDAS-2 surface air temperature, downward SW and LW 
	CONUS: Cosgrove et al. (2003) 
	http://ldas.gsfc.nasa. gov/index.php 
	Evaluation 
	Ready 

	CRU surface air temperature 
	CRU surface air temperature 
	Harris et al. (20013) 
	http://badc.nerc. ac.uk/view/badc. nerc.ac.uk__ATOM__ dataent_ 1256223773328276 
	Evaluation 
	Ready 

	Net radiation, LE, H 
	Net radiation, LE, H 
	Lasslop et al. (2010) 
	Fluxnet 
	Evaluation 
	Ready 

	Albedo 
	Albedo 
	MODIS, CERES 
	Evaluation 
	Ready 

	Radiative fluxes 
	Radiative fluxes 
	CERES, SURFRAD, ARM 
	Evaluation 
	Ready 

	Data Set 
	Data Set 
	Reference 
	Source 
	Input or Evaluation 
	Ready or Synthesis 

	CERES surface SW, LW, and net radiation 
	CERES surface SW, LW, and net radiation 
	Kato et al. (2013) 
	http://ceres.larc. nasa.gov/order_ data.php 
	Evaluation 
	Ready 

	WRMC BSRC surface SW, LW, and net radiation 
	WRMC BSRC surface SW, LW, and net radiation 
	Konig-Langl et al. (203) 
	Evaluation 
	Ready 

	Carbon Fluxes 
	Carbon Fluxes 

	Gross primary production 
	Gross primary production 
	Lasslop et al. (2010); Jung et al. (2010) 
	FLUXNET; MPI-BGC MTE product 
	Evaluation 
	Ready 

	Net ecosystem exchange 
	Net ecosystem exchange 
	Lasslop et al. (2010) 
	FLUXNET 
	Evaluation 
	Ready 

	Litterfall, Litter Content, Litter Decomposition 
	Litterfall, Litter Content, Litter Decomposition 

	Litterfall and litter carbon and nutrients 
	Litterfall and litter carbon and nutrients 
	Holland et al. (2014) 
	Evaluation 
	Ready 

	Litterfall 
	Litterfall 
	http://www.ctfs. si.edu/data/// documents/Litter_ Protocol_20100317. pdf 
	ForestGEO 
	Evaluation 
	Synthesis 

	LIDET for N 
	LIDET for N 
	Parton et al. (2007) 
	http:// andrewsforest. oregonstate.edu/ research/intersite/ lidet.htm 
	Evaluation 
	Ready 

	CIDET for N and P 
	CIDET for N and P 
	Evaluation 
	Ready 

	Tropical litter decomposition 
	Tropical litter decomposition 
	Manzoni et al. (2010) 
	Evaluation 
	Synthesis 

	Functional Responses 
	Functional Responses 

	NPP vs. N availability 
	NPP vs. N availability 
	Thomas et al. (2010) 
	Evaluation 
	Ready 

	NPP vs. P availability 
	NPP vs. P availability 
	Quesada et al. (2012); Aragão et al. (2009) 
	Evaluation 
	Ready 

	Aboveground biomass C vs. aboveground NPP 
	Aboveground biomass C vs. aboveground NPP 
	Keeling and Phillips (2007) 
	Evaluation 
	Ready 

	Manipulation Experiments 
	Manipulation Experiments 

	FACE synthesis for NPP 
	FACE synthesis for NPP 
	Zaehle et al. (2014) 
	Evaluation 
	Ready 

	Ecosystem fertilization 
	Ecosystem fertilization 
	LeBauer and Treseder (2008); Elser et al. (2007); Wright et al. (2014); Vitousek et al. (2004) 
	Evaluation 
	Ready 

	Decomposition 
	Decomposition 
	McGroddy et al. (2004) 
	Evaluation 
	Ready 

	Soil incubation 
	Soil incubation 
	Cleveland and Townsend (2006) 
	Evaluation 
	Ready 

	Soil warming 
	Soil warming 
	Rustad et al. (2000); Melillo et al. (2011, 2002) 
	Evaluation 
	Ready 

	CO effect on 2phosphatase 
	CO effect on 2phosphatase 
	Evaluation 
	Synthesis 

	EucFAC, Amazon FACE 
	EucFAC, Amazon FACE 
	Evaluation 
	Synthesis 

	Tropical warming 
	Tropical warming 
	Evaluation 
	Synthesis 



	7.0 Traceability and Uncertainty Quantification Frameworks 
	7.0 Traceability and Uncertainty Quantification Frameworks 
	In order to understand and explore the uncertainty around predictions made by terrestrial models, it is crucial to improve methods and datasets to quantify the structural and parametric sources of this uncertainty. Two key developments are required to do this: (1) the development of reduced order models to simplify and systematize the relationships within full models, and (2) development of UQ approaches to understand parametric and structural uncertainty. One such reduced-order approach is the traceability
	7.1 Traceability Framework 
	7.1 Traceability Framework 
	To evaluate model fidelity and understand the sources of uncertainty that lie behind carbon cycle projections, the modeling community needs to develop better observational benchmarks of model performance, which has been the focus of ILAMB and related efforts. A key requirement for increased understanding is the ability to tie specific biases in model predictions to underlying process representations. One way to do so is through the development of diagnostic approaches that simplify and generalize model stru
	KEY RECOMMENDATIONS 
	» Integrate and report model diagnostics that allow the emulation of carbon cycle models as a matrix of carbon flows and turnover times, in order to attribute uncertainty in carbon responses to specific ecosystem components. 
	» Apply Bayesian UQ approaches that efficiently utilize leadership-class computing facilities to quantitatively identify uncertainties in LSM output. 
	» Use UQ results to guide data collection activities and target critical model improvement activities, including new or revised process representations. 
	» Improve the fidelity of emulators and their use in UQ methods. 
	» Emphasize the role of inverse modeling and data assimilation to update both model parameters and states as part of Bayesian UQ strategies, and as such, the importance of observational data with associated uncertainties. 
	» Standardize collection and distribution of observational data. Standardization implies a common data format as well as metadata such as measurement errors and procedures used to compute them. If the data have gaps which were filled in/imputed with a model, provide the model or, at a minimum, the uncertainty bars in the imputed data. 
	» Incorporate more trait, remote sensing, and other data to provide constraints on model parameter distributions and to enable evaluation of model constraints given existing data sources. 
	» Suggest a simple and clear web-based graphical user interface (GUI) that provides access to models, UQ, and ILAMB benchmarking tools to facilitate a broader adoption of the approaches and to allow non-modelers but process/domain experts to conduct UQ and data assimilation experiments. 
	» Leverage several UQ frameworks that have important and complementary tools. Use an improved cyberinfrastructure to link these tools within a broader community-wide model UQ and data integration framework focused on improved land surface model (LSM)/terrestrial biosphere model (TBM) projections. 
	into a common structure, which can be well represented by the matrix equation (Luo et al., 2003; Luo and Weng, 2011; Luo et al., 2015, 2016; Sierra et al., 2015) as: 
	X ’(t) = B u(t) – A ξ(t) K X(t), (1) 
	where X ’(t) is a vector of net carbon (C) pool changes at time t, X(t) is a vector of pool sizes, B is a vector of partitioning coefficients from C input to each of the eight pools, u(t) is C input rate, A is a matrix of transfer coefficients to quantify C transfer along the pathways, K is a diagonal matrix of exit rates (mortality for plant pools and decomposition coefficients of litter and soil pools) from donor pools, and ξ(t) is a diagonal matrix of environmental scalars to represent responses of C cyc
	Overall, this equation can conceptually express all of the soil C transformation processes and summarize structures of classic SOC models, such as the CENTURY (Parton et al., 1987, 1988, 1993) and RothC models (Jenkinson et al., 1987), and—despite the fact the various ESMs may differ in many parameters and processes that determine the terms in this equation—embedded in ESMs (Ciais et al., 2013). Thousands of datasets published in the literature from litter decomposition and soil incubation studies have been
	Equation 1 not only summarizes most of the land carbon cycle models embedded in most of the Earth system models (ESMs) but also contains several mutually independent components. Traceability analysis decomposes the complex terrestrial C cycle into a few traceable components (Xia et al., 2013, 2015a). Traceability analysis helps identify sources of uncertainty in modeled steady-state ecosystem carbon storage due to (1) C input as affected by phenology, physiology, and C use efficiency (Xia et al., 2015a); (2
	As an example of how the traceability approach may lead to greater understanding of model behavior, Rafique et al. (2016) applied the traceability framework to two global land models (CABLE and CLM-CASA’) to diagnose causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, the 
	Figure
	Figure 7.1. Schematic diagram of the traceability framework. The framework traces modeled ecosystem C storage capacity (Xss) to a product of net primary productivity (NPP) and ecosystem residence time (τ). The latter τ can be further traced to (i) baseline C residence times (τ´ ), which are usually present in a model according to vegetation characteristics and soil types, 
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	(ii) environmental scalars (ξ), including temperature and water scalars, and (iii) environmental forcing. NPP can be traced to C use efficiency (CUE), C uptake period and the seasonal maximum of gross primary productivity (GPP). Adopted from Xia et al. (2013, 2015). 
	CLM-CASA’ model predicts ~31% larger carbon storage capacity than the CABLE model. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τ), the predicted difference in the storage capacity between the two models results from differences in either NPP or τ or both. This analysis showed that CLM-CASA’ simulates 37% higher NPP than CABLE does because of the parameter setting that gives CLM-CASA’ higher rates of carboxylation (V) than CABLE. On the
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	One key issue going forward is that a variety of current and emerging model structures have fundamentally nonlinear dynamics, which may be less conducive to the approach of constructing linear emulators. In particular, both the vegetation components, through the development of cohort-based models (e.g., Moorcroft et al., 2001; Weng et al., 2015), and the soil components, through the development of microbial models (e.g., Wieder et al., 2015c; Sulman et al., 2014) have fundamentally different dynamics becaus
	Model intercomparison projects (MIPs) all illustrate great spreads in projected land C sink dynamics across models (Todd-Brown et al., 2013; Tian et al., 2015). It has been extremely challenging to attribute the uncertainty to sources. For example, the CMIP5 protocol did not allow the calculation of all terms required to perform this traceability analysis. Nonetheless, using the available output does allow a first-order separation of the dominant terms of productivity and turnover, which shows an interestin
	It will be fruitful to explore how new techniques stemming from the global analysis, such as physical emulators (i.e., matrix expression of global carbon cycle models) and traceability, can enhance benchmark analysis. Furthermore, such emulators may be of use in uncertainty quantification efforts, as the reduced order form of the traceability framework may allow for both computationally-efficient process-based emulators that can be run over large numbers of ensembles, as well as efficient ways of finding st

	7.2 Scientific Driver for UQ of LSM 
	7.2 Scientific Driver for UQ of LSM 
	Quantifying the uncertainty in model outputs due to parameters, initial conditions, or model drivers is crucial to robust benchmarking efforts. In particular, inverse modeling and uncertainty propagation are two areas of UQ that should be integrated into the ILAMB framework. LSMs typically contain many parameters and drivers that must first be constrained to obtain meaningful benchmark results. Parameter tuning, part of a larger framework of model–data integration, uses observational data and expert knowled
	Moreover, model–data integration activities also include state-variable data assimilation (SDA). In contrast to model calibration or PDA, SDA focuses on updating model states by comparing a model forecast to an observation of that state which serves to move the model closer to the observation weighted by the uncertainties in both the model and data. Following the SDA step, the best estimate of the state of the system is used as the prior for the next model forecast, and the uncertainty in the model projecti
	Advanced UQ tools are also important in other aspects of benchmarking, including sensitivity analysis and model diagnostics, especially when the number of model parameters is increasing in tandem with model complexity. Model UQ and variance decomposition can be used to guide data collection and model improvement activities based on the decomposed variance of a particular model forecast. By ordering the dominant drivers of model uncertainty in projections of carbon, water, and energy fluxes and storage model
	Applications of UQ techniques are typically constrained by the computational cost of an LSM. At present, advanced UQ techniques, such as Monte Carlo (MC) based methods, can only be used with site-specific models that are computationally inexpensive. At regional and global scales, only scenario-based UQ analyses are computationally tractable. Scenarios are, however, too sparse to draw rigorous conclusions and support decisions with quantified risk/ uncertainty bounds. Efficient linear approximation technique
	In addition, there have emerged many recent advances in Markov Chain Monte Carlo (MCMC) methods and particle-based MC methods that we can explore and customize to LSMs. Some new efficient methods include implicit particle filter (Chorin and Tu, 2009); stochastic Newton MCMC method (Martin et al., 2012); and MCMC methods that utilize Gibbs samplers (Kuczera et al., 2010), differential evolution samplers (Laloy and Vrugt, 2012), affine invariant ensemble samplers (Goodman and Weare, 2010), and surrogate-based
	The number of parameters in an LSM can be large, and this poses another UQ challenge. However, chosen benchmarking metrics are usually impacted only by a small subset of the parameters and drivers that are used within LSMs. Dimensionality reduction can be achieved by identifying a reduced set of salient or relevant contributors through a sensitivity analysis (SA). Global SA requires large perturbed-parameter ensembles (especially for high-dimensional global SA), and the challenge lies in computational resou
	Emulators or surrogate models are fast-running proxies of LSMs that can be used in studies where LSMs need to be invoked repeatedly (e.g., parameter or data assimilation). Emulators are typically constructed through statistical methods (e.g., Gaussian process regression, and polynomial chaos expansion), machine learning approaches (e.g. random forests, support vector machine regression, deep neural networks, and gradient boosting machines), and model reduction techniques (proper orthogonal decomposition met
	Emulators or surrogate models are fast-running proxies of LSMs that can be used in studies where LSMs need to be invoked repeatedly (e.g., parameter or data assimilation). Emulators are typically constructed through statistical methods (e.g., Gaussian process regression, and polynomial chaos expansion), machine learning approaches (e.g. random forests, support vector machine regression, deep neural networks, and gradient boosting machines), and model reduction techniques (proper orthogonal decomposition met
	interpolation method). The use of emulators (typically generated through large ensemble simulations of the full LSM) can help to reduce overall computational costs of large-scale UQ and benchmarking, in particular for regional-scale LSMs. However, emulators must first be trained using outputs from large ensemble simulations of the full LSM. The number of simulations required is typically reduced by utilizing efficient space-filling sampling techniques (e.g., Latin hypercubes, and sparse collocation method) 


	7.3 Observational Data Needs 
	7.3 Observational Data Needs 
	As a community we have entered into a data-rich era with numerous observational datasets collected at site to regional and global scales (Luo et al., 2011). These include leaf-level datasets, inventory data, tower observations, and remote sensing. However, in many cases these data are not easily available, well documented, web-accessible, standardized, provided with error estimates, or stored in an archival format. Many key datasets are “long tail” data found in student theses, hard copy, researcher hard dr
	The following is a list of specific data requirements for maximizing the use of observations in model uncertainty quantification efforts: 
	» Collaborating with DOE’s SPRUCE project to collect data and synthesize benchmark datasets for diagnosis of model responses to prescribed perturbations for a northern peatland 
	» Include estimates of measurement errors in any data that is distributed. This should also mention distribution of the errors. 
	» Access to scripts/codes for gap-filling, or generate gap-filled data and documentation of the gap-filling algorithm. 
	» Metadata: how it was collected (instrument), how the measurement error estimates were computed (assumptions, etc.), what missing data has been filled in, and how that was done, etc. 
	» Include data and associated metadata in the same file/package. 
	» Standardized, documented, and web-accessible meteorology driver data available at multiple temporal resolutions able to drive the models within ILAMB 
	» Web-accessible orbital and suborbital remote sensing datasets useful for model evaluation, calibration, and benchmarking, including LiDAR, microwave, hyperspectral, and thermal (Appendix C.6; Schmid et al., 2015). This includes new fusion products designed to test model outputs and functional responses within a UQ framework 
	» “Sensor simulator” to provide direct comparison between internal model structure and canopy radiative transfer and low-level observations from suborbital and orbital remote sensing platforms. By comparing direct observations (i.e., surface reflectance) as well as derived products (e.g., LAI), the uncertainty in model structure can be evaluated and can as well as facilitate direct data assimilation to improve model fidelity. 

	7.4 Algorithm Needs 
	7.4 Algorithm Needs 
	The main algorithms needed can be classified into five categories: sensitivity analysis algorithms, inverse modeling algorithms, data assimilation algorithms, Monte Carlo-based algorithms, and training algorithms for emulators. There are potential overlaps in these categories. Existing packages for these algorithms exist in R (e.g., abc), Python (e.g., Sciki-Learn [/], pyMC), MATLAB (e.g., UQLab [/]), and C++ (e.g., DAKOTA, UQTK). 
	https://www.scikitlearn.org/stable
	https://www.uqlab.com

	Most of the scripting languages contain packages that implement different deterministic and Bayesian calibration methods. Bayesian calibration develops estimates of LSM parameters as probability density functions (PDF); they are usually much narrower than the bounds that constitute prior beliefs regarding their values. Many new Bayesian methods are implemented in R and Python. When Gaussian assumptions regarding the PDF are acceptable, scalable ensemble Kalman filters (e.g., OpenDA [/]) are routinely used. 
	https://www.openda.org

	Approaches for constructing emulators through statistical, regression and machine learning techniques exist mostly in R and Python (e.g., Scikit-Learn). DAKOTA (/) and UQTK (/ UQToolkit); however, Karhunen-Loeve (KL) approximations of multivariate Gaussian random fields are potentially suitable for field-scale emulation, although it is unclear how the large eigensolves required for KL decompositions of regional LSM runs can be efficiently performed by serial UQ software. Random field models for non-stationa
	https://dakota.sandia.gov
	https://www.sandia.gov

	» Access to scalable packages for EnKF, MCMC, approximate Bayesian computation 
	» Automatic packages for constructing surrogate models based on Gaussian process, neural nets, deep learning, random forests, support vector machine regression, and non-parametric methods 
	» New parsimonious parameterizations for spatially variable fields; e.g., flux, permeability, and sparsity-enforcing inference methods such as Bayesian compressive sensing 
	» A connected cyberinfrastructure to link multiple existing tools, frameworks, and approaches within ILAMB to provide synthetic workflows that provide advanced UQ and assimilation algorithms and approaches 

	7.5 Computational, Visualization, and Data Analysis Needs 
	7.5 Computational, Visualization, and Data Analysis Needs 
	Perturbed parameter ensembles result in large datasets, and UQ is assisted substantially by a combination of physical intuition (i.e., expert knowledge) and data patterns observed in the ensembles. Exploratory data analyses of the ensembles is a necessity for efficient UQ analyses, but existing visualizations tools for large data (e.g., Ensight, Paraview) are geared toward interrogation of individual datasets, not ensembles. Large data analysis tools such as Spark [Spark] can script/automate much of the pre
	» Parallelization of LSMs: task-based parallelization of LSM, distributing each site or ensemble member on each core of a graphics processing unit (GPU) to speed calculations 
	» Parallelization of LSMs: task-based parallelization of LSM, distributing each site or ensemble member on each core of a graphics processing unit (GPU) to speed calculations 
	» Data analysis and visualization: possibility to combine big-data analysis software (e.g., Spark) with visualization capabilities (e.g., like the statistical scripting language R) to enable detailed diagnostic figures. In addition, packages such as R-Shiny provide interactive data wrangling and plotting for big data. Possibility of having Big Data analytics clusters to be co-located with HPC platforms? 

	» Web-accessible GUI to run models and model UQ tools within ILAMB. This will facilitate more direct connection between modeler, measurers, and domain experts. 
	» Leverage existing tools for interactive data analysis (e.g., R-Shiny) to improve interaction and real-time analysis of model benchmarking results. Provide web-accessible tools for analysis and visualization capable of generating publication-ready graphics 


	8.0 Computational Needs and Requirements 
	8.0 Computational Needs and Requirements 
	Comprehensive analysis of ESM output at increasing resolutions is already challenging the computational infrastructure commonly used by modelers and analysts. As observational data sets continue to grow in temporal length and spatial resolution, data storage and processing capacities will limit their use in model benchmarking without appropriate investments in data management and computational infrastructure. Scalable algorithms and machine learning techniques should be developed for evaluating and benchmar
	Combining integrating, and synthesizing data across Earth science disciplines offers new opportunities for scientific discovery that are only starting to be realized (Hoffman et al., 2011). The rise of data-intensive scientific pursuits, in Earth sciences and other disciplines, has led some visionaries to proclaim it the fourth paradigm of discovery alongside the traditional experimental, theoretical, and computational archetypes (Hey et al., 2009). The promise of scientific advances in predictive understan
	Today’s large and complex Earth science data often cannot be synthesized and analyzed using traditional methods or on individual workstations. As a result, data mining, machine learning, and high performance visualization approaches are increasingly filling this void and can often be deployed only on parallel clusters or supercomputers (Hoffman et al., 2011). However, supercomputer architectures designed for compute-intensive simulations, usually containing large numbers of cores with high speed interconnec
	As described above, UQ presents significant computational challenges that lead to development of reduced complexity and surrogate models that may fail to reproduce model behavior in unpredictable ways. Methods that can exploit leadership-class computing should be developed to address these challenges. Facilities supporting large scale data management and server-side manipulation and computation (e.g., Google Earth Engine) will become increasingly important as growing data volumes eliminate the possibility o
	KEY RECOMMENDATIONS 
	» Scalable algorithms and machine learning techniques should be developed for evaluating and benchmarking high resolution and long time series ESM results. 
	» Research organizations should develop cyber infrastructure to support large scale data collection, curation, archival, discovery, and distribution, and it should support automated model–data comparisons and online data assimilation for parameter estimation through supercomputing facilities. 
	» Scientific computing facilities should strike a balance between resources for compute-intensive vs. data-intensive applications as they plan their expansion to exascale computing. 
	» New development for ILAMB should include improved support for remote retrieval and version tracking for observational data. 
	the data streams or observational data products needed to drive the simulation or evaluate its results. Realizing this vision requires investment in both cyber infrastructure for simulations and data storage and retrieval (e.g., obs4MIPs) and the software components of models and benchmarking packages. New development for ILAMB should include improved support for remote retrieval and version tracking for observational data. 

	9.0 Conclusions and Next Steps 
	9.0 Conclusions and Next Steps 
	ADVANCING BENCHMARKING SCIENCE 
	» 
	» 
	» 
	A combination of small, targeted working groups, and larger, but less frequent meetings with the full community can increase visibility, participation, and science impact of ILAMB over the next several years. 

	» 
	» 
	Supporting the 6th Phase of the Coupled Model Intercomparison Project (CMIP6) is one of the most critical ILAMB goals for the next 3–4 years. 

	» 
	» 
	In the next 10 years, the community needs a synthesis center that will lower the barrier to information flow between measurement and modeling communities, with ILAMB serving as a core capability. 


	9.1 Workshop Conclusions 
	9.1 Workshop Conclusions 
	The May 2016 ILAMB Workshop was very successful in bringing the international community together to identify scientific challenges and priorities for future research. The workshop demonstrated that there is a vibrant community of scientists, spanning many disciplines, who are committed to reducing barriers for information flow between the measurement and modeling communities. The integration of ILAMB packages into the workflow of several major modeling centers highlights the growing importance of this effor
	A variety of Benchmarking Approaches have been adopted to evaluate model accuracy through comparison with observations, including the following: › Statistical comparisons (bias, root-mean-square error (RMSE), phase, amplitude, spatial distribution, Taylor diagrams and scores) › Functional relationship metrics or variable-to-variable comparisons › Emergent constraints › Reduced complexity models and traceability analyses › Formal uncertainty quantification (UQ) methods 
	› Meta-analyses of perturbation and sensitivity experiments. While many of these statistical measures are not independent, each provides slightly different information about contemporary model performance with respect to observational data and about implications for future projections from ESMs. Reduced complexity models, traceability analysis, and UQ methods could be combined into useful frameworks to achieve the following goals: 
	› Integrate and report carbon cycle model diagnostics as a matrix of flows and turnover times to attribute responses to specific ecosystem components › Apply Bayesian UQ approaches that utilize leadership-class computing facilities to quantify model uncertainties › Employ UQ results to guide data collection activities and target process representations needing improvement › Investigate integration of emerging UQ frameworks with future ILAMB package releases. › Developing metrics that make appropriate use of
	› Model simplifications 
	› Structural and parametric uncertainties. 
	In the near-term, an important step will be to target specific areas within the fields of ecosystem ecology and hydrology for synthesis and further detailed ILAMB metrics development. Recommendations identified for next-generation Benchmarking Challenges and Priorities included the following: 
	› 
	› 
	› 
	Develop supersite benchmarks integrated with AmeriFlux and FLUXNET 

	› 
	› 
	Create benchmarks for soil carbon turnover and vertical distribution and transport 

	› 
	› 
	Develop benchmark metrics for extreme event statistics and responses of ecosystems 

	› 
	› 
	Synthesize data for vegetation recruitment, growth, mortality, and canopy structure 

	› 
	› 
	Create benchmarks focused on critical high latitude and tropical forest ecosystems 

	› 
	› 
	Leverage observational projects and create a roadmap for remote sensing methods. 


	Small, targeted working groups should be formed to research and publish analyses supporting these priorities. Other priority areas that the community identified as important included photosynthesis, aboveground biomass and litter, permafrost processes, atmospheric radiation measurements, the three-dimensional structure of atmospheric CO, and the use of radiocarbon as a constraint on soil processes. 
	2

	Specific Enabling Capabilities identified as required to address the next generation Benchmarking Challenges and Priorities included the following: › Model development of new process representations and new output variables › Deployment of land model testbeds (LMTs) › Directed field measurements and monitoring activities › Perturbation experiments and laboratory studies › Standardize collection, processing, archiving, and distribution of observational data in Federated data centers 
	› Advanced computational resources and infrastructure. New model development and verification activities could be more rapidly advanced through frequent and systematic simulation and testing. In particular, priority capabilities identified included the following: 
	› LMTs for automated execution, calibration, and evaluation of alternative or competing model formulations › In situ diagnostics to summarize simulation results and avoid output of large data sets, which can greatly reduce computational efficiency › Initial LMT development that implements AmeriFlux and FLUXNET supersite evaluation of single-point offline simulations › LMT capabilities incorporated into existing routine model testing (e.g., nightly or weekly automated integration testing). Computational need
	› 
	› 
	› 
	A balance between resources for compute-intensive vs. data-intensive application as scientific computing facilities plan their expansion to exascale computing 

	› 
	› 
	New development for ILAMB that includes improved support for remote retrieval and version tracking for observation data through repositories like obs4MIPs. 


	Additional field measurements and monitoring activities, as well as perturbation experiments and lab studies, could provide valuable observational data for constraining models. High priority measurement needs identified for developing benchmarks and improving ESMs included the following: 
	› Long-term energy, carbon, and water flux measurements at AmeriFlux and FLUXNET sites with standardized instrumentation and methods, and additional frequent or continuous ancillary in situ measurements of soil moisture, sap flow, tree height and diameter, litterfall, and soil nutrients 
	› High latitude and tundra soil core measurements of carbon and nutrient distributions, including isotopes and soil ice/water content, and observations of vegetation growth and expansion of woody vegetation 
	› Characterization of tropical ecosystem traits and canopy structure and chemistry; observations of tropical ecosystem responses to drought, increased temperatures, and elevated atmospheric CO; and measurements of nutrient cycling and hydrology in tropical forests, focusing on strong land–atmosphere interactions 
	2

	› Remote sensing algorithms and processing infrastructure for generating data products useful for large-scale ecosystem characterization and monitoring, scaling up in situ measurements, and informing future measurement site selection. 

	9.2 Long-term Vision for Model Benchmarking 
	9.2 Long-term Vision for Model Benchmarking 
	A productive approach for achieving breakthroughs in the areas described above would be to organize small working groups that bring together key individuals at the cutting edge of the target discipline along with ILAMB developers. Priorities for these synthesis activities are identified in Section 4. Over the course of several meetings, the teams would have a goal of creating new metrics. The teams also would use the ILAMB system to create figures and tables highlighting these metrics for a synthesis paper,
	On a 3-year horizon (FY 2017–2020), the 6th phase of the Coupled Model Intercomparison Project (CMIP6) will be nearly complete, generating a vast archive of model simulation output from its suite of core DECK simulations and numerous associated MIPs (Section 5). The combined CMIP6 collection will provide information essential for governments around the world to limit the magnitude and impact of climate change. In this context, supporting CMIP6 must be a central ILAMB goal over the next three years, and it i
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	To successfully support these MIPs, further development and a unique tailoring of the ILAMB system for individual MIPs may be necessary. Within each MIP, ILAMB may help to identify robust responses that occur across multiple models as well as persistent biases. Using the DECK simulations and other closely related simulations, ILAMB also may be helpful in documenting improvements in the representation of the land surface and atmospheric processes over time, from CMIP5 to CMIP6. This information will be of br
	Another necessary step is to create a closer coupling between obs4MIPs (Teixeira et al., 2014; Ferraro et al., 2015) and ILAMB. This can be achieved by integrating ILAMB datasets into the obs4MIPs online repository and converting existing ILAMB datasets to follow well-established netCDF Climate and Forecast (CF) conventions (Eaton et al., 2011). Whereas obs4MIPs currently includes many datasets valuable for constraining the physical climate system, many ecosystem variables have not yet been integrated into 
	Over a 5–10 year time horizon, the ILAMB system could serve as a core capability within a US or international center dedicated to increasing information flow between international measurement and Earth system modeling communities. Other important capabilities, complementing ILAMB, would include the ability of the center to solicit small synthesis proposals from the community for new working groups, host MIP-related activities, and support expanded Earth system model use and access by a broader cross section


	Appendix A. Benchmarking Tools 
	Appendix A. Benchmarking Tools 
	A.1 PALS/PLUMBER 
	A.1 PALS/PLUMBER 
	Gab Abramowitz and Martin Best 
	The Protocol for the Analysis for Land Surface models (PALS; Abramowitz, 2012) is an online web application for the automated evaluation and benchmarking of land surface model (LSM) simulations. PALS hosts a collection of “experiments,” each of which contains a collection of data sets required to force (if running offline) and evaluate a LSM at the particular spatial resolution or location prescribed by the experiment. Users create model profiles within the PALS system, and then upload their LSM simulation 
	There are several motivations for creating this type of system. Running model intercomparison projects (MIPs) in this environment means the following: 
	» Analyses are transparent to all involved because analysis scripts are downloadable and editable. Standardization of evaluation can therefore be a community-based effort. 
	» Contributions to MIPs can be ongoing, without additional analysis effort. 
	» Additional analyses can be performed by anyone with access to the experiment. 
	» The entire history of MIPs on the PALS system remain “live” and available. 
	» A version history of data sets, analysis scripts, and experiment metadata are accessible to all experiment users. 
	» Ancillary data associated with models and model outputs can potentially be data-mined as part of the analysis. 
	» Ancillary data associated with models and model outputs improves provenance information and reproducibility. 
	This makes achieving the broader goals of a MIP, such as understanding why some models perform better than others, or whether or not models share particular weaknesses, more attainable. 
	Another obvious use of such a system is for model development. PALS’ implementation of “workspaces” to limit access to experiments to a subset of users means that development teams can use this type of system for fast, repeated analysis of model developments to share online with co-developers, as follows: 
	» The automated nature of analysis allows continuous integration testing for scientific model development through application programming interface (API) access (e.g., using Jenkins). 
	» Equity: access to the evaluation system is not contingent upon the ability to successfully install an analysis package 
	or local computing resources. This increases the potential for international standardization of model evaluation 
	and avoids duplication of analysis infrastructure. 
	» As noted above, ancillary data associated with model versions and model outputs improves provenance information and reproducibility and opens up the potential to data-mine ancillary data. 
	» The ability to nominate benchmarks for each analysis—other model outputs already associated with a particular experiment—makes comparing against different model versions easier. 
	Success of this type of system is clearly dependent upon the adoption of model input/output standards. PALS currently supports the Assistance for Land-surface Modeling Activities (ALMA) NetCDF standard to which many land surface modeling groups adhere. Work is underway to ensure full Climate and Forecast convention for NetCDF files (CF-NetCDF) compliance and Coupled Model Intercomparison Project (CMIP) interoperability in the next version of the ALMA standard. 
	In its first phase, PALS focused solely on single site (flux tower) analysis. It attracted about 230 users from more than 60 institutions in 20 countries, of which about 20% were active users. This version of PALS has not been available since late 2014 after a Struts vulnerability forced us to take it offline. However, while limited in scope, this resulted in two successful MIPs: PLUMBER (Best et al., 2015; Haughton et al., 2016) and SavMIP (Whitley et al., 2016). 
	For PLUMBER, land surface models were benchmarked for 20 observational FLUXNET sites ranging in geographical locations, climates, and land cover. Both simple physical models and empirical relationships were used to provide benchmarks for the sensible and latent heat fluxes in this study. The land surface models were not evaluated against each other but were individually ranked in comparison to the benchmarks. 
	The results showed that for standard statistical metrics, all of the land surface models had a similar performance relative to the benchmarks. The models had a better overall ranking compared to the simple physical models but were out-performed for both surface fluxes by a three variable piecewise linear regression. In addition, for the sensible heat flux, the models were outperformed by a single variable regression between the flux and the downward shortwave radiation. This demonstrates that further improv
	Furthermore, assessing the performance of the model relative to the benchmarks for alternative statistical metrics based upon distributions showed that the models had differing overall rankings compared to the benchmarks. This suggests that previous development efforts among the international community have focused on optimizing for standard statistical metrics, but this does not necessarily result in overall better performance. 
	Figure
	Figure A.1.1. Common statistics for each model are shown by average ranking from the PLUMBER benchmarking activity. 
	The second phase of PALS aims to broaden its focus and introduce new features. First, the system will not be specifically tailored to LSMs, so it will likely launch as /. All the existing PALS site-based LSM experiments, and additional global and regional LSM experiments, will still be available. 
	http://modelevaluation.org

	Next, experiment owners will be able to control the operation of the master analysis script. This means that as long as the JavaScript Object Notation (JSON)-based input/output requirements of the master analysis script are met, any analysis package can be used to perform the analyses for a given experiment. This means that incorporating evaluation packages such as ILAMB or Land surface Verification Toolkit (LVT) into the / environment is possible. 
	http://modelevaluation.org

	We are also building this system to avoid the bottleneck that uploading large model outputs inevitably creates. By using a distributed architecture, where the “worker” nodes that actually perform the analysis (e.g., using Python or R) can be co-located with or at centers producing large model outputs, “uploading” a model output to this system need not involve the transfer of large files. Instead, the central web server optimally manages a collection of worker nodes to minimize analysis time. Once results ar
	An initial working version of the second phase system is running and undergoing testing. All code is available in a collection of open source GitHub repositories. Any suggestions, contributions or collaborations are actively encouraged. 
	A.2 PCMDI Metrics Package (PMP) 
	A.2 PCMDI Metrics Package (PMP) 
	Peter Gleckler 
	A more routine benchmarking and evaluation of models is envisaged to be a central part of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). One purpose of the Diagnostic, Evaluation and Characterization of Klima (DECK) and CMIP historical simulations is to provide a basis for documenting model simulation characteristics (Meehl et al., 2014). In addition to scientifically targeted tools under development like the ILAMB package, two capabilities (Eyring et al., 2016a; Gleckler et al., 2016
	The PMP is built on US Department of Energy (DOE)-supported tools (Williams et al., 2014) and emphasizes the implementation of a diverse suite of summary statistics to objectively gauge the level of agreement between model simulations and observations. The PMP software is open source, has a wide range of functionality, and is being developed as a community tool with the involvement of several institutions. Collectively, the PMP, Earth System Model Evaluation Tool (ESMValTool), and ILAMB packages offer valua
	All results from the PMP include a trail of the codes and dataset versions used to generate them. 
	We illustrate the type of summary statistics available via the PMP with three examples. The first (Figure 
	A.2.1) is based on a recent paper (Ivanova et al., 2016) that examines how well simulated sea-ice agrees with measurements on sector scales and demonstrates that the classical measure of total sea-ice area is often misleading because of compensating errors. The second (Figure 
	A.2.2) is also based on a recent paper (Covey et al., 2016) that highlights the amplitude and phase of the diurnal cycle of precipitation. A third example is given by a simple “portrait plot” comparing different versions of the same model (Gleckler et al., 2016) in Atmospheric Model Intercomparison Project (AMIP) mode. 
	The PMP is under rapid development with a priority of providing a diverse suite of summary statistics for all historical and DECK simulations to researchers and modeler developers soon after each simulation is published on the ESGF. The package is designed to enable community contributions. All the PMP code is hosted at . 
	https://github.com/PCMDI/pcmdi_metrics

	Figure
	Figure A.2.1. Model ranking using mean-square error (MSE) of the total sea-ice area annual cycle: (a) Arctic scatter plot of decomposed and global errors; 
	(b) Antarctic scatter plot of decomposed and global errors; (c) Arctic scatter plot of decomposed and global errors model ranking; and (d) Antarctic scatter plot of decomposed and global errors model ranking. 
	Figure
	Figure A.2.2. Harmonic dial plots of the amplitude and phase of Fourier components, after vector averaging over land and ocean areas separately, for Tropical Rainfall Measurement Mission (TRMM) 3B42 observations (black lines and dots), for the four highest-resolution CMIP5 models (colored lines and dots), and for the other 17 Atmospheric Model Intercomparison Project (AMIP) models from CMIP5 with only July results shown for clarity (gray dots). For TRMM and the highest-resolution models, solid lines mark Ja
	Figure
	Figure A.2.3. Figure A2.3: Relative error measures of different developmental tests of the Geophysical Fluid Dynamics Laboratory (GFDL) model in AMIP mode. The error measure is a spatial root-mean-square error (RMSE) that treats each variable separately. The color scale portrays this as a relative error by normalizing the result by the median error of all model results (Gleckler et al., 2008). For example, a value of 0.20 indicates that a model’s RMSE is 20% larger than the median error for that variable ac

	A.3 ESMValTool 
	A.3 ESMValTool 
	Veronika Eyring 
	A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean proces
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	The ESMValTool consists of a workflow manager and a number of diagnostic and graphical output scripts (Figure A.3.1). The workflow manager is written in Python, whereas a multilanguage support is provided in the diagnostic and graphic routines. ESMValTool takes the name of a namelist file as a single input argument, and the namelist files are text files written using the eXtensible Markup Language (XML) syntax to define the model and observational data to be read, the variables to be analyzed, and the diagn
	The ESMValTool consists of a workflow manager and a number of diagnostic and graphical output scripts (Figure A.3.1). The workflow manager is written in Python, whereas a multilanguage support is provided in the diagnostic and graphic routines. ESMValTool takes the name of a namelist file as a single input argument, and the namelist files are text files written using the eXtensible Markup Language (XML) syntax to define the model and observational data to be read, the variables to be analyzed, and the diagn
	different sub-domains for net biosphere productivity, leaf area index, gross primary productivity, precipitation, and near-surface air temperature like that of Anav et al. (2013) (Figure A.3.3). 

	Figure
	Figure A.3.1. Schematic overview of the ESMValTool (v1.0) structure. The primary input to the workflow manager is a user-configurable text namelist file (orange). Standardized libraries/utilities (purple) available to all diagnostics scripts are handled through common interface scripts (blue). The workflow manager runs diagnostic scripts (red) that can be written in several freely available scripting languages. The output of the ESMValTool (gray) includes figures, binary files (NetCDF), and a log file with 
	We aim to move ESM evaluation beyond the state of the art by investing in operational evaluation of physical and biogeochemical aspects of ESMs, by using process-oriented evaluation, and by identifying processes most important to the magnitude and uncertainty of future projections. Our goal is to support model evaluation in CMIP6 by contributing the ESMValTool as one of the standard documentation functions and by running it alongside the ESGF. In collaboration with similar efforts, we aim for a routine eval
	Figure
	Figure A.3.2. Annual-mean surface air temperature (upper row) and precipitation rate (mm day) for the period 1980–2005. The left panels show the multi-model mean and the right panels the bias as the difference between the CMIP5 multi-model mean and the climatology from ERA-Interim and the Global Precipitation Climatology Project for surface air temperature and precipitation rate, respectively. The multi-model mean near-surface temperature agrees with ERA-Interim mostly within ±2°C. Larger biases can be seen
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	Figure
	Figure A.3.3. Relative space–time RMSE calculated from the 1986–2005 climatological seasonal cycle of the CMIP5 historical simulations over different sub-domains for net biosphere productivity (NBP), leaf area index (LAI), gross primary productivity (GPP), precipitation (pr) and near-surface air temperature (tas). The RMSE has been normalized with the maximum RMSE to have a skill score ranging between 0 and 1. A score of 0 indicates poor performance of models reproducing the phase and amplitude of the refer

	A.4 NASA Land Surface Verification Toolkit (LVT) 
	A.4 NASA Land Surface Verification Toolkit (LVT) 
	Sujay Kumar 
	The NASA Land surface Verification Toolkit (LVT; ; Kumar et al., 2012) is an open-source, formal system for land surface model evaluation and benchmarking. LVT is designed to provide an automated, consolidated environment for model evaluation and includes approaches for conducting both deterministic and probabilistic verification. A key motivation in the development of LVT is the concept of “model–data fusion” (MDF; Raupach et al., 2005; Williams et al., 2009), which is the paradigm for combining the inform
	http://lis.gsfc.nasa.gov/software/lvt

	LVT is implemented using object oriented framework design principles as a modular, extensible, and reusable system. The software is designed with explicit interfaces for incorporating support for observational datasets and evaluation metrics. The interoperable nature of the LVT design allows the reuse of existing features with new components that are developed. For example, a newly incorporated support for an observational dataset can take advantage of all available analysis metrics without needing any addi
	 A key design consideration in LVT is the support of observational datasets in their native formats, enabling the continued use of the system without requiring additional implementation or data preprocessing. Currently a large suite of in situ, remotely sensed, and other model and reanalysis datasets are implemented in LVT. The spatial and temporal scales of these measurements vary significantly. LVT handles the geospatial and temporal transformations of these datasets from their native formats to enable fl
	In recognition of the need for having a variety of performance evaluation metrics for model evaluation, LVT supports a suite of analysis metrics. Aside from the traditional accuracy-based measures, LVT also includes metrics to aid model identification, such as entropy, complexity, and information content. These measures can be used to characterize the tradeoffs in model performance relative to the information content of the model outputs. The accuracy-focused metrics that quantify model performance using re
	LVT is an evolving framework and continues to be enhanced with the addition of new analysis capabilities and the incorporation of terrestrial hydrological datasets. The capabilities in LVT provide novel ways to characterize LSM performance, enable rapid model evaluation efforts, and are expected to help in the definition and refinement of a formal benchmarking and evaluation process for the land surface modeling community. 

	A.5 ABoVE Benchmarking System 
	A.5 ABoVE Benchmarking System 
	Joshua B. Fisher 
	Joshua B. Fisher 
	The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data collection and integration of the following key indicators of the ABR ecosystem: disturbance, flora / fauna and related ecosystem function, carbon pools and biogeo




	Appendix B. Metrics for Major Processes 
	Appendix B. Metrics for Major Processes 
	B.1 Ecosystem Processes and States 
	B.1 Ecosystem Processes and States 
	Nancy Y. Kiang and Ben Bond-Lamberty 
	Nancy Y. Kiang and Ben Bond-Lamberty 
	Ecosystem processes are the full suite of interactive components of an ecosystem that determine a column mass budget and fluxes into and out of the system vertically and horizontally. Ecosystem components are typically distinguished in land models into modules for soil biogeochemistry coupled with vegetation dynamics (biophysics, phenology, growth, ecology), and with these biological components coupled to surface hydrology and the atmosphere. Thus, system processes are (1) the vertical interactions between 
	Ecosystem states are the magnitudes of these fluxes and mass storage pools at a point in time, as well as their trajectories with respect to time or another driver. The pools may be categorized according to system components and various classifications of their respective compositions, such as biodiversity, chemical mix, and geometric structure. 
	Table B.1.1 provides a summary of ecosystem processes addressed in this section, focusing on processes that couple ecosystem components with each other. Table B.1.2 provides a summary of ecosystem state variables that are targets for benchmarking, together with data sets that could serve as these benchmarks. There is some natural overlap with other sections of this report that focus on the ecosystem components. Further details on identifying appropriate model ecosystem diagnostics and suitable data for mode
	Table B.1.1. Ecosystem coupling processes. 
	Table
	TR
	Physics 
	Biophysics and Biogeochemistry 
	Ecology 

	Land–Atmosphere 
	Land–Atmosphere 
	Observed or GCM meteorology Canopy albedo Surface energy balance Water vapor conductance 
	CO exchange2Autotrophic respiration Heterotrophic respiration 
	Fire emissions Anthropogenic forcings 

	Vegetation–Soil 
	Vegetation–Soil 
	Canopy air: temperature, humidity, CO2 concentration 
	Litterfall mass and quality (C:N ratio, lignin content) Nitrogen dynamics 
	Microbial-vegetation nutrient competition 

	Hydrology–Soil–Vegetation 
	Hydrology–Soil–Vegetation 
	Layers vs. catchments Interception/throughfall Root water uptake, stomatal conductance 
	Multi-pool, multi-layer soil (Dissolved organic carbon) -Leaching of NO3 

	Horizontal Exchange 
	Horizontal Exchange 
	Edge effects in meteorology 
	General circulation of CO2 and fire emissions 
	Managed land dynamics, land use; Natural and anthropogenic disturbance, fire 


	Table B.1.2. Ecosystem State Model Diagnostics vs. Measurements. 
	Table
	TR
	Equilibrium spin-up state Preindustrial control Partitioning/ classification of mass balances and fluxes. 
	Responses/Sensitivities Elevated CO2 
	Uncertainties 

	Land–Atmosphere 
	Land–Atmosphere 
	Model CO, surface fluxes2CO record: flasks, ice cores2Products from FLUXNET 
	Model mean, seasonal timing latitudinal gradients Airborne fraction 

	Vegetation Canopy 
	Vegetation Canopy 
	Vegetation structure Net zero flux FLUXNET, inventory, satellite 
	Seasonal timing, net fluxes Land use and land cover change (LULCC)? 

	Soil 
	Soil 
	Model litter layer, SOC, soil N Soil carbon databases Land Use Model Intercomparison Project (LUMIP) management data sets 
	dC/dX, dC/dt Soil flux databases 
	High observational uncertainties 


	Specific Points and Recommendations 
	Specific Points and Recommendations 
	Key recommendations to improve evaluation, benchmarking, and process representation of ecosystem processes and states in ESMs are as follows: 
	» To interpret and compare the performance of models relative to benchmarks, it is necessary to analyze the component parts of each model and not merely their emergent behavior. There should be more focus on comparing process representation and not just diagnostic variables. 
	» To create standards for benchmarks, the land modeling community must develop clear guidelines on how different statistics and visualizations (e.g., bias, RMSE, Taylor diagrams) are used and how they complement each other for different benchmarking purposes. 
	» Observational data often lack quantified uncertainties. These should be required as an essential component of data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly in propagation of uncertainty in model simulations. 
	» In model development, it is critical that tests are designed to eliminate confounding factors that would affect interpretation of the effects of new model physics. Examples of confounding factors that influence model performance other than a new model update include forcings data sets and boundary conditions, for which controls should be selected to identify model improvements versus other factors. 
	» To improve model process representation, the observation and modeling communities should communicate regularly their perspectives with each other so that (1) the measurement community develops functional relationships from data sets that are suitable for use in models and (2) modelers can keep informed of insights from new data. Modelers need to provide the observation community with a clear definition of needs, such as through a scaled-based matrix of measurement needs for models. 
	B.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	B.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	Accuracy: A number of statistical and visualization approaches have been used to evaluate model performance (e.g., bias, RMSE, phase, amplitude, spatial distribution, scores, Taylor diagrams, and functional relationships/perturbation sensitivity) (Gleckler et al., 2008; Doney et al., 2009; Luo et al., 2012). To create standards for benchmarks, the land modeling community must develop clear guidelines on how different statistical measures are used and how they complement each other for different benchmarking
	Uncertainty: Uncertainty in observational data is often lacking and should be demanded as an essential component of data products in benchmarking tools like ILAMB to be useful to inform, constrain, and benchmark models. Uncertainty in forcings, boundary condition data sets, and parameter sets is needed to quantify weights properly in propagation of uncertainty in model simulations. 
	Sensitivity: Insight into model behavior can be gained through checking relationships: variable vs. variable, vs. time, vs. drivers, turnover/response rates. Because process representations generally directly encode sensitivities found in observations, directly examining the different models’ physics should be the first analytical step for evaluating and anticipating their different behaviors. However, sensitivity between coupled ecosystem components is an area worth developing for benchmarking for emergent
	Scaling—temporal: Understanding at which time scale a process has significant influences is vital to representing it appropriately in models. To discern these time scales from both observational data as well as model outputs, a suggested approach is Fourier transforms of time series and periodicities. This has been used, for example to analyze patterns of diurnal, seasonal, and interannual cycles. 
	Scaling—spatial: In scaling up (e.g., from sampling points at a site, from sites to regions, and regions to the globe), land modelers must remain cognizant that each change in scale entails different relevant ecosystem processes (cf., Moorcroft et al., 2001). From sampling within a field site, the distribution and variability of point measurements with microclimate and individual plant heterogeneities need to be quantified well to scale up model processes to the ecosystem scale (cf., Shao et al., 2013; Keen

	B.1.2 New Metrics and Benchmarking Approaches 
	B.1.2 New Metrics and Benchmarking Approaches 
	Benchmarking metrics provide a standardization for model evaluation and a bridge between what land modelers can simulate and what the observational community can measure. The advent of size-structured and patch-age based second generation dynamic global vegetation models (DGVMs) and trait-based vegetation models, the introduction of more ecosystem types and land use change, and the availability of more measurements from long-term sites and recent satellites, all motivate re-evaluation of old benchmarking me
	Table B.1.3 provides a summary of key ecosystem process and state metrics for standardization in the land modeling community. These draw upon also the efforts of the various model intercomparison projects (MIPs) of the Coupled Model Intercomparison Project 6 (CMIP6), particularly the Coupled Carbon Cycle Climate Model Intercomparison Project (CMIP), where the goal is to constrain future climate projections (e.g., identify emergent constraints). As with CMIP, we recommend the community develop standard model
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	The metrics include pre-industrial spin-up benchmarks where there are no observations to compare to, but an equilibrium model state must be defined, such as potential biomass and equilibrium soil carbon. The metrics also include variables suitable for evaluation against the observational record. We recommendation that models also develop instrument simulators to output the fundamental measurements observed by remote sensing instruments. These could include updating the fundamental canopy radiative transfer 
	The metrics include pre-industrial spin-up benchmarks where there are no observations to compare to, but an equilibrium model state must be defined, such as potential biomass and equilibrium soil carbon. The metrics also include variables suitable for evaluation against the observational record. We recommendation that models also develop instrument simulators to output the fundamental measurements observed by remote sensing instruments. These could include updating the fundamental canopy radiative transfer 
	information based on canopy properties. That capability should be based on the model’s RTM representation, to best compare with LiDAR observations, instead of converting to estimates of height or biomass. For example, LiDAR waveforms of the simulated vegetation structure could be produced for direct comparison with LiDAR measurements by using an internal radiative transfer model. Other examples are simulation of solar-induced fluorescence (SIF) or shortwave albedo in the same band as measurements. 

	Table B.1.3. New Metrics/Model Diagnostics/Benchmarks. 
	Table
	TR
	Activity 
	Physical Properties 
	Ecosystem Structure 
	Temporal Diagnostics 
	Spatial Diagnostics 

	Land–Atmosphere 
	Land–Atmosphere 
	Seasonal timing 
	Horizontal column Vertical regional 

	Vegetation Canopy 
	Vegetation Canopy 
	Fluorescence 
	Albedo 
	Age since disturbance. Plant age, geometry, demography, biomass. LiDAR waveforms 
	Seasonal timing Decadalcentennial prediction 
	-

	RMSE, uncertainty 

	Soil 
	Soil 
	Parameter values data repository 
	-

	Seasonality of fluxes 
	RMSE, interpolation 

	Vegetation–soil 
	Vegetation–soil 
	Litterfall mass, litter layer 
	Seasonality 
	Requires data 



	B.1.3 Observational Data Needs and Priorities 
	B.1.3 Observational Data Needs and Priorities 
	Current best-available datasets must be selected based the relevant time scale (annual mean, seasonal cycle, interannual variability, trend) and the spatial extent and resolution for comparison (site, regional, global). New in situ or remote sensing measurements are needed for global soil depths, isotope tracers, leaf area index, and many other state variables. A wide variety of measurements are needed to characterize specific phenomena of interest, including drought. Appropriate metadata (e.g., site histor
	Table B.1.4. Observational Data Needs. 
	Table
	TR
	Ecosystem Structure 
	Physics 
	Biogeochemistry 
	Ecology 
	Scaling Up 

	Atmosphere 
	Atmosphere 
	Flux inversion products 

	Vegetation Canopy 
	Vegetation Canopy 
	Age distribution of disturbance, plant demography. Height. Root exudates. Reproduction. Allometric leaf area index and seasonality of traits. 
	Seasonality of leaf traits Hyperspectral data 
	Vegetation structure Site: Airborne: Remote: 
	Cover change 
	Beyond PFTs “Decomposition functional types” (Bond-Lamberty et al., 2016b) 

	Soil 
	Soil 
	More soil state and response data needed: C, N, bulk density. Partitioning of soil hetero- vs. autotrophic respiration. 
	Soil respiration. Updated gridded soil respiration observational data 
	Peatlands 



	B.1.4 Model Development and Output Requirements 
	B.1.4 Model Development and Output Requirements 
	To improve ecosystem process representation, the land modeling community should investigate advances to these aspects of coupling ecosystem components: 
	» Energy exchange: Second generation vegetation models that represent canopy heterogeneity and seasonally prognostic leaf albedo should be evaluated to determine if they improve the prediction of surface albedo, canopy and ground temperature, and surface energy balance. 
	» Water exchange: First, litterfall is a poorly constrained ecosystem exchange process between vegetation and soil. The mulching effect of a litter layer to insulate the soil and conserve soil moisture is well known but lacks a mechanistic modeling approach for ESM grid scales. Matthews (1997) produced a benchmark estimate of litter production and pools with regard to annual dry matter production according to vegetation type and climate. However, seasonal variation in the physical properties of a litter lay
	» Carbon exchange: Litterfall from vegetation as an input to soil biogeochemistry is subject to high uncertainty in model simulations due to uncertainty in leaf mass per leaf area and weak performance of leaf phenology models for the timing of senescence. Introduction of deeper roots with deeper soils will alter vegetation–soil and water– carbon coupling in modeled ecosystems, as it will motivate revision of each DGVM in its distribution of soil carbon from senescing roots, and in plant allometry and carbon
	» Nutrient exchange: For those ESMs that include soil–plant nitrogen dynamics, plant biomass pools typically have fixed C:N ratios, and their growth drives demand for soil N. N inputs are generally from deposition. Improved representation with varying C:N should be explored. 
	Table B.1.1. Ecosystem coupling processes. 
	Table
	TR
	Physics 
	Biogeochemistry 
	Ecology 

	Atmosphere 
	Atmosphere 
	CH4 

	Vegetation Canopy 
	Vegetation Canopy 
	Beyond PFTs Leaf physiology Phenology Respiration partitioning SIF 
	C:N:P 
	Community structure: height-stratified canopies Managed land dynamics Wetlands Herbivory, insects Climate change/elevated CO responses2“Decomposition functional types” (Bond-Lamberty et al., 2016b) 

	Soil 
	Soil 
	Layers vs. catchments Permafrost Deep soil Erosion 
	C:N:P, CH, NO42
	Other functional pools? 

	Ocean coupling 
	Ocean coupling 
	Runoff 
	Nutrient fluxes 






	B.2 Hydrology 
	B.2 Hydrology 
	Randal D. Koster and Hongyi Li 
	Randal D. Koster and Hongyi Li 
	B.2.1 Scientific Challenges and Opportunities for Model Evaluation 
	B.2.1 Scientific Challenges and Opportunities for Model Evaluation 
	The key role of hydrology in land surface models (LSMs) is to partition incoming precipitation water into evapotranspiration (ET), runoff (streamflow), and changes in soil moisture storage. These water cycle calculations are intrinsically tied to energy balance calculations (e.g., through the connection between ET and latent cooling) and carbon balance calculations (e.g., through the control of stomatal conductance on transpiration). Soil moisture (its vertical profile and spatial variations) lies at the he
	A wide variety of terrestrial processes are relevant to surface hydrology: ET and its component parts, streamflow generation, snow, permafrost, subsurface moisture transport, and human water management and disturbance, to name just a few. Also of relevance are groundwater dynamics, with different timescales connecting deep and shallow groundwater processes with surface hydrology. River routing is a key process to consider; evaporation from stream surfaces provides moisture to the atmosphere, and the streams

	Current State of Process Representations in Models 
	Current State of Process Representations in Models 
	Today’s LSMs compute a broad suite of hydrological fluxes (e.g., infiltration, interception loss, surface runoff, baseflow, soil moisture storage change). However, the accuracy of these fluxes is arguably limited by key disparities in model complexity. For example, in many models the “vertical” treatment of the land surface is highly detailed, with multiple stacked soil layers overlain by a complex canopy structure. One-dimensional physics can thus be said to be well-represented. However, many aspects of hy
	Poor representation of runoff is also reflected in (1) the lack of appropriate complexity in groundwater modeling and (2) underrepresented aquatic processes, especially in rivers. Groundwater formulations are restricted by the lack of lateral fluxes between land grid cells and the lack of realistic, spatially variable depths to bedrock. Both lead to poor simulation of groundwater table dynamics, which can interact with runoff generation processes. Riverine processes are also oversimplified, leading to a lac

	Existing Approaches for Assessing Model Performance 
	Existing Approaches for Assessing Model Performance 
	Many approaches are currently used to assess land model performance in producing hydrological fluxes. Flux tower data are used to assess ET, for example, and streamflow measurements (once corrected for human influence) are used to assess runoff production. In situ soil moisture measurements have been used to evaluate model soil moisture, and the advent of satellite-based soil moisture measurements is allowing such validation to proceed at the global scale. Satellite-based datasets of ET and vegetation pheno

	B.2.2 New Metrics and Benchmarking Approaches 
	B.2.2 New Metrics and Benchmarking Approaches 
	New Metrics, Scores, and Functional Relationships 
	New work is needed to better evaluate hydrological processes in LSMs. For example, these models produce runoff (streamflow), which is reasonably well measured. While annual and seasonal streamflow in unmanaged systems is already a staple of model evaluation, work is needed to extend current time series analyses to determine if models reproduce slow versus fast responses and capture the impact of managed flows. Similarly, models produce soil moisture information that could be evaluated in the context of drou
	Since direct measurements of many hydrological fluxes are unavailable, methods for novel indirect estimation of these fluxes should be developed. For example, satellite-based fluorescence measurements may prove useful for evaluating transpiration, and other vegetation-focused measurements (e.g., NDVI) may be useful for constraining land models with dynamic vegetation. Functional relationships between directly measurable variables and those that are not could be very useful in hydrologically ungauged areas. 
	The joint control of soil moisture over ET and runoff in nature and in LSMs suggests one potentially valuable benchmarking approach. Because ET and runoff both vary with soil moisture, they effectively vary with each other. A land model should be able to reproduce observations-based relationships between ET and streamflow production efficiencies, with soil moisture (a largely model-dependent variable) taken out of the picture. Techniques for such benchmarking currently exist. 
	Since most applications of LSMs and ESMs are large-scale in nature, the influences of human systems on the water cycle are not negligible. Caution is thus necessary regarding the role of human impacts while designing and applying new metrics over large scales. A related issue is potential nonstationarity: a model may validate well for present-day climate, but will it also perform well under a modified climate? Evaluations should proceed with this concern in mind. 

	Current Best-available Data Sets for Specific New Metrics 
	Current Best-available Data Sets for Specific New Metrics 
	Existing datasets can be used as the basis for new metrics. For runoff and streamflow-related metrics, Model Parameter Estimation Experiment (MOPEX) data are largely ideal for pristine headwater watersheds over the United States and Global Runoff Data Center (GRDC) data are the best available for global streamflow metrics, though because the GRDC basins are largely regulated, caution is needed in their use. For soil moisture-related metrics, both in situ measurements and satellite-based datasets (SMOS, SMAP

	B.2.3 Observational Data Needs 
	B.2.3 Observational Data Needs 
	Gaps in Current Data Availability 
	The lack of snow water equivalent (SWE) data on the global scale is a significant deficiency. Moreover, direct measurements of ET at large spatial scales are not available; at best we have access to indirect evaluations through, for example, the analysis of streamflow (see above), the upscaling of FLUXNET site data using satellite information (e.g., NDVI), or the interpretation of diurnal temperature cycles in terms of latent heat flux. Furthermore, while streamflow data are available, separate datasets are

	New in situ or Remote Sensing Measurement Needs 
	New in situ or Remote Sensing Measurement Needs 
	A number of currently underutilized in situ datasets would contribute significantly to the evaluation of simulated land surface hydrology. For example, sap flow measurements may provide valuable information on transpiration, and direct or indirect measurements of macropore structures are still lacking. Remote sensing has the potential to provide a number of datasets relevant to evaluating land model hydrological fluxes. The ECOSTRESS mission, for example, focuses on ET, MODIS provides information relevant t

	Spatial and Temporal Extent and Resolution Requirements 
	Spatial and Temporal Extent and Resolution Requirements 
	Any metric for evaluating a land model’s simulation of hydrology needs to be valid for a large spatial area; local site measurements (e.g., flux towers) are, in isolation, inadequate. This is because: (i) the key hydrological flux, runoff (streamflow), is not measured at local sites; and (ii) land surface models are meant to produce large-area estimates of surface fluxes. Runoff production and ET vary substantially in space as a result of spatial heterogeneity in soil moisture, soil properties, and vegetati

	Synthesis Activities Needs and Approaches 
	Synthesis Activities Needs and Approaches 
	Combining different available soil moisture datasets into a single, long-term dataset for model evaluation would be useful. Such a synthesized dataset can be derived from in situ soil moisture measurements and a number of different satellite-based soil moisture products. Parallel work on model development is needed to bring the land model’s soil moisture variables more in line with these measurements. Another example of a proposed synthesis activity is the development of a global dataset of pristine (unmana



	B.3 Atmospheric CO
	B.3 Atmospheric CO
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	Gretchen Keppel-Aleks and William J. Riley 
	Gretchen Keppel-Aleks and William J. Riley 
	B.3.1 Scientific Challenges and Opportunities for Model Evaluation 
	B.3.1 Scientific Challenges and Opportunities for Model Evaluation 
	Atmospheric CO integrates both land and ocean fluxes over large spatial scales, providing a unique constraint on integrated fluxes. The concentration footprint of atmospheric CO ranges 10 km to hemispheric, depending on the location, altitude, and vertical extent of the observation. The fact that atmospheric CO integrates over large areas and is quite sensitive to atmospheric transport complicates the use of CO for benchmarking because model–data mismatch may be attributed to either carbon fluxes or atmosph
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	There are multiple opportunities to develop atmospheric CO as a benchmark. Some fully coupled ESMs have the capability to simulate the three-dimensional structure of CO. Several ESMs include capabilities to simulate isotopic fractionation in terrestrial processes, and including a 3-D dCO tracer would facilitate evaluation against observations from surface networks. Transport of CO throughout the atmosphere is relatively facile, because it is a passive tracer and, to first order, chemical formation in situ c
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	Figure
	Figure B.3.1. Hoffman et al. (2014) found an emergent constraint based on carbon inventories (left, for (a) 2060 and 
	(b) 2100) and applied it to constrain future atmospheric CO projections from CMIP5 Earth system models, reducing both the mean and uncertainty range of CO mole fractions (right, for (a) 2060 and (b) 2100). 
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	B.3.2 New Metrics and Benchmarking Approaches 
	B.3.2 New Metrics and Benchmarking Approaches 
	Incorporating atmospheric CO observations with vertical resolution above the surface is an important goal for the benchmarking system that will permit disentangling transport-induced biases from the land (or ocean) flux biases the system is designed to constrain. Incorporation of isotopes of CO will also permit accounting of the contribution from land and ocean fluxes. The dCO data are available at 95 National Oceanic and Atmospheric Administration (NOAA) flask observing sites, with many time series extendi
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	Atmospheric CO2 likely plays a key role in emergent constraints because it integrates over the regional to global scales for which emergent constraints are most likely to provide value for future climate–carbon cycle predictions. Determining robust ways to use atmospheric data for emergent constraints should be an ongoing focus of discussion. 

	B.3.3 Observational Data Needs 
	B.3.3 Observational Data Needs 
	Atmospheric CO data are publicly available and observations from all platforms are tied to the World Meteorological Organization (WMO) calibration standards. Within the past decade, remote sensing observations of atmospheric CO have gained prominence, and characterization of errors in observations have improved, especially from remote sensing. Observations to constrain the atmospheric transport operator are also crucial. Diagnostics for boundary layer depth, convective mixing, and horizontal advection would
	Atmospheric CO data are publicly available and observations from all platforms are tied to the World Meteorological Organization (WMO) calibration standards. Within the past decade, remote sensing observations of atmospheric CO have gained prominence, and characterization of errors in observations have improved, especially from remote sensing. Observations to constrain the atmospheric transport operator are also crucial. Diagnostics for boundary layer depth, convective mixing, and horizontal advection would
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	is due to carbon fluxes or atmospheric transport. Existing atmospheric CO data are fairly well archived, with data publicly available from NOAA (surface), CDIAC (aircraft campaigns and TCCON), and NASA (OCO-2). Maintaining and growing these archives of surface and atmospheric profile measurements along with estimates of all anthropogenic emissions over time is critical to meet a variety research needs in a warming world. Availability of other observations, including satellite remote sensing, varies by agenc
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	B.3.4 Model Development and Output Requirements 
	B.3.4 Model Development and Output Requirements 
	CO should be output at gridcell resolution with the vertical profile saved for comparison with aircraft campaigns, which occur in regions sparsely sampled by the long-standing surface network, and remote sensing platforms, which reduce potential model–data bias due to misrepresentation of vertical transport. Monthly frequency is the minimum temporal frequency, although process level insights could be gained by benchmarking diurnal and synoptic variations. Components of CO in the atmosphere from land, ocean,
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	B.4 Soil Carbon and Nutrient Biogeochemistry 
	B.4 Soil Carbon and Nutrient Biogeochemistry 
	Gustaf Hugelius, Jinyun Tang, and the International Soil Carbon Network (ISCN) 
	Gustaf Hugelius, Jinyun Tang, and the International Soil Carbon Network (ISCN) 
	B.4.1 Introduction 
	B.4.1 Introduction 
	Soils hold the Earth’s largest biogeochemically active organic carbon (C) pool, which has the potential for a significant feedback to climate. At roughly 2,000 Pg C, this stock is more than twice as large as the atmospheric C pool (Ciais et al., 2013). Over time and large spatial scales, the soil C stock is determined by its turnover, which is a function of input from plant photosynthesis and losses via microbial decomposition, both of which are mediated by nutrient biogeochemistry. At present, global scale
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	B.4.2 Scientific Challenges and Opportunities for Model Evaluation 
	B.4.2 Scientific Challenges and Opportunities for Model Evaluation 
	Broad-scale observations of soil C that span global environmental conditions are useful first order benchmarks for model predictions. For instance, observed global scale patterns provide undeniable evidence of the overarching climatic and biological controls on soil C and nitrogen cycling (Post et al., 1982; 1985). Thus, the degree of agreement between ESM predictions and observed global scale soil organic matter (SOM) patterns provides a baseline assessment of the ESMs’ predictive power, even though the ra
	Therefore, ESM development should focus on improving the key controls on soil C turnover such as biogeochemical nutrient dynamics and environmental controls of microbial activity, suggesting that useful benchmarks for ESM soil C dynamics should target soil C turnover. Presently, basic soil nutrient biogeochemical processes are lacking or 
	Therefore, ESM development should focus on improving the key controls on soil C turnover such as biogeochemical nutrient dynamics and environmental controls of microbial activity, suggesting that useful benchmarks for ESM soil C dynamics should target soil C turnover. Presently, basic soil nutrient biogeochemical processes are lacking or 
	insufficiently represented in many existing models, which causes models to behave inconsistently with data (Bouskill et al., 2014; Zaehle et al., 2014). Needed are improvements in modeling the cycling of nitrogen (N) and phosphorus 

	(P) and their interactions with ecosystem productivity and decomposition through limiting plant photosynthesis or microbial processing of SOM. Modeled and observed soil C stocks should be analyzed in the context of both empirical and model data to understand processes affecting both NPP and soil C turnover times. 
	Soil C turnover in models has traditionally been conceptualized as a spectrum of pools linearly decaying with different turnover rates, which are modified multiplicatively by moisture and temperature effects (Parton et al., 1988). However, recent studies suggest that soil C decomposition across all ecosystems is an emergent response resulting from the interactions between many biotic and abiotic factors, including availability or activity of microbes, minerals, plants, and inorganic chemicals (Schmidt et al
	To date, model evaluations have focused primarily on whether models can reproduce observed time series or spatial patterns in observational data (e.g., soil C stocks). While such benchmarks provide initial insights into whether discrepancies exist, they offer limited insights into why models may or may not mimic observations. The next logical step is to break down the observed spatial and temporal patterns to identify key processes and environmental controls on model predictions. A model should be evaluated

	B.4.3 Observational Data, New Metrics, and Benchmarking Approaches 
	B.4.3 Observational Data, New Metrics, and Benchmarking Approaches 
	Despite its importance, observation-based estimates of the global soil C are highly uncertain. The estimates published between 1951 and 2011 (Scharlemann et al., 2014; median 1,460 Pg C, n = 27) have varied from 500 to 3,000 Pg 
	C. With the recent release of the WISE 3.1 database (Batjes, 2016) the number was updated to 1,408 ± 154 Pg C to 1 m depth and 2,060 ± 217 Pg C to 2 m depth. The WISE database combines earlier products with climate maps and an updated soil profile dataset that integrates the global harmonized soil data with notable improvements at northern high-latitudes. At local to regional scales most modern soil inventories are based on digital soil mapping techniques where soil properties are predicted based on soil pr
	While the community has not decided whether to replace established multi-pool models with models based on emerging conceptualizations of transient environmental and microbial dynamics within ESMs, disparate types of models can be evaluated with some common metrics. Examples include benchmarking model-estimated soil 
	While the community has not decided whether to replace established multi-pool models with models based on emerging conceptualizations of transient environmental and microbial dynamics within ESMs, disparate types of models can be evaluated with some common metrics. Examples include benchmarking model-estimated soil 
	C residence time with that from radiocarbon datasets and data–model experiments that target soil C responses to various environmental perturbations. Such approaches offer a way forward in comparing the performance of traditional and emerging models for a range of processes and across environmental gradients. Wieder et al. (2015a) present a framework for representing soil microbial processes in ESMs. However, formulating standard protocols for model parameters and output as well as common benchmarking approa

	Several challenges remain for next generation of soil biogeochemistry models. To meet these challenges, both model development and creation of dedicated benchmarking datasets are needed. First, how realistic is model representation of microbial dynamics? Is, for example, the microbial substrate-use efficiency, microbial community population dynamics or microbial and enzyme turnover appropriately represented? Microbial community responses to soil warming and changes in moisture are of particular interest. Ne



	B.5 Surface Fluxes (Energy and Carbon) 
	B.5 Surface Fluxes (Energy and Carbon) 
	A. Scott Denning and Daniel M. Ricciuto 
	A. Scott Denning and Daniel M. Ricciuto 
	B.5.1 Scientific Challenges and Opportunities for Model Evaluation 
	B.5.1 Scientific Challenges and Opportunities for Model Evaluation 
	Surface fluxes of carbon and energy are a key input from land to atmosphere models, and observations of these variables have been used to benchmark carbon cycle, land surface, and Earth system models for several decades. Networks of surface flux observations such as the FLUXNET eddy covariance network have expanded rapidly over the last 25 years and have been used in numerous model intercomparisons and model–data comparison papers. Tools such as ILAMB can indicate when particular models may be agreeing with
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	While eddy covariance measurements are critically important, their footprint (~1 km) is still 2–4 orders of magnitude smaller than that of a typical Earth system model grid cell (~104 km). Key process and driving variables of surface fluxes at these spatial scales may differ from those at the flux tower scale. It remains difficult to characterize soil, vegetation, and disturbance heterogeneity, and to estimate the effect of this heterogeneity on model predictions. “Bottom-up” approaches to upscaling use obs
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	Specific Points and Recommendations 
	Measurements of surface exchanges of energy, water, carbon, and momentum at flux towers are uniquely valuable for evaluation of ESMs because these are precisely the quantities that must be provided by land-surface modules for successful coupling to the atmosphere. It is critical that ESMs continue to focus on getting the surface fluxes right, despite the aforementioned problems with heterogeneity and mismatched footprints. Benchmarking models against hundreds of surface flux records can help identify key mo
	The mismatched footprints of flux towers and ESM grid cells have driven innovations in surface flux benchmarking. One approach involves model evaluation against suites of flux sites across gradients of climate drivers such as moisture or stand age. Upscaling from tower footprints has been done directly using field measurements and remote sensing to characterize spatial patterns and heterogeneity (e.g., Bigfoot Project: Cohen et al., 2003; Turner et al., 2003). Empirical upscaling of tower fluxes to produce 
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	Benchmarking based on diurnal, seasonal, and even interannual variations in the recent past does not fully test the ability of models to predict future fluxes in response to climate forcing outside the envelope of recent changes. Unlike hindcasts, ESM predictions on decadal and centennial timescales cannot be compared to observations of changes that have not happened yet! Instead, we rely on model intercomparisons such as CMIP and CMIP5 to characterize the spread among models of the future. Intercomparisons
	4


	B.5.2 New Metrics and Benchmarking Approaches 
	B.5.2 New Metrics and Benchmarking Approaches 
	In addition to simple differences between models and observations, metrics should include separate evaluation of model bias, variance or RMSE, phases of diurnal and seasonal cycles, and spatial covariance. For mechanistic interpretation to propel model improvement, benchmarking should focus on characterizing functional relationships such as changes in surface fluxes with temperature and soil moisture anomalies. For ESMs to make credible 
	In addition to simple differences between models and observations, metrics should include separate evaluation of model bias, variance or RMSE, phases of diurnal and seasonal cycles, and spatial covariance. For mechanistic interpretation to propel model improvement, benchmarking should focus on characterizing functional relationships such as changes in surface fluxes with temperature and soil moisture anomalies. For ESMs to make credible 
	predictions, new benchmarks must quantify long-term responses to climate forcing, rather than just diurnal and seasonal behavior. While interannual variations are notoriously difficult to simulate accurately and very few flux tower records are long enough to characterize decadal variations, benchmarks that explicitly target these slower changes will be important in evaluating and improving decadal to century timescale ESM predictions. 


	B.5.3 Observational Data Needs 
	B.5.3 Observational Data Needs 
	Surface fluxes of heat, water, carbon, and momentum are now routinely measured at more than 700 sites around the world, and flux data are available across an amazing breadth of climate and ecosystem types. Unfortunately, much of the data from these sites is difficult to obtain in a timely way. A number of national and regional networks contribute data to FLUXNET (/), which performs high-level processing to fill in missing values and match flux data with other measurements, but flux records are often years b
	http://fluxnet.fluxdata.org

	Most flux towers have only operated for a few years, and only a handful have operated long enough to assess decadal changes in surface fluxes. To quantify responses of slower ecosystem processes, it will be critical to maintain the longest-running tower sites into the future, despite the cost and manpower challenges. The few 20-year records now available demonstrate the important roles of ecosystem succession and climate response. Predictive ESMs will be greatly enhanced if these long records can be capture
	Integrated meta-analyses are required to enable evaluation of changes in surface fluxes from predictive models in response to forcing from climate, land use, and nutrient cycling. Combining flux records with other observations such as climate, remote sensing, land use, and disturbance histories provides the information modelers need to assess mechanisms for slowly changing fluxes. New syntheses can take advantage of ecosystem manipulations (e.g., Amazon throughfall exclusions, SPRUCE, and NGEE), leverage na

	B.5.4 Model Development and Output Requirements 
	B.5.4 Model Development and Output Requirements 
	Current models include the calculation of albedo, partitioning of latent and sensible heat, transmittance of radiation to the ground, soil heat flux, and canopy temperature for some approximation of canopy heat capacity. Approaches to calculation of albedo and canopy radiation balance and heat storage vary widely, and evaluating how these different model frameworks calculate surface energy balance should be revisited in light of how second generation vegetation models now represent heterogeneity in plant ca



	B.6 Vegetation Dynamics 
	B.6 Vegetation Dynamics 
	Rosie Fisher and Chonggang Xu 
	Rosie Fisher and Chonggang Xu 
	B.6.1 Scientific Challenges and Opportunities for Model Evaluation 
	B.6.1 Scientific Challenges and Opportunities for Model Evaluation 
	In the context of this report, we define “vegetation dynamics” as the changes in ecosystem composition and structure—manifested in current ESMs as the distribution of plant functional types (PFTs)—in space, and of the processes leading to that distribution, including recruitment, succession, growth, mortality, and disturbance. In many LSMs, vegetation distribution is prescribed, and thus, vegetation dynamics metrics become a test of model behavior only when dynamic vegetation models (DVMs) make PFT distribu

	Development of Vegetation Demographic Models 
	Development of Vegetation Demographic Models 
	Most land surface models now contain some kind of vegetation dynamics model, typically a first generation model, including Lund-Potsdam-Jena (LPJ)-derived models (in ORCHIDEE, CLM, CTEM), TRIFFID (in JULES), and the JSBACH-DGVM. The majority of CMIP models simulations do not actually include prognostic DVMs (they can typically be turned off and replaced with a static PFT distribution) because of challenges with increasing model degrees of freedom. 
	In first generation ESMs, the land surface is discretized into tiles, according to PFT, with each PFT represented by a single representative individual. The abstraction of ecosystems into this simplistic structure makes it difficult to simulate light competition, and, thus, exclusion or coexistence of different PFTs. In the last decade, second-generation vegetation demographic models (VDMs) have emerged that capture light-competition driven coexistence and competition of PFTs through the representation of d
	-


	Existing Large-scale Metrics for First Generation Vegetation Dynamics 
	Existing Large-scale Metrics for First Generation Vegetation Dynamics 
	In the first generation of ILAMB, the only vegetation dynamics metrics were for burned area. The GFED burned area product is used for comparison with models (Giglio et al., 2013). Hantson et al. (2016) reviewed the availability of benchmarking products related to fire in the context of the planned FireMIP experiment. They highlighted first the existence of four alternative burned area products (GFED3, L3JRC, MCD45A1, Fire_cci) and also the Global Fire Assimilation System biomass-burning fuel consumption pro
	Most existing large-scale metrics of vegetation dynamics are derived from Earth observation measures of canopy greenness and algorithms that imply phenological type from seasonal cycles of canopy greenness (Lawrence et al.., 2012). Further, canopy height metrics allow distinction between short stature and low stature vegetation (trees/ shrubs/grass). Both of these metrics can also be used to assess model projections of LAI and canopy height. Numerous alternative land cover maps exist (GLC2000, GlobCover, MO

	Existing Plot-scale Metrics for Vegetation Dynamics 
	Existing Plot-scale Metrics for Vegetation Dynamics 
	In the case of vegetation demography models, tree demography/forest inventory data at the site level have been used to compare with model simulations of recruitment, mortality, and canopy structure. Some early syntheses might be suitable for ILAMB integration, notably Forest Inventory and Analysis (FIA) program mortality rates gridded over the USA (Johnson, Xu, McDowell et al., in prep). There are numerous regional forest inventory datasets, but no comprehensive synthesis of these disparate products, meanin

	B.6.2 Observational Data Needs 
	B.6.2 Observational Data Needs 
	Observational data can be divided into two categories: (1) new data that is now available for use by first generation DVMs and (2) data that can be accessed by second generation (demographic) DVMs. 

	Forest Inventory Data 
	Forest Inventory Data 
	A critical but challenging source of data for VDM comparisons is the network of national and regional scale forest inventory data. These include FIA (USA), ForestPlots, ForestGEO, and many other national inventories (e.g., Spain, Russia). Data can be used to quantify mortality rates by PFT or size class, equilibrium and transient stand structure (height distributions), and relations among all these and driver variables, plant properties, and changes through time (e.g., van Mantgem et al., 2009). The major c
	-


	Representation of Functional Diversity and Use of Trait Data 
	Representation of Functional Diversity and Use of Trait Data 
	A further development in the LSM community is a proliferation of methods that seek to better capture diversity of plant function via the increasing use of plant functional trait data. These approaches include (1) using trait maps or trait-environment relationships to constrain LSMs (where trait information is an input) (Verheijen et al., 2013; Reich et al., 2014); (2) using optimality models to predict plant traits under given conditions (Xu et al., 2012; Thomas and Williams, 2014), and (3) trait filtering,

	Remote Sensing Products 
	Remote Sensing Products 
	Remote-sensing based disturbance maps could be useful for benchmarking severe mortality events (e.g., fire and insects; Hansen et al., 2013). Such products are more useful for benchmarking if they attribute the disturbance to different causes of death (fire, deforestation, drought stress, insects/disease). Dynamics of vegetation heights based on LiDAR sensors could be useful to detect the disturbances too. With a demography size-structured model, however, linking height retrievals to model size-class repres

	Paleo and Tree Ring Data 
	Paleo and Tree Ring Data 
	Forest inventory data has time scale limitations. Thus, it would be beneficial to use pollen records to indicate past vegetation distributions (e.g., PalEON for North America; /). It would also be useful to compile the tree ring data across the world for the prediction of tree diameter growth under past climate conditions. 
	http://www3.nd.edu/~paleolab/paleonproject


	Variable-variable Relationships 
	Variable-variable Relationships 
	Thurner et al. (2016) generated a global product of the plant productivity divided by the estimated carbon stocks. The result is an estimate of carbon residence time, which, although not precisely a metric of mortality, is comparable to the identical model metric and can potentially be used not just for DVMs but also for static vegetation distribution models. 

	B.6.3 New Metrics and Benchmarking Approaches 
	B.6.3 New Metrics and Benchmarking Approaches 
	In terms of the metrics of benchmarking, it would be beneficial to use the traditional bias and RMSE as score metrics; however, metrics related to the successional trajectories (e.g., basal area and density change through time) with different types of disturbances could be useful to constrain the overall behavior of models. Furthermore, for the demographic type of DVMs, it would ideal to have metrics on the distribution of size and height on the same grid cell, given that it is important to correctly simula
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	C.1 Process-specific Experiments 
	C.1 Process-specific Experiments 
	Mathew Williams and Jianyang Xia 
	Mathew Williams and Jianyang Xia 
	In this section we discuss how process-specific experiments—that is detailed lab or field based studies—can provide critical parameters or insights into improved model structure. 
	The key scientific priority is selecting a group of sites from FLUXNET that span major biomes to serve as testbeds for ILAMB. Each of these sites should have associated data provided (e.g., met forcing, soil texture, land use history, plant traits) to allow model runs over specified time periods. Each site would have a series of independent datasets (e.g., net fluxes, biometrics and experimental data), allowing a careful diagnosis of model process representation. Below we set out the more detailed requireme
	C.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	C.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	It has been widely suggested that Earth system models should be made more robust by improving their structures to represent more real world processes (Knutti and Sedlacek, 2013; Luo et al., 2016). Given the enormous complexity of Earth system processes, it is still challenging to (1) specify which processes are more critical than others in regulating Earth system dynamics, such as climate change; and (2) evaluate representation of processes that have been widely incorporated but diversely parameterized in d
	» Decomposition: Coupling to plant process, particularly priming through microbial dynamics 
	» Nitrogen cycling: Organic uptake, fixation largely unmeasured, not included in models, but likely to be critical 
	» Autotrophic respiration: Fundamental controls are poorly known, climate sensitivity is a major question 
	» Fluorescence: How can these data, soon to be available from space, be used to evaluate canopy processes? 
	» Phenological sensitivity to climate: The model response of plant canopies to changes in precipitation, CO, and temperature lacks strong foundations 
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	» Plant trait correlations and trade-offs: Trait data are more available, but the trade-offs between traits must be better incorporated into models. 

	C.1.2 New Metrics and Benchmarking Approaches 
	C.1.2 New Metrics and Benchmarking Approaches 
	Experimental approaches for addressing the key process uncertainties listed above involve using models to simulate processes at selected eddy flux sites, so that direct comparison to local data for process diagnostics are possible. This requirement means that the necessary drivers for all selected sites must be synthesized and distributed. 
	» Decomposition: Priming studies using varied litter quality to monitor microbial responses, time series of soil 
	respiration (trenching experiments would allow more direct monitoring of heterotrophic respiration). Evaluate 
	modeling of decomposition dynamics, climate sensitivity, and litter quality sensitivity. 
	» Nitrogen cycling: C:N ratio for all pools, 15N tracer studies to quantify uptake, allocation, and turnover. Evaluate modeling of N pools and dynamics. 
	» Autotrophic respiration: Plant tissue respiration measurements, links to whole-plant economy, C isotope tracer experiments. Evaluate capacity of models to distinguish between growth and maintenance respiration for various plant pools, and their seasonal patterns. 
	» Fluorescence: This quantity needs to be co-observed with eddy flux data to allow direct relations to gas exchange to be evaluated. There are issues with representativeness when comparing site to satellite data. Evaluate leaf level process representation in models. 
	» Phenological sensitivity to climate: Models could usefully provide output of leaf out date and senescence date that would be comparable to remote sensing indices. Below-ground phenology is a major uncertainty, so rhizotron data would be valuable. Information on non-structural carbohydrate can inform on plant allocation potential. Evaluate phenological timing against local data. 
	» Plant-trait correlations and trade-offs: Use local trait data to calibrate and evaluate models. 

	C.1.3 Experimental/Observational Data Needs 
	C.1.3 Experimental/Observational Data Needs 
	Field experimentation is a useful approach to explore new mechanisms underlying Earth system changes (Medlyn et al., 2015; 2016). However, there are challenges to connecting experimental data to models due to scale mismatches and gaps in records. Hence the need for carefully constructed driver and evaluation datasets at selected sites for developing diagnostics of model process representation. There are clear areas for novel experimental focus, particularly around isotopic tracers and fluorescence. 

	Gaps in Current Data Availability 
	Gaps in Current Data Availability 
	There are difficulties in accessing experimental data in forms of value for model calibration and evaluation. Likewise, climate forcing for experimental data are often unavailable. The measurements are usually non-consecutive, and only a few variables or processes, e.g., soil respiration, are measured with standardized tools among different sites. Isotopic data remain relatively rare, but offer opportunities for tracing flows of C and N, allocation and residence times (Trumbore, 2006). 

	New in situ or Remote Sensing Measurement Needs 
	New in situ or Remote Sensing Measurement Needs 
	In situ experiments should focus on isotope tracer studies that quantify the residence time and pathways for N and C in ecosystems. Leaf and canopy scale studies of fluorescence are needed to inform use of satellite data (Guanter et al., 2014; Yang et al., 2015). Measurement of non-structural carbohydrate can inform on how plants invest and hedge against risk. It is highly valuable to have in situ remote sensing data over instrument sites, for comparison with satellite observations. Drone based sensors now 

	Spatial and Temporal Extent and Resolution Requirements 
	Spatial and Temporal Extent and Resolution Requirements 
	There is a need for detailed in situ evaluations of model processes to test and parameterize models consistently; this means being able to isolate specific model processes so their decoupled sensitivity to particular forcing (experiments) can be evaluated and calibrated. Temporal requirements are closely related to residence times of carbon pools. Data extending over years are critical for understanding dynamics of the long-lived soil and wood pools. Weekly data are needed to track key phenological events. 

	Integrating Extant Meta-analyses into Benchmarking Approaches 
	Integrating Extant Meta-analyses into Benchmarking Approaches 
	Meta-analyses of field experiments results have been recently used for benchmarking terrestrial ecosystem models (e.g., Piao et al., 2013). Plant trait databases are growing and providing important data on plant traits (Kattge et al., 2011). Their focus is mostly on leaf traits, particularly structural traits. These databases will become more valuable as they include broader plant traits, and functional traits (e.g., respiration determinants, carboxylation rates). We particularly need to understand trait tr

	Synthesis Activities Needs and Approaches 
	Synthesis Activities Needs and Approaches 
	Exploration of full economic modelling for C allocation and C-N linkages provides a means to introduce optimality constraints on biological processes consistent with competitive interactions (Thomas and Williams, 2014). Effective modeling of plant-microbe-soil interactions, addressing priming, N fixation, exudates among other processes (Wieder et al., 2013), requires a concerted experimental effort, and particularly the use of isotopic tracers to unravel belowground processes. 

	C.1.4 Model Development and Output Requirements 
	C.1.4 Model Development and Output Requirements 
	For model development we require testbeds for calibration and evaluation of submodels at site scale, allowing simple connections between model inputs/outputs and site data. We need to evaluate plant trait correlations to determine process trade-offs (e.g., wood density versus hydraulic resilience). There is a risk that model development adds parameters and complexity, but thereby does not reduce model error and bias. This risk can be overcome by consistently testing simple models against data, and determina
	For output requirements, we need residence times for all pools, allocation and turnover of foliage, microbial pool dynamics, respiration of all living pools, trait correlations, N dynamics (including biological fixation). The biogeochemical data can then be used to evaluate model dynamics across pools and timescales (Thomas et al., 2013). 



	C.2 Metrics From Extreme Events 
	C.2 Metrics From Extreme Events 
	Hyungjun Kim and Maoyi Huang 
	Hyungjun Kim and Maoyi Huang 
	C.2.1 Scientific challenges and opportunities for model evaluation 
	C.2.1 Scientific challenges and opportunities for model evaluation 
	In the context of ILAMB, we define extreme events as the terrestrial and societal impacts (e.g., floods, streamflow and soil moisture drought, vegetation dieback, and fire) of weather and climate extremes (WCEs), and their feedbacks to the atmosphere. The WCEs are estimated as the occurrence of a value of a weather or climate variable above (or below) a threshold value near the upper (or lower) ends (“tails”) of the range of observed values of the variable (Seneviratne et al., 2012). Also, WCEs are identifi
	Infrequent extreme events may play a particularly important role in structuring terrestrial ecosystems, for example in controlling severe fires and contributing to drought-related vegetation mortality events (Figure C.2.1). Thus, it is necessary to include these long-term effects and their role in governing vegetation dynamics. Current models, 
	Infrequent extreme events may play a particularly important role in structuring terrestrial ecosystems, for example in controlling severe fires and contributing to drought-related vegetation mortality events (Figure C.2.1). Thus, it is necessary to include these long-term effects and their role in governing vegetation dynamics. Current models, 
	particularly those that do not have a dynamic vegetation component, only represent short-term responses to WCEs, such as depressed growth during the period of the WCE. However, datasets to benchmark these long-term ecosystem responses to WCEs are sparse, and the framework to test ecosystem model responses to WCEs is not well developed. 

	Figure
	Figure C.2.1. Processes and feedbacks triggered by extreme climate events, including droughts and heatwaves, heavy storms, heavy precipitation, and extreme frost. Solid arrows show direct impacts; dashed arrows show indirect impacts. The relative importance of the impact relationship is shown by arrow width (broader lines indicate stronger feedbacks). Adopted from Reichstein et al. (2013). 
	To distinguish causal processes of extremes and to evaluate how they are well represented in a model, we suggest a logical framework to categorize them into different spatiotemporal scales and scopes of their footprints and impacts, and list examples which have relatively large uncertainties or are missing representations in current ESMs. 
	A. Climate scale features: Macro-scale features having long persistence (> seasonal) and large horizontal length scale (> 2,000 km), such as the spatial distribution and intensity of SST anomalies (e.g., El Niño and other climate modes), locations of ITCZ on meridional migrations, intensity of Hadley circulation, and latitudinal temperature gradient 
	B. Synoptic and mesoscale features: Persistence up to seasonal time scale and continental scale in the spatial domain, such as monsoons, tropical/extratropical cyclones, frontal systems, and sand/dust storm, as well as their impacts, such as excessive precipitation (i.e., meteorological drought) and heat/cold waves 
	C. Basin-scale land processes: Processes spanning up to seasonal or sub-seasonal scale such as excessive deficits and surpluses of water (e.g., flood), dry (i.e., hydrological and ecological droughts)/wet spells, extreme sea level, cryosphere- and ecosystem-related impacts (snow and snowmelt, fire, vegetation dieback), and landslides 
	D. Socioeconomic impacts: Processes which are directly related with human-society, such as inundation and crop failure (i.e., agricultural drought) 

	C.2.2 New Metrics and Benchmarking Approaches and Observational Data Needs 
	C.2.2 New Metrics and Benchmarking Approaches and Observational Data Needs 
	Considering the potential objects listed above to be benchmarked, we propose several metrics on WCEs below: 
	A. ITCZ displacement: Meridional distance of ESM simulated ITCZ location from atmospheric reanalysis datasets or satellite observations (e.g., QuikSCAT). Location of the ITCZ is defined as places where the temporal mean of the meridional component of surface wind (v) is zero. 
	B. Zonal shift of Walker circulation: Zonal displacement from ascending/descending kernel locations of atmospheric reanalysis datasets. Convergence and divergence of near surface (e.g, 950 mb) and high atmosphere (e.g., 300 mb) and 500 mb pressure velocity will be used to identify the kernels. 
	C. Reproducibility of weather systems: Skills of ESM representations of weather systems in terms of geographical location, intensity, and duration. Objectively detected weather systems (Utsumi et al., 2014) generated by ESM will be evaluated through comparison with  observations (e.g., best track records for tropical cyclones; Utsumi et al., in revision; Figure 
	C.2.2) and/or objective detections based on atmospheric reanalysis datasets. 
	D. Hydroclimatic intensity: Giorgi et al. (2011) suggested an index to estimate the intensity of hydroclimatic cycles as a ratio of mean precipitation intensity and mean dry spell length. ESM-reproduced precipitation intensity and temporal variability will be validated by using an observational precipitation-based index for each model gridcell. 
	E. Flood inundation extent and duration: ESM calculated inundated area will be compared with satellite-based surface water extent (Prigent et al., 2007). ESMs without the inundation process can utilize an off-line method using a standalone river model (e.g., CaMa-Flood; Yamazaki et al., 2011; Figure C.2.3) to validate their runoff generation. The anomaly of water storage combined with the other components (e.g., soil moisture) can be compared with the terrestrial water storage anomaly monitored by the GRACE
	Figure
	Figure C.2.2. Benchmarking for weather system reproducibility of CMIP5 models. 
	Figure C.2.2. Benchmarking for weather system reproducibility of CMIP5 models. 


	Figure
	Figure C.2.3. Comparison of flood inundation extent over Amazon by CaMa-Flood (left) and satellite remote sensing (right). 
	Figure
	Figure C.2.4. (a) Comparison of seasonal cycles of observed GRDC discharge (black solid line), discharge routed by the Total Runoff Integrating Pathways (TRIP) model (red solid line), and runoff without routing (gray dashed line). 
	(b)
	(b)
	(b)
	 Comparison of seasonal cycles of GRACE TWSA (black solid line), simulated TWSA with river storage (red solid line), simulated TWSA without river storage (gray dashed line), and the major water storage components in TWS. Gray crosses, green circles, and blue triangles represent snow water, soil moisture, and river storage, respectively. 

	(c)
	(c)
	 Inter-annual variations of relative TWS: GRACE observation (black dot), and the TWS simulations with river storage (red solid line) and without river storage (gray dashed line). Each area shaded by blue, gray, and green indicates the portion of river storage, snow water, and soil moisture in the simulated relative TWS, respectively. 


	F. Cumulative rainfall deficit: Maeda et al. (2015) suggested combining GRACE observations with in situ river discharge data to estimate water storage deficit on a basin-scale. The deficit reflects a cumulative amount of precipitation needed to satisfy evapotranspiration requirements through consecutive months (Figure C.2.5). A combination of ESM-simulated precipitation and evapotranspiration will be compared to benchmark how the model properly represents the intensity and the duration of dry spells. 
	Figure
	Figure C.2.5. Cumulative Rainfall Deficit and annual rainfall anomalies in four watersheds over the Amazon basin. 
	G. Event oriented benchmarks: Compile standard dataset libraries for well-studied extreme events for comprehensive benchmarking through multiple state and flux variables between onset and offset of the extremes. A 2003 heatwave in Europe, California drought, Alaska fire events, 2010 Russian drought, and 2011 flood in Australia would be candidates. Crucial to the use of naturally-occurring WCEs as model benchmarks is to compile both the short-term water, energy, and carbon responses of the coupled ocean–land
	H. Experimentally-induced WCEs: Numerous rain throughfall exclusion experiments have been conducted in terrestrial ecosystems to simulate drought events, and these are a useful benchmark of terrestrial models (e.g., Fisher et al., 2007; Powell et al., 2013). These experiments, and other experimentally-induced WCEs, allow for targeted measurement campaigns and collection of key variables required for testing models, which may not be possible given the opportunistic nature of observational campaigns around na



	C.3 Design of New Perturbation Experiments 
	C.3 Design of New Perturbation Experiments 
	Martin De Kauwe and Ankur Desai 
	Martin De Kauwe and Ankur Desai 
	Breakout Meeting attendees: James Simkins, Shawn Serbin, Rosie Fisher, Elena Shevliakova, Ben Bond-Lamberty, Dan Ricciuto, Nick Smith, Kaoru Tachiiri 
	C.3.1 Scientific Challenges and Opportunities for Model Evaluation 
	C.3.1 Scientific Challenges and Opportunities for Model Evaluation 
	Perturbation experiments directly manipulate ecosystems and by measuring observed responses against a control, they provide direct tests of ecosystem responses to land use and global change (Bonan, 2014). Manipulation experiments short-circuit long-term monitoring experiments and directly test the global changes that ESMs are expected to predict. Despite this, these experiments have been under-used in evaluating ESMs predictions. There are a number of reasons for this disconnect: (i) there are often scale m
	Field manipulations encompass a broad range of experiments including: nutrient addition/removal, species transplant (addition/removal), precipitation and temperature manipulation, rainfall exclusion, manipulation of atmospheric chemistry and greenhouse gases. Arguably the most well known example of which were the US Department of Energy Free-Air Carbon Dioxide Enrichment (FACE) studies, carried out between ~1996–2010 (Figure C.3.1). For logistical reasons many of these experiments often manipulate a single 
	Field manipulations encompass a broad range of experiments including: nutrient addition/removal, species transplant (addition/removal), precipitation and temperature manipulation, rainfall exclusion, manipulation of atmospheric chemistry and greenhouse gases. Arguably the most well known example of which were the US Department of Energy Free-Air Carbon Dioxide Enrichment (FACE) studies, carried out between ~1996–2010 (Figure C.3.1). For logistical reasons many of these experiments often manipulate a single 
	https://amazonface.org
	http://mnspruce.ornl.gov
	http://forestwarming.org

	Tundra Experiment (ITEX; /) and the Zero Power Warming (ZPW) experiment () have high potential for constraining ecosystem model responses in ways that are difficult to do with traditional benchmarks from long-term observations. There are also a new generation of FACE experiments focused on mature ecosystems, which cover a wider range of biomes and climatic space than the first generation did (Norby et al., 2016). 
	http://ibis.geog.ubc.ca/itex
	https://www.bnl.gov/envsci/test/zpw-liveupdates.php


	Figure
	Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE experiment. 
	Figure C.3.2. The SPRUCE experiment consists of 10 octagonal enclosures, each 12 meters across and 8 meters high, in a peat bog in Northern Minnesota, USA. Atmospheric CO levels and temperature can be manipulated within the enclosures to test out the effects of future climates on peatland ecosystems. 
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	Figure
	Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE experiment. 
	Figure C.3.1. Four rings at the Oak Ridge National Laboratory FACE experiment. 


	C.3.2 New Metrics and Benchmarking Approaches 
	Most benchmarking approaches 
	for perturbation studies do not 
	differ significantly from traditional 
	benchmarking, though the focus is on 
	comparing model sensitivity to response 
	of the perturbation over the control, for 
	the target variable and driver change. To 
	date, most comparisons have not exploited 
	this approach. For example, model 
	comparisons to FACE data have often 
	focused on capturing the mean net primary 
	productivity (NPP) response over the 
	experiment period (Hickler et al., 2008). 
	This is problematic because models can be 
	tuned to get the right answer, but arrive 
	at it for the wrong reasons. Alternatively the FACE model–data synthesis (De Kauwe et al., 2013; 2014; Walker et al., 2014; Zaehle et al. 2014) used the experimental data to understanding how and why models differed from each other and the observed responses, providing a clear roadmap to model improvement (Medlyn et al., 2015). 
	There are a number of existing experiments that we identified which as yet have been under-exploited for model benchmarking. These include: (i) warming; (ii) drought/rainfall exclusion (see Smith et al., 2014 for a review); (iii) competition changes (species composition); and (iv) acclimation responses. It is likely that additional funding will be required to synthesis past experiments to define big picture responses we feel models should be capturing. 
	Due to the small scale of manipulation experiments, it may be that the best route for benchmarking ESMs remains in targeted offline model intercomparison projects. It may also be possible to use these results as a set of response surfaces to benchmark future climate model runs in an emergent constraint framework (Hoffman et al., 2014), by estimating processes such as tissue turnover rates, or recovery times from disturbance. Nevertheless, now that many of these experiments have been completed there is scope

	C.3.3 Observational Data Needs 
	C.3.3 Observational Data Needs 
	While perturbation experiments often collect extensive field-level data, much of these data are difficult to acquire and integrate. Many data, such as those on leaf-level parameters, NPP are stored in diverse formats (e.g., xls vs. csv vs. netCDF), often not open-source , rarely directly machine-readable and on archives that may require permissions to access. Metadata and protocol documents may not specify treatment details in sufficient detail to properly replicate in a model. For example, exactly how much
	Model–data synthesis initiated at the start of experiments (Medlyn et al., 2016; Norby et al., 2016) is an excellent means to identify and solve many of these potential issues before the experiment begins. These synthesis activities can also lead to the development of experiment modelling protocol which direct other modelling groups how to set models up for individual experiments (Walker et al., 2014; Medlyn et al., 2016). 

	C.3.4 Model Development and Output Requirements 
	C.3.4 Model Development and Output Requirements 
	Several challenges exist in attempting to apply models to perturbation experiments. Many ESMs operate at relatively large scales (>50 km), whilst experimental plots may be relatively small in spatial size (1–100 m). In particular, for the core global change processes of CO fertilization, drought, and nitrogen addition, mechanisms are limited in variety. Thus parameterizing a model or scoring performance against these experiments when mechanisms are not nuanced enough to address the main responses remains a 
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	Models need to be able to run control and perturbation studies and produce output on the difference between these two across multiple types of variables that are measured on the ground, including soil respiration, NPP, transpiration, allocation, and root growth. A specific challenge may be properly specifying the actual treatment. While some like CO fertilization or N deposition are straightforward, others like soil warming or biomass removal may require model modification to properly simulate the experimen
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	Benchmarking applications need to consider comparing not just time and space overlapping state variables, but also comparisons of responses grouped by ecosystem function or structure. The benchmarking community should work jointly with experimentalists to identify a set of shared priorities for evaluation and experiments best designed for addressing those. 



	C.4 High Latitude Processes 
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	C.4.1 Scientific Challenges and Opportunities for Model Evaluation 
	C.4.1 Scientific Challenges and Opportunities for Model Evaluation 
	Northern high latitude soils contain about twice as much carbon as in the atmosphere (Hugelius et al., 2014). This enormous carbon pool is vulnerable to accelerated losses through mobilization and decomposition under anticipated warming scenarios, with potentially large global carbon and climate impacts (Koven et al., 2011; Schaefer et al., 2011; Schuur et al., 2015). Many processes control the response of this carbon pool to changing environmental conditions. For example, active-layer dynamics, thermokarst
	The CMIP5 generation of models were still deficient with respect to their ability to simulate these processes. None of these models included permafrost carbon pools, many had poor representation of crucial physical processes such as snow insulation of organic soil physical properties (Slater and Lawrence, 2013; Koven et al., 2013), and none included a careful treatment of subgrid-scale heterogeneity in landscapes driven by polygonal features. Since then, research on modeling high latitude dynamics and creat
	The CMIP5 generation of models were still deficient with respect to their ability to simulate these processes. None of these models included permafrost carbon pools, many had poor representation of crucial physical processes such as snow insulation of organic soil physical properties (Slater and Lawrence, 2013; Koven et al., 2013), and none included a careful treatment of subgrid-scale heterogeneity in landscapes driven by polygonal features. Since then, research on modeling high latitude dynamics and creat
	decomposability under oxic, anoxic, and frozen conditions (Schädel et al., 2014, 2016; Schaefer et al., 2016); and appropriate benchmarks for testing the physical dynamics of the coupled atmosphere-snow-soil system (Slater et al., submitted). DOE’s NGEE Arctic project has focused on understanding the heterogeneity of polygonal tundra ecosystems, developing approaches to represent that heterogeneity in ESMs, and creating benchmarks for testing land models to reduce uncertainties of permafrost-affected ecosys


	C.4.2 New Metrics and Benchmarking Approaches 
	C.4.2 New Metrics and Benchmarking Approaches 
	In addition to assembling key datasets to benchmark physical, vegetation, and biogeochemical predictions of land models, it is crucial to identify the relationships between these variables in order to test whether model predictions of these relationships are accurate. While this is true everywhere, it is particularly the case at high latitudes because the climate gradients are especially steep and the heterogeneity of model-generated and reanalysis climates in the region is very high. For example, active la

	C.4.3 Observational Data Needs 
	C.4.3 Observational Data Needs 
	One can break down the key observational needs into three main groups: vegetation, soil biogeochemistry, and the physical system. Each of these requires a much more detailed treatment and testing than was possible with the CMIP5 generation of models. For many of these, data exists and needs to be synthesized and developed into metrics, whereas for others the data must be collected. 
	Table C.4.1. Observational requirements for benchmarking of high-latitude processes. 
	Domain 
	Domain 
	Domain 
	Status 
	Variables 

	Vegetation 
	Vegetation 
	Data exists and is being used for benchmarking 
	LAI, Baseline PFT maps, Productivity 

	TR
	Data exists but must be synthesized and/or used for benchmarks 
	Biomass, non-vascular plant dynamics, fire disturbance frequency 

	TR
	Data does not exist 
	Large-scale changes to vegetation distributions 

	Soil Biogeochemistry 
	Soil Biogeochemistry 
	Data exists and is being used for benchmarking 
	Soil carbon distributions; ecosystem responses to nutrient fertilization; Site-level CH fluxes4

	TR
	Data exists but must be synthesized and/or used for benchmarks 
	Oxic, anoxic, and frozen soil respiration rates, ecosystem warming experiments; extreme scarcity of synthesized soil carbon observations from Siberia 

	TR
	Data does not exist 
	Pan-arctic organic layer thickness maps 

	Physical Snow–soil– hydrologic system 
	Physical Snow–soil– hydrologic system 
	Data exists and is being used for benchmarking 
	Snow cover extent, site-level soil temperatures, site-level hydrology, basin-scale streamflow, gravity-based mass changes, site-scale ALT 

	Data exists but must be synthesized and/or used for benchmarks 
	Data exists but must be synthesized and/or used for benchmarks 
	Large-scale soil moisture, Large-scale snow thickness, SWE 

	Data does not exist 
	Data does not exist 
	Large-scale maps of ALT, Changes to permafrost extent 



	C.4.4 Model Development and Output Requirements 
	C.4.4 Model Development and Output Requirements 
	The ESM community has made substantial progress since CMIP5 in representing ESM structures of key systems that govern climate feedbacks from high latitude ecosystems. These include: permafrost physical state, exchange of energy and mass between the land and atmosphere in high latitudes, permafrost biogeochemical dynamics, dynamic organic soil layers, and vegetation dynamics across the tundra–boreal forest ecotone. However, these have been done primarily one at a time in different models with no coupled ESMs
	Approaches to better sample models to enable benchmarking are also critically required. CMIP5 protocols were able to benchmark soil thermal dynamics, but only poorly represented soil hydrological dynamics, for example, in predictions of unfrozen moisture content or detailed snowpack information, and had very little information on soil biogeochemical dynamics. CMIP6 protocols request more detailed output variables across these domains, including vertically-resolved carbon stocks, nutrient dynamics, and more 



	C.5 Tropical Processes 
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	C.5.1 Scientific Challenges and Opportunities for Model Evaluation 
	C.5.1 Scientific Challenges and Opportunities for Model Evaluation 
	Tropical ecosystems present many processes that overlap with those in other biomes, but also have additional complexity that makes modeling and benchmarking a distinct challenge from that experienced in other regions. These include challenges related to biodiversity and how to represent it in simulations, and understanding the role biodiversity plays in buffering ecosystem responses to perturbations. Much advanced modeling has been done in tropical forests and through these efforts we have unveiled many cha
	Representing these processes is particularly crucial as tropical forests are predicted by the CMIP5 generation of ESMs to be particularly important for both the carbon–climate and carbon–concentration feedbacks. This importance led to the focus of the NGEE Tropics project to develop and synthesize key datasets required to test the representations of tropical forest dynamics in ESMs, as well as to develop and integrate into ESMs novel modeling approaches for representing these processes. The activities descr

	C.5.2 New Metrics and Benchmarking Approaches 
	C.5.2 New Metrics and Benchmarking Approaches 
	New and novel datasets, including spatially distributed inventories of survival and mortality (e.g., RAINFOR and Forest-GEO) and ecosystem processes (e.g., FluxNET, GEM), are providing insight into how to improve model realism, but these have not been capitalized on for benchmarking. Such regionally and pan-tropically distributed datasets can enable advances in model benchmarking, which thus far has been primarily sub-regional in scale. 

	C.5.3 Observational Data Needs 
	C.5.3 Observational Data Needs 
	Data availability is improving for species level traits of value for model parameterization, but evaluation datasets against manipulations (drought, CO, temperature) are extremely limited, and while inventory datasets are available, benchmarking against them has yet to be attempted. Remote sensing is promising using a variety of platforms that can provide ecosystem level benchmarking, but cannot yet provide species or individual resolution information. FLUXNET sites exist, but again are few and far between.
	2

	Key parameters that require investment for data collection include turnover, C allocation, whole tree hydraulics, phenology, LAI, reproduction, dispersal, and all of their controls. Belowground processes, including soil depth, soil moisture availability, and soil water acquisition for transpiration, are recognized as important. Multiple processes were identified as poorly understood, such as how mechanisms of seasonal drought tolerance transcend to anomalous drought survival, and interactions with mean annu
	Table C.5.1. Observational requirements for benchmarking of tropical processes. 
	Domain 
	Domain 
	Domain 
	Status 
	Variables 

	Vegetation 
	Vegetation 
	Data exists and is being used for benchmarking 
	Greenness indices; upscaled carbon flux data; static remotely-sensed biomass 

	TR
	Data exists but must be synthesized and/or used for benchmarks 
	Inventory data: biomass, growth, mortality; plant trait covariation with climate; chlorophyll fluorescence; experimental climate manipulations 

	TR
	Data does not exist 
	Large-scale biomass dynamics; tropical CO2 fertilization experiments; pantropical carbon allocation datasets 

	Soil Biogeochemistry 
	Soil Biogeochemistry 
	Data exists and is being used for benchmarking 
	Soil carbon distributions, profiles, isotopic data 

	TR
	Data exists but must be synthesized and/or used for benchmarks 
	Ecosystem process variation across soil fertility gradients 

	TR
	Data does not exist 
	Pan-tropical peatland maps 

	Physical soil-plantatmosphere system 
	Physical soil-plantatmosphere system 
	-

	Data exists and is being used for benchmarking 
	Upscaled ET flux data; terrestrial water storage; river runoff 

	Data exists but must be synthesized and/or used for benchmarks 
	Data exists but must be synthesized and/or used for benchmarks 
	Plant stemwood trait variation 

	Data does not exist 
	Data does not exist 
	Vertical root water uptake profiles, sap flow datasets 



	C.5.4 Model Development and Output Requirements 
	C.5.4 Model Development and Output Requirements 
	Model development in water uptake, plant hydraulics, carbon allocation and metabolism, and mortality and survival strategies, all within a framework that accounts for hyper-diversity, has been targeted as urgent steps for next-generation models in the tropics. Nearly all aspects listed above as observational needs also are model development needs. Thus, what is needed for benchmarking purposes is a greater ability to test these novel processes and compare them against observations. 
	As the community shifts from unstructured to structured vegetation models, model outputs must move beyond gross stocks and fluxes and include information on the heterogeneity and structure of vegetation. This includes size distributions, distributions of plant traits in models that predict these, and more detailed heterogeneity associated 
	As the community shifts from unstructured to structured vegetation models, model outputs must move beyond gross stocks and fluxes and include information on the heterogeneity and structure of vegetation. This includes size distributions, distributions of plant traits in models that predict these, and more detailed heterogeneity associated 
	with LULCC. Furthermore, how these axes of heterogeneity covary with each other and with plant function is crucial to understand the role that diversity and heterogeneity play in these ecosystems. 

	More finely-resolved process models must also include sufficient outputs to benchmark these processes against observations. For example, models that trace hydraulic fluxes from the soil through the canopy must be testable against observations of sap flow, tissue water potential, and overall canopy fluxes, and thus must output this information for purposes of comparison. As nutrient-enabled models include more detailed representation of both nitrogen and phosphorus, key diagnostics at site, regional, and glo



	C.6 Remote Sensing 
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	Shawn Serbin 
	C.6.1 Scientific Challenges and Opportunities for Model Evaluation 
	C.6.1 Scientific Challenges and Opportunities for Model Evaluation 
	The large extent and high diversity of vegetation comprising Earth’s biomes present a significant challenge for local to global-scale terrestrial ecosystem process modeling efforts, including benchmarking and evaluation of model projections. To provide the knowledge and understanding necessary to improve model parameterizations, representation and evaluation of alternative model structures and observations are needed at the relevant spatial and temporal scales for controlling processes. The general goal of 
	Remote sensing observations and products useful for model evaluation span a fairly broad range of scales (temporally and spatially) as well as biophysical properties such as leaf area index (LAI) and the fraction of photosynthetically active radiation absorbed by vegetation (e.g., Myneni et al., 2002; Baret et al., 2007), states such as biomass (e.g., Saatchi et al., 2011), soil or canopy moisture (Petropoulos et al. 2015; Schimel et al., 2015), energy balance products such as surface albedo (Shaaf et al., 
	Within the scope of benchmarking terrestrial ecosystem processes and climate–biosphere feedbacks with remote sensing observations, we explored the following key questions: 
	» What can be observed with remote sensing now and with additional research or development efforts? What is operational and what is experimental? 
	» What can be done with existing technologies? 
	» What new imaging technologies, approaches, or product development efforts are needed? 
	» How do we better leverage airborne platforms? Can we use sub-orbital data for local-scale benchmarking and couple this with larger scale activities using satellite observations? 
	» How do we sustain a suite of remote sensing observations for current and future MIPs and benchmarking activities given the typically ephemeral lifespan of most airborne and spaceborne platforms? 
	» How do we better incorporate uncertainties in remote sensing observational data products with benchmarking activities? 
	In addition, it is important to understand what processes and scales remote sensing data can contribute for model evaluation and development. Many approaches exist for developing observations and data products for efforts like ILAMB from the leaf to global scales. Critical for these activities are a careful consideration of the methods used for scaling observations, including algorithms and uncertainties, as well as the methods for evaluation such as pointto-point versus average response. These topics and o
	-


	C.6.2 New Metrics and Benchmarking Approaches 
	C.6.2 New Metrics and Benchmarking Approaches 
	Remote sensing observations and derived data products fill a critical role in the evaluation of process models from the site to global scales (Schmid et al., 2015; Schimel et al., 2015). One of the key capabilities of remote sensing observations for model evaluation and benchmarking is the ability to capture the broad, synoptic context as well as relevant timescales (annual mean, seasonal cycle, interannual variability, trend) for comparisons with a wide array of model states. However, important considerati
	Table C.6.1. New Metrics/Model Diagnostics/Benchmarks. 
	 Topic 
	 Topic 
	 Topic 
	Proposed Approach 
	Details & Rationale 
	Spatial & Temporal Scales 
	Benchmarks 

	Ecosystem state 
	Ecosystem state 
	Active and time-series optical remote sensing, sensor fusion 
	Benchmark model output states, such as biomass, canopy structure or soil moisture. Do models capture the evolution and spatial patterns 
	1 m – 10 km, annual 
	RMSE, spatial patterns, vertical distribution 

	Vegetation/ 
	Vegetation/ 
	Imaging 
	Evaluate model 
	1 m – 30 km, 
	RMSE, spatial and 

	soil properties, 
	soil properties, 
	spectroscopy, 
	parameterization 
	monthly to annual 
	temporal patterns, 

	parameters, and 
	parameters, and 
	microwave, thermal, 
	and emergent 
	Vertical distribution, 

	functional diversity 
	functional diversity 
	gravity 
	properties. Do models adequately capture patterns in plant functional properties/traits and soil moisture through time, resulting in accurate states for the right reasons? 
	functional relationships 

	 Topic 
	 Topic 
	Proposed Approach 
	Details & Rationale 
	Spatial & Temporal Scales 
	Benchmarks 

	Vegetation dynamics 
	Vegetation dynamics 
	Time-series active/ optical remote sensing, sensor fusion 
	Do models accurately represent plant demography and succession, growth/ mortality 
	1 m – 10 km, daily to monthly 
	Functional relationships, phase, RMSE 

	Vegetation seasonality & functional phenology 
	Vegetation seasonality & functional phenology 
	In situ, airborne, satellite time series, synthetic time series from multiple platforms, thermal, SIF 
	Evaluate model capacity to represent phenology from arctic to tropics, capture seasonality of C, water, EB cycling 
	1 m – 10 km, daily to weekly 
	Phase, temporal pattern, interannual variability, functional relationships 

	Canopy optical 
	Canopy optical 
	Canopy simulator: 
	Modify model 
	1 m – 1 km, weekly 
	RMSE, seasonal cycle, 

	properties and 
	properties and 
	Simulate the spectral 
	canopy radiative 
	to monthly 
	evolution of canopy 

	energy balance 
	energy balance 
	signature (SWIR, thermal, microwave) of various remote sensing instruments given a particular model state. Enable direct connection between RS data and model structure 
	transfer code to provide directly comparable outputs (e.g., surface reflectance, LiDAR waveform, thermal brightness radiance). Evaluate model structure and dynamics, facilitate direct data assimilation 
	optical properties, functional relationships between optical properties and model processes (e.g., GPP) 

	Perturbations 
	Perturbations 
	Time series, active microwave and lidar, sensor fusion, thermal 
	Test ability for models to capture and correctly respond to various disturbance or change events 
	10 – 100 km, days to annual 
	RMSE, spatial patterns, temporal trajectory, phase 


	Figure
	Figure C.6.1. Example maps of foliar morphology (leaf mass area, Marea) and nitrogen concentration (N%) derived with NASA AVIRIS imagery. Trait maps such as these can be used to benchmark prognostic model predictions of properties such as canopy / leaf nitrogen over space and time. However, the utility of these maps is dependent on providing appropriate uncertainty estimates to evaluate model spread versus data uncertainty. Adapted from Singh et al. (2015). 
	In general, ILAMB and model benchmarking could leverage new remote sensing techniques, technologies, and platforms, including airborne platforms, to expand the diversity and extent of observations for evaluating models (Schimel et al., 2015; Shugart et al., 2015; Schmid et al., 2015). For example, imaging spectroscopy (IS) enables the retrieval of canopy and soil functional traits at a range of scales (e.g., Ollinger et al., 2002; Ustin et al., 2004; Singh et al., 2015; Serbin et al., 2015; Figure C.6.1), w
	IS data can also quantify plant composition and functional diversity across landscapes, allowing for the characterization of patterns across climatic and topographic gradients, enabling the parameterization or validation of model response surfaces (Fisher et al., 2015). Active systems such as LiDAR (from airborne or spaceborne platforms) could be used to evaluate modeled changes in canopy structure through time or in response to disturbance, or to test model predictions of carbon storage, succession, or dem
	Figure
	Figure C.6.2. (a) 3-D LiDAR point cloud at 30 m × 30 m region (black square) in a typical cove forest of the Great Smoky Mountains National Park. (b) The raw LiDAR point cloud (3,985 points), showing the imprints of the underlying cove topography. (c) LiDAR point cloud after topographic detrending and filtering (3,936 points) that converted the elevations to above ground level elevation. 
	(d) Distribution of LiDAR point density along the vertical profiles in a cove forest dominated by tall trees and a dense understory. Adapted from Kumar et al. (2015). 
	Figure
	Figure C.6.3. The relationship between radiation, canopy structure, optical properties and key processes including metabolism, water and energy cycling, as well as C allocation and turnover. Optical and thermal data can inform model representation energy, C, and water fluxes while LiDAR remote sensing can provide critical information on canopy structure, turnover and disturbance. (Adapted from Serbin et al., in prep) 
	In addition to direct or seasonal comparisons, remote sensing data within ILAMB should be used as a metric of functional responses. For example, models often fail to adequately capture short-term perturbations, such as acute drought; however, remote sensing observations can often more completely characterize the ecosystem response and short- to long-term recovery (AghaKouchak et al., 2015). By comparing the observed functional responses through a suite of remote sensing measurements (e.g., Table C.6.2) we c

	C.6.3 Observational Data Needs 
	C.6.3 Observational Data Needs 
	The advantage as well as the disadvantage of remote sensing observations for model benchmarking is the diversity in scale, platforms, sensors, and approaches for collecting, scaling and providing data products for key terrestrial biophysical and functional properties. As such, a challenge for benchmarking with remote sensing is reconciling the typically ephemeral nature of many satellite or aircraft missions which make it challenging to provide consistent or wall-to-wall data products over long periods, sca
	Table C.6.2. Measurement Needs. 
	 Topic 
	 Topic 
	 Topic 
	Measurement Approaches 
	Temporal Scale 
	Spatial Scale 
	Considerations 

	Aboveground structure & biomass 
	Aboveground structure & biomass 
	LiDAR, radar, repeat high-resolution optical imagery, sensor fusion 
	Annual 
	1 m – 10 km 
	LiDAR coverage is still limited and spatial coverage is typically small. Data availability varies. Access to high-resolution optical imagery to create canopy height maps is still limited. Microwave and interferometric SAR coverage is limited or pixel size is typically too large for detailed site scale assessment. Uncertainties with allometry and scaling approaches 

	Plant demography 
	Plant demography 
	LiDAR, optical time series, imaging spectroscopy 
	Monthly to annual 
	1 m – 10 km 
	LiDAR similar to above, limited access to IS data. Need to integrate remote sensing with ground observations 

	Detailed plant composition, land-cover change 
	Detailed plant composition, land-cover change 
	LiDAR, optical time series, imaging spectroscopy, sensor fusion 
	Annual 
	1 m – 100 km 
	Beyond basic PFTs. Spatial scale, temporal resolution, phenological timing 

	 Topic 
	 Topic 
	Measurement Approaches 
	Temporal Scale 
	Spatial Scale 
	Considerations 

	Succession and 
	Succession and 
	LiDAR, optical time 
	Monthly to annual 
	1 m – 10 km 
	Attribution, timing 

	mortality 
	mortality 
	series, microwave, 
	of imagery 

	TR
	sensor fusion 

	Carbon flux, 
	Carbon flux, 
	Optical time 
	Daily to monthly 
	10 m – 100 km 
	Measurements of 

	photosynthesis, 
	photosynthesis, 
	series, imaging 
	C flux parameters/ 

	photosynthetic 
	photosynthetic 
	spectroscopy, vertical 
	photosynthetic 

	capacity 
	capacity 
	column CO, SIF2
	capacity (e.g., Vcmax) are preferred 

	TR
	over correlation 

	TR
	with GPP. Leverage 

	TR
	geostationary 

	TR
	satellites, 

	TR
	space station 

	TR
	instrumentation 

	TR
	(OCO-3). SIF still 

	TR
	needs development 

	TR
	to identify links 

	TR
	to GPP at remote 

	TR
	sensing scales 

	Water flux/ET, 
	Water flux/ET, 
	Optical, thermal, 
	Daily to annual 
	10 m – 100 km 
	Matching flux with 

	canopy moisture, 
	canopy moisture, 
	microwave, gravity 
	storage, delineating 

	balance, wetlands 
	balance, wetlands 
	seasonal and 

	TR
	permanent wetlands 

	Surface energy balance 
	Surface energy balance 
	Thermal, imaging spectroscopy 
	Daily to monthly 
	10 m – 10 km 
	Higher temporal frequency TIR data at spatial scales of 30 – 100 meters is 

	TR
	needed. Spaceborne IS is needed to get high-resolution surface albedo data 

	TR
	globally 

	Vegetation 
	Vegetation 
	Optical time 
	Daily to monthly 
	1 m – 100 km 
	SIF retrieval of 

	seasonality, LAI, and 
	seasonality, LAI, and 
	series, imaging 
	C flux still needs 

	functional phenology 
	functional phenology 
	spectroscopy, 
	development 

	TR
	thermal, SIF 

	Vegetation functional traits, biochemistry 
	Vegetation functional traits, biochemistry 
	Imaging spectroscopy 
	Monthly to annual 
	1 m – 10 km 
	In situ datasets of key plant traits in critical biomes 

	TR
	(e.g., Arctic, tropics) are needed to 

	TR
	calibrate empirical scaling approaches. RTM approaches need additional 

	TR
	development to incorporate a wider range of plant traits. Spaceborne IS is needed to gather global plant trait datasets 

	Canopy optical and thermal properties, architecture 
	Canopy optical and thermal properties, architecture 
	LiDAR, optical imagery, imaging spectroscopy, thermal 
	Daily to monthly 
	1 m – 10 km 
	Spaceborne IS is needed. Higher temporal frequency TIR data at spatial scales of 30 – 100 

	TR
	meters is needed 

	Vegetation optical 
	Vegetation optical 
	Active/passive 
	Weekly to monthly 
	1 km – 30 km 
	Data availability, 

	depth 
	depth 
	microwave 
	spatial and temporal 

	TR
	resolutions 


	In addition to identifying the broad sensor types listed in Table C.6.2 (e.g., spectroscopy, LiDAR, thermal), consideration of the methods for developing data products to meet observations needs together with detailed uncertainty assessment is required for any remote sensing data in ILAMB. Many of the data products can be generated with a range of approaches from empirical to modeled (i.e., variable driven or radiometric data-driven). In some cases empirical approaches are currently preferred (e.g., canopy 
	Finally, capturing the seasonal “functional” phenology instead of only observing the changes in leaf quantity (e.g., LAI), for example, should be explored for use as an ILAMB benchmark. Models may capture the broad leaf emergence/senescence patterns but often fail to capture the true seasonality of C, water, and energy fluxes because they rarely account for changes in canopy physiology through the growing season. Imaging spectroscopy, thermal IR, and SIF are all ways to explore patterns in vegetation functi

	C.6.4 Potential Pitfalls and Misuse of Remote Sensing in Model Benchmarking 
	C.6.4 Potential Pitfalls and Misuse of Remote Sensing in Model Benchmarking 
	A number of potential misuses and pitfalls exist when leveraging remote sensing observations as model benchmarks. As already mentioned, remote sensing data products that are derived from models should be treated as a comparison benchmark and not a direct observation. However, treating model benchmarks as an actual observation and tuning the process model to match the remote sensing benchmark could lead to inappropriate parameterization or unstable model outputs under new environmental conditions. Moreover, 
	Finally, the ILAMB framework needs a direct way to integrate uncertainties in model outputs and remote sensing benchmarks. Accounting for uncertainty will provide more accurate assessments of model predictions and error, as well as facilitate data assimilation to improve model calibration. 

	C.6.5 Model Development and Output Requirements 
	C.6.5 Model Development and Output Requirements 
	Remote sensing can not only help to evaluate models and submodels to guide new developments at various spatial and temporal scales but also could guide the development of new model outputs to further facilitate direct model– data comparisons (or assimilation) specifically focused on the use of remote sensing observations (Figure 6.3). Requirements for this are consistent spatial and temporal scales, similar variable definitions and units (less important), and explicit development and handling of remote sens
	In addition to the remote sensing simulator, model code should be adapted to leverage the latest high-performance computing environments to facilitate comparison of models against large remote sensing datasets across large spatial and temporal scales. In addition, on-the-fly retrieval and processing of airborne data will require distributed computing. 
	Figure C.6.4. Example of the use of an “sensor simulator” within a terrestrial biosphere model (TBM; in this case ED2) to facilitate direct assimilation of and/or benchmarking against remote sensing observations within the PEcAn framework (Shiklomanov et al., 2016; Viskari et al., in prep). In this approach the output TBM spectral signature is based on the internal model structure (i.e. canopy biomass, height, RT properties) and compared with comparable remote sensing observations (i.e., surface reflectance

	C.6.6 Computational Needs and Requirements 
	C.6.6 Computational Needs and Requirements 
	Depending on the type of remote sensing observation, scale, algorithmic approach, and resultant data product, the computational needs will vary considerably. For example, an empirical model applied to a series of Landsat images 
	(i.e. image stack) will be relatively quick to generate a new product; however, the use of a radiative transfer model (RTM) together with a highly dimensional dataset to develop a complex data product could take several hours to months to produce on a high-performance computing (HPC) environment. These considerations therefore determine the degree of availability of data products as well as the capacity to provide near real-time information for benchmarking models during short-term perturbations. There are 
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	C.7.1 FLUXNET: A Network of Eddy Covariance Flux Measurement Networks 
	C.7.1 FLUXNET: A Network of Eddy Covariance Flux Measurement Networks 
	Regional and global networks of eddy covariance flux towers, measuring fluxes of carbon, water and energy between terrestrial ecosystems and the atmosphere, are providing crucial data to the global carbon cycle science community (Baldocchi et al., 2001; Baldocchi et al., 2012; Reichstein et al., 2014). 
	Individual eddy covariance flux towers are capable of measuring mass and energy fluxes directly and quasi-continuously on time scales of hours, days, years, and now decades. And, by assembling networks of flux towers, one is able to deduce how carbon, water and energy fluxes vary spatially, across many of the Earth’s climate and ecological spaces and disturbance/management regimes. Together, these flux data are being used to: 1) produce annual carbon, water and energy budgets (Baldocchi, 2008); 2) provide p
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	Between 1997 and 2012 the global FLUXNET project was funded in an ad hoc manner with successive grants from NASA and the National Science Foundation as well as from Microsoft Corporation. An effort to modernize and update the FLUXNET data system and expand the database is currently being supported by DOE in the 2014 to 2017 time-frame via collaboration with computer scientists from Lawrence Berkeley National Lab and University of Virginia along with our international partners. 
	The FLUXNET project and database are ready and ripe for use to advance carbon cycle synthesis by process-based, data assimilation and machine learning models and to address the next generation set of problems and questions; what is causing interannual variability in net and gross carbon fluxes?; are trends in carbon fluxes being induced by global change, and are these changes detectable?; how do fluxes respond to disturbance and management?; is ecosystem photosynthesis and water use efficiency responding to
	2

	The production and distribution of flux data, and its accompanying metadata, to the global carbon cycle community requires human effort to recruit data from different countries and cultures, to build a harmonized dataset that has been subjected to quality control and assurance and to have the software and staff to update the database as new 
	The production and distribution of flux data, and its accompanying metadata, to the global carbon cycle community requires human effort to recruit data from different countries and cultures, to build a harmonized dataset that has been subjected to quality control and assurance and to have the software and staff to update the database as new 
	data are submitted. Distribution of these data to the users and production of value added products that are of use to the modeling community for benchmarking model simulations requires a coordinated and sustained effort. Today, the FLUXNET database has submissions from 450 sites, representing 2700+ site-years of data, and 200 variables on meteorological condition, water, carbon and energy fluxes. These data are distributed through /, and the dataset continues to grow and expand. In addition, there are 77 si
	http://fluxnet.fluxdata.org



	C.7.2 Current and Future Roles of FLUXNET for Carbon Cycle Synthesis 
	C.7.2 Current and Future Roles of FLUXNET for Carbon Cycle Synthesis 
	The eddy covariance method is currently the standard method used by biometeorologists to measure fluxes of trace gases between ecosystems and atmosphere. Fluxes are measured by computing the covariance between the vertical velocity and target scalar mixing ratios at each individual node (site). Key attributes of the eddy covariance method are its ability to measure fluxes directly, in situ, without invasive artifacts, at a spatial scale of hundreds of meters, and on time scales spanning from hours, days, ye
	Today, eddy covariance measurements of carbon dioxide and water vapor exchange are being made routinely on all continents. The flux measurement sites are linked across a confederation of regional networks in Americas, Europe, Asia, Africa, and Australia, into a global network called FLUXNET. This global network includes more than eight hundred registered and four hundred active measurement sites, dispersed across most of the world’s climate space and representative biomes (Figure C.7.1). Within this larger 
	Figure
	Figure C.7.1. The spatial representativeness of the FLUXNET network (existing towers labeled as blue dots), which is mapped relative to a set of quantitative ecoregions (white-to-black colors). Distance in data space to the closet ecoregion containing a site quantifies how well the FLUXNET network represents each ecoregion in the map. Environments in the darker ecoregions are poorly represented by this network. (Jitendra Kumar, Forrest M. Hoffman, William W. Hargrove, in prep.). 
	The flux network continues to grow and expand, giving the model community open and fair use access to over 2700 site years of flux data and complimentary meteorological and site information. The size and value of this database is unprecedented in the history of carbon cycle science and offers many unique opportunities for collaboration with model synthesis activities. So continued support for the operation of FLUXNET is a necessary and warranted cost if we are to achieve the scientific goals mandated to the
	Figure
	Figure C.7.2. Time series of flux network size by continent. Panels are for potential sites registered in the network, the previous 2007 La Thuile dataset and the potential size of the 2015 FLUXNET dataset, which is being processed, quality assured and corrected. 
	With regards to modeling work, the flux network is highly representative of most of the world’s ecosystems and climate spaces (Figure C.7.3). And statistically, the sparse tower network is representative of much wider regions and landscapes than the individual distinct tower footprints, as shown in Figure C.7.1 (Sundareshwar et al., 2007). 
	Figure
	Figure C.7.3. The correspondence between FLUXNET sites and the climate space (precipitation and temperature) of the Earth. 
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	David M. Lawrence, Veronika Eyring, and Charles D. Koven 
	D.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	D.1.1 Scientific Challenges and Opportunities for Model Evaluation 
	The core of the CMIP6 process is a series of experiments, called the Diagnostic, Evaluation, and Characterization of Klima (DECK) (Eyring et al., 2016b). These runs formalize the set of standard climate model configurations that have historically been used both by the modeling centers and by previous CMIP activities, and comprise four experiments: (1) a land–atmosphere only model forced by reconstructed historical sea surface temperatures (i.e., Atmospheric Model Intercomparison Project (AMIP)), (2) a coupl
	(3) an abrupt quadrupling of CO, and (4) an idealized 1% per year CO increase. Because of the idealized nature of these experiments, they are expected to be conducted in all future CMIP activities. In addition to the DECK experiments, all participating CMIP6 models are expected to perform a transient coupled land–atmosphere–ocean historical experiment driven by time-varying greenhouse gas concentrations (Historical) and, for ESMs with a fully prognostic carbon cycle, a second transient coupled land–atmosphe
	2
	2
	2

	The Historical and esmHistorical experiments have provided the strongest basis for benchmarking of models, because of their correspondence to the period of scientific observation. In the first version of ILAMB (Mu et al., in prep), all benchmark diagnostics for the CMIP5 models were performed on either the Historical or esmHistorical (Hoffman et al., 2014) experiments, both of which are in the CMIP6 DECK experiments. These include a broad suite of remote sensing data, upscaled data such as soil maps, and sy
	2

	Figure D.1.1. Overview of the CMIP6 structure. All modeling centers will perform the DECK experiments and may optionally perform any other MIPs. Adopted from (Eyring et al., 2016b). 
	Figure

	D.1.2 New Metrics and Benchmarking Approaches 
	D.1.2 New Metrics and Benchmarking Approaches 
	As with CMIP5 and the first version of ILAMB, we expect the DECK experiments to form the fundamental basis for model benchmarking approaches. One novel application in applying the ILAMB system to the CMIP6 DECK experiments will be to benchmark the AMIP experiments in addition to the Historical and esmHistorical experiments. This will allow the diagnosis of land model fidelity as a function of ESM complexity, as that complexity changes from the relatively constrained AMIP experiments to the less physically-c
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	Forrest M. Hoffman, Charles D. Koven, and James T. Randerson 
	Forrest M. Hoffman, Charles D. Koven, and James T. Randerson 
	D.2.1 Scientific Challenges and Opportunities for Model Evaluation 
	D.2.1 Scientific Challenges and Opportunities for Model Evaluation 
	For the coupled climate–carbon cycle model intercomparison project (CMIP; Friedlingstein et al., 2006, 2014a; Jones et al., 2016), several aspects of the experiments create unique opportunities and challenges with respect to benchmarking and model evaluation. A key goal of CMIP is to assess model-to-model variations in the strength of carbon–climate and carbon–concentration feedbacks. This is accomplished through a factorial experimental protocol that separates the radiative effects of CO from the biogeoche
	4
	4
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	2
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	In this context, the development of “emergent constraint” benchmarks is potentially valuable and important. In past work, emergent constraint benchmarks have been developed for gamma-land (g) using interannual variability in atmospheric carbon dioxide and temperature (Cox et al., 2013; Keppel-Aleks et al., 2014) and for the combined magnitude of beta-land (b) and beta-ocean (b) by assessing model biases relative to the long-term secular trend of atmospheric CO at Mauna Loa (Hoffman et al., 2014; Figure B.3.
	L
	L
	O
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	For the CMIP simulations planned as a part of CMIP6, new simulations forced with historical and future “business as usual” CO concentrations from 1850 to 2300 will permit exploration of the consequences of contemporary biases in the representation of soil processes for the strength of the permafrost-mediated carbon–climate feedback. In CMIP5, none of the models had made investments in the representation of permafrost carbon stocks, and the idealized 140 year 1% per year CO increase (1pctCO2) simulations wer
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	Modeling centers that will contribute simulations to CMIP6 are expected to use ESMs that have improvements in the representation of several processes, including permafrost (Koven et al., 2011), nitrogen dynamics, fires (Li et al., 2013; Kloster et al., 2010), and hydrological processes (Swenson et al., 2012). Some of the models will have a new representation of dynamic vegetation, and some improvements are expected in the ability of these models to capture observed trends in shrub and tree cover. Furthermor

	D.2.2 New Metrics and Benchmarking Approaches 
	D.2.2 New Metrics and Benchmarking Approaches 
	The crucial requirement for enhancing predictive capability is the ability to tie the transient behavior of the models over the future period to currently-observable quantities. A promising approach here is the identification of possible emergent constraints, as discussed above, for both system-integrative measures such as atmospheric COconcentration or growth rate, and more process-resolved emergent constraints on different aspects of the Earth system. Identifying these and evaluating their domain of appli
	2 


	D.2.3 Observational Data Needs 
	D.2.3 Observational Data Needs 
	Within the last 5 years, considerable progress has been made in quantifying aboveground live biomass stocks. Estimates by Saatchi et al. (2011), and Baccini et al. (2012) have effectively combined optical, LiDAR, and microwave remote sensing techniques with plot-level field observations to create pan-tropical estimates of aboveground biomass. These estimates point to a considerable reduction in the magnitude of aboveground carbon stocks in intact tropical forests compared with earlier estimates from the Int
	In parallel, new estimates of soil carbon have become available in permafrost areas (Hugelius et al., 2014) and globally from analysis of plot-level soil profile observations. 
	Important gaps that remain include accurate quantification of litter and coarse woody debris pools, wood and litter turnover times, and the representation of organic soil layers. In several biomes, including boreal forests, aboveground and belowground litter is mixed with a living moss layer, live roots, and coarse woody debris in organic soil layers above the mineral surface. Some ambiguity remains with respect to the representation of organic soils and moss layers in existing soil carbon datasets. 
	Another critical issue is that many of the aboveground live biomass products have been developed for forests. Depending on the methodology, tree and shrub biomass may not be included, making it challenging to compare with grid cell averages from models that reflect contributions from a combination of different plant functional types. Also, this means that aboveground biomass estimates in savannas and shrublands have higher uncertainties. By disaggregating stocks for different plant functional types, CMIP ma
	4

	Apart from stocks, important carbon cycle analysis has explored the change in forest inventories to estimate rates of carbon accumulation (Pan et al., 2011). One important next step that could increase the value of the inventory observations is the development of coarsely gridded (~0.5°) carbon change products that do not compromise privacy of landowners, yet enable effective model comparisons and validation using remote sensing imagery. Another important goal is to harmonize the global stock estimates with
	Higher quality datasets of land cover change, changing human population density, roads, and other measures of landscape fragmentation are needed to better quantify disturbance dynamics and migration rates within the models. 
	So far, evaluation of model dynamics at hourly and diurnal time scales has not advanced as rapidly as evaluation using monthly means. This allows model biases that are evident at this timescale (e.g., Ghimire et al., 2016) to persist. This deficiency could be addressed by outputting a set of model fluxes that most highly correspond to measured eddy covariance data (NEP, GPP, Re, LH, SH) at sub-daily frequency over the period of flux tower observations (approximately 1995–present), for direct comparison. 
	Ultimately, a global carbon stock data assimilation system that integrates inventory and plot-level data to create maps of stocks and accumulation/degradation rates would be extremely valuable to the ESM community. Key requirements for such a system would be the need for wall-to-wall coverage of carbon in all vegetation types and accurate accounting of the continuum of carbon among living vegetation (separate above and belowground components), litter (separate above and belowground components), coarse woody

	D.2.4 Model Development and Output Requirements 
	D.2.4 Model Development and Output Requirements 
	Currently, the terrestrial components in ESMs have major limitations that may bias carbon cycle feedback projections, and further model development is required to alleviate these shortcomings. A crucial limitation is the current representation of nutrient cycles, which may provide a strong limitation to growth under elevated CO, while stimulating growth in response to increased soil decomposition in a warmer climate (McGuire et al., 2001). Whereas some terrestrial components of ESMs have begun including nit
	2

	In addition to the above weaknesses in the representation of vegetation processes, soil carbon cycling processes are also highly uncertain and likely biased in current models. Current terrestrial models assume linear soil carbon tendencies, a poorly-founded assumption given that decomposition is driven by microbial activity exhibiting highly nonlinear dynamics. Some modeling centers are developing nonlinear soil models (e.g., Sulman, 2014; Wieder et al., 2015a), but the jump in complexity and associated par



	D.3 LS3MIP 
	D.3 LS3MIP 
	Hyungjun Kim, Jiafu Mao, and Andrew G. Slater 
	LS3MIP (van den Hurk et al., 2016), another set of optional CMIP6 experiments, contains a series of coupled and off-line land surface experiments designed to illuminate feedback processes as well as provide information about model structure and parameters. It is a coordinated effort among the Global Soil Wetness Project 3 (GSWP3), Global Land–Atmosphere Coupling Experiment (GLACE) and Earth System Model Snow Model Intercomparison Project (ESM-SnowMIP). Each project may have experiments additional to the LS3
	Verification involves simply comparing model output to observations using standard scores such as bias, root mean squared error, mean absolute difference, etc. These metrics are designed to demonstrate the skill of the model simulation, while not necessarily attributing cause and/or effect. Measures of feedback strength have been proposed for soil moisture (Koster et al., 2004), snow (Xu and Dirmeyer, 2011) and albedo (Qu and Hall, 2006, 2007). The 
	Verification involves simply comparing model output to observations using standard scores such as bias, root mean squared error, mean absolute difference, etc. These metrics are designed to demonstrate the skill of the model simulation, while not necessarily attributing cause and/or effect. Measures of feedback strength have been proposed for soil moisture (Koster et al., 2004), snow (Xu and Dirmeyer, 2011) and albedo (Qu and Hall, 2006, 2007). The 
	relationship between large scale snow variables and atmospheric circulation indices such as the Arctic Oscillation have been used (Furtado et al., 2015). Deciphering specific land model weaknesses may best be achieved by making assessment independent of forcing data and/or initial conditions; understanding functional relationships between variables provides a likely path. 

	A further consideration is that of model output time and spatial scale. ILAMB has primarily used monthly mean data from land models, often interpolated from their native grid to a standard grid, which can lead to limitations. Future output may consider derived diagnostic variables that are integrative or decipher finer timescale processes— for example, daily runoff from river basins would allow for hydrograph recession analysis that gives more insight to surface vs. groundwater runoff processes, or model sy
	Snow cover extent data include the NOAA Climate Data Record based on the Rutgers historic snow extent (Robinson et al., 1993) dating back to 1967. More recent, higher-resolution records of snow cover are available: NOAA’s Interactive Multisensor Snow data (4 km since 1997) and the NASA EOS era of data (1999–present) using MODIS sensors at 500 m resolution (Hall et al., 2006, 2010). At the global level, our knowledge of snow cover is fairly good at least in a relative sense (one year compared to another), th
	SWE at the global scale, in the opinion of the author (Slater), remains an unknown quantity for the purposes of rigorously verifying models. Station-based interpolations (Brown and Brasnett, 2010) and products applying remote sensing techniques (e.g., GlobSno [Pulliainen, 2006]) give broad estimates and may give indications of model results that might be largely erroneous but that are not yet of the standard to suggest what it “correct”—this remains a gap in our knowledge. Because of poor SWE information at
	Functional relationships have been used to assess model abilities. To separate the influence of surface meteorology forcing from model structural or parameter error, Slater and Lawrence (2013) used a simple empirical model of permafrost driven by surface meteorology of respective CMIP5 models. The relative position and trajectory of permafrost diagnosed directly compared to the empirical model can inform whether land models are too warm or cold. Similarly, the impact of modeled snow insulation was assessed 
	The International Soil Moisture Network (/) curates a variety of in situ and satellite derived estimates of soil moisture which can be used for assessing modeled water budgeting; e.g., partitioning between runoff, evaporation, and storage. Standard comparisons of moisture levels are useful (Xia et al., 2015b), although innovative methods to understand sources of simulation uncertainty are even more desirable (Nearing et al., 2016). Total water storage from gravity anomalies (GRACE) can provide a broader int
	http://ismn.geo.tuwien.ac.at/ismn

	Shallow soil temperature data (< 5 m, often < 1 m) suffers from heterogeneity issues, and is often sporadic, poorly distributed, and sometimes not reported as a standard variable even when measured. As an example, historic soil data from Russia is often measured at disturbed agricultural plots that are not representative of the local vegetation type. The rate of heat uptake over time within the terrestrial surface and actual temperatures at depths greater than 10 m are available only from a variety of boreh
	Albedo retrievals from satellites, such as the NASA-sponsored MOD43 series of products (Schaaf et al., 2002), have proved useful in assessing prognostic albedo in models as well as detecting weaknesses, including poor representation of canopy snow interception (Thackeray et al., 2015). 
	Also, LS3MIP includes additional experiments using four alternative meteorological forcing data sets: GSWP3 (Kim et al., in preparation), the Princeton forcing (Sheffield et al., 2006), WFD and WFDEI combined (allowing for offsets as needed [Weedon et al., 2014]) and the CRU-NCEP forcing used in TRENDY (Sitch et al., 2015). The model outputs will allow assessment of the sensitivity of land-only simulations to uncertainties in forcing data. Kim (2010) utilized a similarity index (Ω; Koster et al., 2000) to e
	Figure
	Figure D.3.1. Uncertainty in simulated evapotranspiration and runoff introduced by different land surface schemes in GSWP2 are larger than precipitation uncertainty-induced uncertainty by 28% and 40% in the similarity index (Ω) globally. 

	D.4 LUMIP 
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	David M. Lawrence, Elena Shevliakova, and Atul K. Jain 
	David M. Lawrence, Elena Shevliakova, and Atul K. Jain 
	The challenge of evaluating effects of land-use and land-cover change in the CMIP6 Land Use Model Intercomparison Project (LUMIP; Lawrence et al., 2016) is threefold: 
	1. 
	1. 
	1. 
	Land use and land cover change (LULCC) is an external forcing that many CMIP6 experiments (e.g., DECK, historical, future scenario, and LUMIP) will be using, but the forcing data itself is complex, uncertain, and challenging to interpret and use with climate models and ESMs. Analysis of CMIP6 experiments should begin with an evaluation of the consistency between the CMIP6 LULCC scenario and its implementation in different ESMs (e.g., agricultural areas, extent of different crops, area and amount of wood har

	2. 
	2. 
	ESMs have dramatically different LULCC components, including types of land-use and land-management practices. Many LULCC parameters are not informed by data and do not capture historical patterns and practices (e.g., fraction of harvested residue and its fate). Furthermore, the relative importance of different types of land use and land management (e.g., wood harvest, prognostic crops, irrigation, fertilization, shifting cultivation, pasture representation, tilling, etc) and representation of response to di

	3. 
	3. 
	LULCC affects many land processes and properties. Detection and attribution of LULCC effects are the major challenges for both models and observations, including impacts on 


	» atmospheric CO, 
	2

	» ecosystem processes and states, 
	» hydrology, 
	» soil carbon and nutrient biogeochemistry, 
	» vegetation dynamics, and 
	» surface energy and BGC fluxes. 
	D.4.1 Land-use Metrics 
	D.4.1 Land-use Metrics 
	A goal of LUMIP is to establish a useful set of model diagnostics that enables a systematic assessment of land use-climate feedbacks and improved attribution of the roles of both land and atmosphere in terms of generating these feedbacks. The need for more systematic assessment of the terrestrial and atmospheric response to land-cover change is one of the major conclusions of the LUCID studies. Boisier et al. (2012) and de Noblet-Ducoudré et al. (2012) argue that the different land use–climate relationships
	Several recent studies have utilized various methodologies to infer observationally based historical change in land surface variables impacted by LULCC or divergences in surface responses between different land-cover types (Boisier et al., 2013, 2014; Lee et al., 2011; Lejeune et al., 2016; Li et al., 2015; Teuling et al., 2010; Williams et al., 2012). For example, Boisier et al. (2013) took MODIS albedo at 0.05° resolution and derived monthly albedo climatologies for croplands and four other land cover typ
	Another promising area for LULCC metrics development is with paired tower site analyses. Paired sites typically have one flux tower located in a forest and one in nearby open land (grassland, cropland, or open shrub). Differences in fluxes and states for these paired sites can be taken as representative of the impacts of local land cover change (deforestation in these cases). Lee et al. (2011), Chen and Dirmeyer (2016), and Burakowski et al. (2016) have all utilized paired sites to assess the impact of LULC
	Several sources of data and methods with promise for LULCC metric development have been identified, including the following: 
	» Paired tower sites with known LULCC activities 
	» Food and Agriculture Organization of the United Nations (/) and national (e.g., USDA Forest Service data, National Agricultural Statistics Service data) statistics 
	http://www.fao.org/statistics/databases/en

	» Inferred impacts derived from any global dataset (e.g., albedo; see Boisier et al., 2013; Lejeune et al., 2016); compare nearby pixels that are mostly forest to mostly open land 
	» Water storage (Landerer and Swenson, 2012) and discharge from perturbed (managed) and unperturbed basins (Milly et al., 2014) 
	» Land use carbon fluxes and their components from bookkeeping models (Houghton, 2013; Richter and 
	Houghton, 2011), global carbon project data sets (Le Quéré et al., 2015), RECCAP synthesis project 
	() 
	http://www.globalcarbonproject.org/reccap

	» Impact of LULCC in South and Southeast Asia (Adachi et al., 2011; Cervarich et al., 2016; Tao et al., 2013; Piao et al., 2012) 
	» Impact of LULCC on soil carbon and nitrogen; Review Analysis (Smith et al., 2016a) 
	» Global aboveground carbon estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations (Liu et al., 2015) 
	» Fire emissions (van der Werf et al., 2010) 

	D.4.2 Land-only Versus Coupled Model Assessment 
	D.4.2 Land-only Versus Coupled Model Assessment 
	Importantly, the availability of both land-only and coupled historic simulations in CMIP6 will enable a more systematic assessment of the roles of the land and atmosphere in simulated responses to LULCC. With both coupled and uncoupled experiments with and without land-use change, LUMIP will be able to systematically disentangle the simulated LULCC forcing (i.e., changes in land surface water, energy, and carbon fluxes due to land-use change) from the response (i.e., changes in climate variables such as tem

	D.4.3 Subgrid Data Reporting and Analysis 
	D.4.3 Subgrid Data Reporting and Analysis 
	New output data standardization for LUMIP will also enrich and expand analysis of model experiment results. Particular emphasis within LUMIP is on archiving subgrid land information in CMIP6 experiments, including LUMIP experiments and other relevant experiments from ScenarioMIP, CMIP, and the CMIP historical simulation. In most land models, physical, ecological, and biogeochemical land state and surface flux variables are calculated separately for several different land surface types or land management “ti
	4

	Several recent studies have demonstrated that valuable insight can be gained through analysis of subgrid information. For example, Fischer et al. (2012) used subgrid output to show that not only is heat stress higher in urban areas compared to rural areas in the present day climate, but also that heat stress is projected to increase more rapidly in urban areas under climate change. Malyshev et al. (2015) found a much stronger signature of the climate impact of LULCC at the subgrid level (i.e., comparing sim


	D.5 MsTMIP 
	D.5 MsTMIP 
	Christopher R. Schwalm 
	The North American Carbon Program (NACP) Multi-scale Synthesis & Terrestrial Model Intercomparison Project (MsTMIP) is a coordinated model intercomparison and evaluation effort designed to improve the diagnosis and attribution of carbon sources and sinks at local to global scales (Huntzinger et al., 2013). MsTMIP is distinct from CMIP because it focuses on the land component of ESMs. There are currently about 20 participating state-of-the-art LSMs in MsTMIP; each executed in offline mode using a standardize
	The North American Carbon Program (NACP) Multi-scale Synthesis & Terrestrial Model Intercomparison Project (MsTMIP) is a coordinated model intercomparison and evaluation effort designed to improve the diagnosis and attribution of carbon sources and sinks at local to global scales (Huntzinger et al., 2013). MsTMIP is distinct from CMIP because it focuses on the land component of ESMs. There are currently about 20 participating state-of-the-art LSMs in MsTMIP; each executed in offline mode using a standardize
	a skill-to-structure mapping. That is, since biophysical and biogeochemical representations are the only differences across models, changes in model skill can be attributed to model structures (Huntzinger et al., 2014). 

	MsTMIP is divided into two phases. The now-complete Phase I (Huntzinger et al., 2013; Wei et al., 2014a,b) was based on a set of retrospective semi-factorial runs where historical time-varying climate, CO2 concentration, land cover, and nitrogen deposition are sequentially “turned on” after steady-state. Each model completed a set of five runs with the final run having  all factors enabled. Phase I runs were global (0.5° spatial resolution) from 1901 to 2010 at a monthly time step. Forcing data were based o
	Phase II differs from Phase I in several ways. It focuses on the future, from present to the end of the 21st century (2011 to 2100), and forcing data are based on downscaled ESM meteorological fields from CMIP5. Each LSM is forced with 10 plausible climate futures using all possible combinations of two RCPs (4.5 and 8.5) and five ESMs (CMIP5 historical runs) chosen to reflect a range of temperature changes. The Phase I and Phase II forcing data boundary is smoothed to remove any discontinuities and to provi
	To date, MsTMIP simulations were used to (1) diagnose global patterns of soil organic carbon (Tian et al., 2015), 
	(2) understand climatic vs. anthropogenic controls on evapotranspiration (Mao et al., 2015), (3) aggregate individual model results with benchmark-driven model ensemble integration (Schwalm et al., 2015), (4) quantify the net climate effect of the terrestrial biosphere (Tian et al., 2016), and (5) evaluate the impact of climate extremes on carbon cycling (Zscheischler et al., 2014). With retrospective Phase I and predictive Phase II simulations, MsTMIP can serve as a unified platform to evaluate how model s


	D.6 PLUME-MIP 
	D.6 PLUME-MIP 
	Anders Ahlström 
	Anders Ahlström 
	PLUME-MIP addresses the responses of vegetation and land surface models to environmental drivers under current and future projections, and attempts to advance the state-of-the-art in attributing modeled carbon cycle responses to underlying mechanisms, as represented in the models. 
	The project is divided into two main tiers as follows: 
	» Tier 1 involves standard transient simulations using bias-corrected CMIP5 climate outputs for the recent past and 
	future under a set of CO concentration pathways. The outcomes will be used to evaluate the different responses of 
	2

	the terrestrial C cycle to climate projections and CO pathways. 
	2

	» Tier 2 adopts a recently developed transient version of the Traceability Framework (TF) (Xia et al., 2013) to 
	identify underlying causes of model differences in their responses to current and future climate forcing. The 
	framework is designed to facilitate model intercomparisons by tracing components and their differences across 
	models. Using the TF, Tier 2 will focus on locating the main carbon cycle processes that are responsible for causing 
	differences among models and between models and data. 
	Currently Tier 1 simulations are nearly complete, and Tier 2 simulations are being performed or prepared. Methodology for applying the transient TF has been developed, tested, and partially published (Ahlström et al., 2015). In our analysis, we aim to answer two main research questions: (1) what is the relative role of main ecosystem processes in inter-model differences today and in the future? and (2) which processes are responsible for model–data inconsistencies and biases? 
	To answer (1), we will utilize results from Tier 1 and Tier 2 in combination with empirical data products on plant productivity, carbon pools, and turnover in a novel and transparent analysis. The transient TF can be used as an emulator that perfectly represents the flows of carbon between carbon pools while maintaining the model’s structure. This way we can exchange processes (fluxes) between models (e.g., NPP, vegetation turnover, soil respiration rates) to identify what processes contribute to inter-mode
	For (2), we will utilize TF to replace simulated processes with empirically derived data products (e.g., NPP, turnover, and respiration rates) and evaluate the resulting carbon pools against empirical datasets. The TF allows us to replace one or several processes on which independent data exists and recalculate carbon pools while preserving model structure and functioning from remaining processes. The resulting carbon pools will be evaluated against independent data using ILAMB benchmarking resources with t
	Both tiers and analysis steps (1) and (2) contribute to the goal of isolating the processes responsible for differences between models and their future projections and between models and data, using a transparent and systematic methodology. 
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	E.1 An Uncertainty Quantification Framework Designed for Land Models 
	E.1 An Uncertainty Quantification Framework Designed for Land Models 
	Maoyi Huang, Zhangshuan Hou, Jaideep Ray, Laura Swiler, 
	L. Ruby Leung 
	Current-generation land models, such as the Community Land Model (CLM) and the Accelerated Climate Modeling for Energy Land Model (ALM), include numerous sub-models and associated parameters. The high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system model predictions needed to assess environmental changes and risks. In practice, many parameters in land surface models are expected to vary from site to site and are poorly estimated or subjectiv
	There have been attempts to calibrate LSMs. Because of their computationally expensive nature, ongoing efforts also target the construction of emulators (surrogate models) that map LSM’s outputs to its inputs. The emulators can then be used (instead of the LSM itself) in sensitivity analysis, parameter estimation, propagation of parametric uncertainty and other many-query applications. Sargsyan et al. (2014) attempted to construct surrogates for five variables of interest from CLM4 with prognostic carbon an
	Probabilistic methods, based on Monte Carlo simulations, have been used to calibrate LSMs. (Lo et al., 2010) used Monte Carlo techniques to estimate hydrological parameters of Community Land Model (CLM) 3.0, while Prihodko et al. (2008) calibrated Simple Biosphere Model version 2.5. Järvinen et al. (2010) and Solonen et al. (2012) used multi-chain Markov Chain Monte Carlo (MCMC) methods to address the formidable computational cost of calibrating the parameters of a climate model, while Zeng et al. (2013) us
	Significant progress has been made toward quantifying uncertainty associated with hydrologic parameters in the CLM and calibrating those parameters using an uncertainty quantification (UQ) framework. The framework features importance sampling, exploratory data analyses, HPC-enabled numerical simulations, classification of a complex system into a few relatively homogeneous regions, and Bayesian inversion using Markov Chain Monte Carlo techniques. The UQ framework has been applied to flux towers and watershed
	By performing numerical simulations using an efficient stochastic sampling-based sensitivity analysis approach, linear, interaction, and high-order nonlinear impacts of hydrologic parameters in CLM on simulated surface water and energy fluxes are analyzed via statistical tests and stepwise backward removal parameter screening at 13 selected flux tower sites (Figure E.1.1) and 431 river basins (Figure E.1.2) from the Model Parameter Estimation Experiment (MOPEX) in the United States (Hou et al., 2012; Huang 
	Figure
	Figure E.1.1. Geographic locations of the selected flux towers. Adopted from Hou et al. (2012). 
	Figure
	Figure E.1.2. Classes of the 431 MOPEX basins classified using parameter sensitivity scores with runoff as the response variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016). 
	Figure
	Figure E.1.2. Classes of the 431 MOPEX basins classified using parameter sensitivity scores with runoff as the response variable in the General Linear Model sensitivity analysis. Adopted from Ren et al. (2016). 
	To address this issue, there is a need to reduce computational costs and utilizing high-performance computing infrastructure. A Surrogate-based Markov chain Monte Carlo (MCMC)-Bayesian inversion approach has been developed for CLM and tested at 12 flux tower sites (Huang et al., 2016; Ray et al., 2015). The procedure starts with building surrogates using CLM4 simulations driven by perturbed parameter sets using a space-filling quasi-MC sampling approach. The surrogates, after careful validation and selectio
	However, it has been recognized that surrogate-based inversion is intrinsically subject to errors as a result of approximating a complex model using simplified functions, not to mention the potential risk of failures in building the surrogates due to the complex relationships between model parameters and outputs of interest (Huang et al., 2016). To address this limitation, a Scalable Adaptive Chain Ensemble Sampling (SAChES) method has been developed that seeks to collect the samples required to construct t
	To summarize, the global sensitivity analysis and Bayesian inversion procedures are useful tools for parameter estimation with uncertainty bounds, as well as for identifying potential model structural errors by extensively exploring the parameter space and comparing discrepancies between model predictions and observations. To successfully integrate such tools with land models, model reduction techniques are critically needed to make the problem tractable. Integrating such tools with the benchmarking dataset

	E.2 Use of Emulators in Uncertainty Quantification 
	E.2 Use of Emulators in Uncertainty Quantification 
	George S. Pau 
	Quantifying uncertainties in land surface models (LSMs) is an important aspect of benchmarking exercises. Since observation data is inherently uncertain, one potential robust verification approach involves comparing the probability density functions of the observation data and the model outputs. The difficulty of quantifying the uncertainties in the observation data has been addressed elsewhere in this report. Here we focus on the task of quantifying the probability density functions of the model outputs. I
	MC methods require many evaluations of a LSM, each of which can be computationally challenging if modeled at the scale of the observation data. Brute force application of MC methods is typically infeasible even with existing high-end computing ecosystems because of the significant computational resources required. There is thus a need to develop MC methods that do not require a large number of LSM evaluations. Fortunately, there are many recent advances in MCMC methods and particle-based MC methods. Some ne
	In surrogate-based MC methods, surrogate models, built based on a limited number of LSM evaluations, are used as efficient emulators of the LSM. An offline-online computational framework allows UQ analyses to be performed efficiently at the desired spatial and temporal scales using surrogate models (online stage) through an amortization of the construction cost of these models (offline stage). The offline stage is computationally intensive because of the need to obtain outputs from a large number of LSM eva
	There are many approaches to constructing an appropriate surrogate. However, this task differs from the data mining challenges in the industry. First, we are emulating computationally expensive numerical models that are typically deterministic. We need a strong theoretical framework for using statistical emulators to describe results from these numerical models. Second, since we are emulating physical systems, outputs from the surrogate models must obey the constraints inherent in the physical systems. Thir
	Several promising surrogate-modeling methods are currently being used to emulate the output of LSMs. For scalar quantities, popular methods include Gaussian process regression (Drignei et al., 2008; Edwards et al., 2011; Holden et al., 2010; Olson et al., 2012; Ray et al., 2015; Rougier et al., 2009), and polynomial chaos expansion (Liu et al., 2016b; Ray et al., 2015; Sargsyan et al., 2014). However, these methods cannot be directly applied to emulate field solutions due to the sheer number of outputs from
	The use of surrogate models within an UQ framework poses several challenges. In particular, the required accuracy of a surrogate model depends on the chosen UQ method. For example, a two-stage Monte Carlo method (Ma et al., 2008) allows the use of a surrogate model with lower fidelity since it is only used to guide the selection of the parameters for performing a full model evaluation. However, a poorly constructed surrogate model can lead to a large number of full model evaluations, severely reducing the b
	In conclusion, surrogate models have potential to reduce the computational cost of a MC method. However, more research is still needed to ensure the use of surrogate models within a MC method is robust, efficient, and theoretically sound. 

	E.3 Uncertainty Quantification in the ACME Land Model: Summary 
	E.3 Uncertainty Quantification in the ACME Land Model: Summary 
	Daniel M. Ricciuto, Khachik Sargsyan, Dan Lu, Jiafu Mao, Peter Thornton 
	Uncertainty about land surface processes contributes to a large spread in model predictions about the magnitude and timing of climate change in the 21st century. LSM’s incorporate a diverse array of processes across various temporal and spatial scales, and they include a large number of uncertain parameters. Traditionally, land surface model output uncertainty has been estimated using multimodel ensembles such as CMIP5 (Friedlingstein et al., 2014b) or MsTMIP (Huntzinger et al., 2013), which combine uncerta
	predictions.UQ

	Global sensitivity analysis (GSA) or variance-based decomposition is a popular method to quantify the effects of model parameter uncertainties on specific quantities of interest (QoIs). Although a number of GSA methods exist (e.g., Sobol, 1993; Saltelli et al., 2006), many simulations are generally required, which is rapidly becoming computationally infeasible as the number of parameters increases. In complex land surface models, simpler one at a time (OAT) approaches, which vary parameters around nominal v
	Here we apply this new method to perform GSA at 96 FLUXNET sites (Figure E.3.1) using the initially committed version 0 of the DOE Accelerated Climate Model for Energy (ACME), the land component of which is largely based on the CLM 4.5 (Oleson et al., 2013). These 96 sites cover a large range of climates, plant functional types, and other land surface characteristics. A total of 65 model parameters related to biogeophysics and biogeochemical cycling were varied randomly within uniform ranges justified by li
	Figure
	Figure E.3.1. Sites used in the global sensitivity analysis for the ACME land model at FLUXNET sites. Plant functional types at each site as used in the model are indicated. 
	Initial efforts to calibrate the ACME land model have been specific to individual eddy covariance or experiment sites, focus on a limited number of parameters, and do not estimate posterior uncertainties. We found that, by using 1 year of net ecosystem exchange (NEE) data from the Missouri Ozark flux site to optimize 14 model parameters, we were able to achieve a 30% reduction in root mean squared error in NEE over 2 subsequent years. However, when the calibrated parameters were used at the 2 similar decidu
	Figure
	Figure E.3.2. Main effect sensitivity indices as a function of plant functional type (PFT) for gross primary productivity (GPP) for the five most sensitive parameters: the temperature sensitivity of maintenance respiration (q10_mr), the fine root to leaf allocation ratio (froot_leaf), the specific leaf area at the top of the canopy (slatop), the fine root carbon:nitrogen ratio (frootcn), and the fraction of leaf nitrogen in RuBisCO (flnr). Error bars indicate the standard deviation of the sensitivity index 

	E.4 The Predictive Ecosystem Analyzer (PEcAn): A Community Tool to Enable Land Model Synthesis, Evaluation, and Forecasting 
	E.4 The Predictive Ecosystem Analyzer (PEcAn): A Community Tool to Enable Land Model Synthesis, Evaluation, and Forecasting 
	Shawn Serbin, Michael Dietze, and the PEcAn Team 
	Process models are our primary tool for synthesizing our understanding of terrestrial ecosystems and projecting the impact of global change on ecosystem services associated with carbon, energy and water fluxes, and storage. Recently the use of models as a scaffold for data-driven synthesis has expanded and there is increasing interest in formal model–data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration of observations, and guide model developments (Dietz
	Because no one measurement provides a complete picture of terrestrial ecosystems, multiple data sources must be integrated in a sensible manner. Process-based models represent an ideal framework for integrating these data streams because they represent multiple processes at different spatial and temporal scales in ways that capture our current understanding of the causal connections across scales and among data types. Three components are required to bridge this gap between the available data and the requir
	2) a workflow management system to handle the numerous streams of data, and 3) a data assimilation statistical framework to synthesize the data with the model. 
	Managing the communication between models and data involves three distinct challenges: 1) dealing with the volume of big data, 2) processing unstructured and uncurated long tail data, and 3) managing uncertainties in model–data comparisons and formal data–model assimilation. Finally, model development has long been an academic cottage industry, with different models lacking compatible formats for inputs, outputs, and settings. This has lead to redundant efforts and minimal reproducibility. As a result, the 
	http://pecanproject.org

	Figure
	Figure E.4.1. Schematic representing the PEcAn framework for model–data integration and uncertainty quantification (LeBauer et al., 2013; Dietze et al., 2014). PEcAn provides a number of tools for standardization of model inputs and outputs, provenance tracking to enable repeatable and transparent analyses, distributed network and web accessible interface, and well as general reusable tools for extraction, analysis and visualization. 
	PEcAn users interact with models through an intuitive Google-Map-based interface (Figure E.4.2) and standardized file formats for model inputs (e.g., meteorological drivers, initial conditions), benchmarks, and outputs. Standardization allows the development of common, reusable tools for processing inputs, visualizing outputs, and automating the suite of analyses available within PEcAn. In addition, PEcAn includes state-of-the-art Hierarchical Bayesian tools for model parameterization, data assimilation, UQ
	https://www.betydb.org

	Figure
	Figure E.4.2. The PEcAn framework provides a simple web-based graphical user interface (GUI) that leverages Google maps and PHP to link to the core PEcAn tools and PostGIS database (Figure E.4.1). Each node of the PEcAn framework (Figure E.4.3, this example from /) serves up this interface which also serves to link model runs and results across the network. From this interface users can select sites, models, inputs, analyses (e.g., ensemble, UQ, data assimilation) and examine outputs with built in diagnosti
	https://modex.bnl.gov

	Figure
	Figure E.4.3. An example status map (availible at ) showing the current PEcAn network. Each node of the network shares data within the institutions database, model run history, and results. 
	https://pecan2.bu.edu/pecan/status.php

	Core components of the PEcAn framework include model parameterization and the quantification, propagation, and analysis of uncertainties (LeBauer et al., 2013; Dietze et al., 2014). These tools facilitate the efficient parameterization of models combining expert knowledge, trait observations, and field data to constrain plant functional types (PFTs). Within PEcAn the model uncertainty analysis workflow follows three automated steps: 
	1) a hierarchical Bayesian meta-analysis to 
	Figure E.4.4. Example PEcAn Bayesian meta-analysis result summarize observational trait data and constrain for specific leaf area (SLA, m kg). (adapted from LeBauer ecosystem model parameters (Figure E.4.4), 2) a et al., 2013). The curves show the prior (gray) and posterior 
	2
	-1

	(black) distributions of SLA as selected from the PEcAn
	parameter sensitivity analysis, and 3) a variance 
	database (/) for the perennial C grass
	https://www.betydb.org
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	decomposition analysis that uses the outputs 
	switchgrass (Panicum virgatum). Data from plants grown under
	from the first two steps to partition predictive 
	an experimental treatment are presented in gray while data uncertainty into the contributions from different from field-grown plants under control treatments are in black. model parameters. The workflow can also be The posterior distribution is then used in the PEcAn uncertainty 
	analysis to to generate the ecosystem model posterior based on
	repeated, without the first step, after iterative 
	the selected trait quantiles (Figure E.4.5).
	rounds of parameter data assimilation to assess the contribution of different data constraints to uncertainty reduction. A detailed description of this workflow can be found in LeBauer et al. (2013). 
	Following the meta-analysis step, the PEcAn model sensitivity analysis consists of perturbations to the model parameters to evaluate how a specific model output (for example net primary productivity) changes as the parameter changes. The model perturbations are based on the quantiles of the parameter’s posterior distribution, such that each parameter is moved in proportion to its uncertainty (Figure E.4.5). The quantiles are flexible and can be chosen by the user. The response function (i.e., model output 
	Figure E.4.5. Adapted from Dietze et al., (2014). Example uncertaintyanalysis for the 10 year mean NPP response of a typical temperate mid-each parameter within each PFT is then successional hardwood plant functional type to the Ball-Berry stomatal approximated using a spline. slope parameter (Leuning, 1995). The probability density on the x-axis 
	as a function of a parameter value) for 

	(green shaded area) captures the uncertainty in the stomatal slope The PEcAn variance decomposition parameter as estimated by the PEcAn Bayesian meta-analysis analysis estimates the uncertainty in (Figure E.4.4). The solid diamonds represent the sensitivity analysis, 
	depicting NPP projections using the Ecosystem Demography model
	model predictions (outputs) associated 
	(ED v2.2; Medvigy et al., 2009) for different values of stomatal 
	with each model parameter (inputs). 
	slope, and the solid line is a spline fit to these points. The predictiveuncertainty in NPP due to stomatal slope is represented by the Delta method is used by transforming probability density on the y axis (red shaded area), which is generated the posterior parameter distribution automatically within PEcAn by transforming the parameter distribution 
	A Monte Carlo generalization of the 

	through the spline sensitivity function. Within PEcAn the partial
	through the spline sensitivity function 
	variance is the variance of this predictive distribution divided by
	(Figure E.4.5). Because the predictive 
	the sum of the variances across all parameters.
	uncertainty is directly a product of 
	Figure
	Figure
	parameter uncertainty and model sensitivity, these quantities are also automatically provided within the PEcAn UQ workflow (e.g., Figure E.4.6). To allow easier comparisons among variables, parameter variance and model sensitivity are expressed in dimensionless form as the posterior coefficient of variation and elasticity (sensitivity normed by both the parameter and output means), respectively. Moreover, PEcAn provides the predictive uncertainties associated with 
	parameter uncertainty and model sensitivity, these quantities are also automatically provided within the PEcAn UQ workflow (e.g., Figure E.4.6). To allow easier comparisons among variables, parameter variance and model sensitivity are expressed in dimensionless form as the posterior coefficient of variation and elasticity (sensitivity normed by both the parameter and output means), respectively. Moreover, PEcAn provides the predictive uncertainties associated with 
	each model parameter as the proportion that each variable contributes to the overall model predictive variance to enable direct comparisons across models, model parameters, and different model outputs. 

	Figure
	Figure E.4.6. Example PEcAn variance decomposition results presented for model runs before (gray) and following (black) the updating of model parameter estimates with species-level data from a PEcAn meta-analysis. Parameter Uncertainty: Uncertainty associated with each parameter is presented as the coefficient of variation and the degree to which some parameters have been constrained by species-level data is indicated by the reduction in CV in the black compared to the gray bars. Sensitivity: The sensitivit
	Importantly, the results of the PEcAn uncertainty analysis workflow provide an understanding of the dominant drivers of uncertainty for outputs of interest (e.g., NPP). The information provided by PEcAn can be used to guide data synthesis, field campaigns, and Bayesian calibration. For example, an uncertainty analysis of the Ecosystem Demography model (ED2; Medvigy et al., 2009) across seventeen PFTs (Dietze et al., 2014), identified consistent patterns in the parameters driving model uncertainty (Figure E.
	An additional core component of the PEcAn framework, which is highly relevant to ILAMB and other model evaluation, benchmarking, and calibration activities, are the formal model–data assimilation workflows. Within PEcAn, users can make use of both parameter and state data assimilation with a range of approaches and algorithms. Parameter data assimilation (PDA) is used to update prior model parameter distributions based on a Likelihood function that quantifies how the error between model outputs and observed
	An additional core component of the PEcAn framework, which is highly relevant to ILAMB and other model evaluation, benchmarking, and calibration activities, are the formal model–data assimilation workflows. Within PEcAn, users can make use of both parameter and state data assimilation with a range of approaches and algorithms. Parameter data assimilation (PDA) is used to update prior model parameter distributions based on a Likelihood function that quantifies how the error between model outputs and observed
	the total forecast uncertainty is lowered than that from either the model or data alone. In addition, when conducted over a region, locations without observations are updated based on their covariances with measured locations. Similarly, covariances among modeled states are also used to update unobserved model state variables (e.g., the relationship between canopy cover, a remotely sensed property, and aboveground biomass). Taking a Bayesian approach to data assimilation within PEcAn allows for an iterative

	A priority highlighted in this report is the capacity to benchmark against and directly assimilate remotely sensed observations, such as surface reflectance. Remote sensing observations can be used to track seasonal and inter-annual changes in vegetation structure and function (Schmid et al., 2015). While existing benchmarks focus on comparing model outputs to derived data products, an important alternative is for models to output a full spectral signature. This “sensor simulator” approach (e.g., Figure E.4
	Figure
	Figure E.4.7. Example ED2 multi PFT multi biome UQ synthesis conducted within the PEcAn framework (Adapted from Dietze et al., 2014). This example illustrates what parameters still dominate model uncertainty in NPP following a trait meta-analysis to constrain model parameters. It was found that the priority for improved model representation and parameterization was growth respiration, but also bulk water conductance from the soil, leaf stomatal slope, the quantum efficiency of photosynthesis, and plant mort
	Figure
	Figure E.4.8. Example PEcAn variance decomposition of ED2 canopy albedo showing the impact of uncertainty in model radiative transfer parameterization including leaf and stem optical properties, orientation, and clumping factors for early, mid, and late hardwood broadleaf PFTs in the first year (full) and tenth year (shaded) of the simulation. These results show the importance of evaluating, benchmarking, and constraining underlying processes and structures such as light harvesting and utilization as well a
	have been identified as a critical need by the modeling community. 
	There are several important ways the ILAMB and PEcAn projects could collaborate and share tools, resources, and workflows for analyzing and benchmarking models at the site and regional scales. A key strength of the PEcAn package is the strong focus on the cyberinfrastructure, scientific workflows, provenance tracking, and on-demand multi-model synthesis capabilities. For example, the PEcAn network contains greater than ten ecosystem models that can be run locally or through the web interface one-at-a-time o
	useful outside of the ILAMB package. Figure E.4.10. Example of the use of an “sensor simulator” within a TBM (in this case ED2) to facilitate direct assimilation of and/or
	Furthermore, the tools within ILAMB 
	benchmarking against remote sensing observations within the PEcAn
	to quantify changes in model output 
	framework (Viskari et al., in prep). In this approach the output TBMspectral signature is based on the internal model structure (i.e. canopy or meteorological drivers are key for biomass, height, RT properties) and compared with comparable frameworks such as PEcAn since they remote sensing observations (i.e. surface reflectance, albedo). This 
	due to code updates, initial conditions, 

	allows for direct comparison and evaluation of associated processes
	provide the capability to understand 
	such as photosynthesis, energy balance, surface temperature and
	different sources of uncertainty beyond 
	evapotranspiration as well as identify uncertainties and areas to targetmodel parameters and structure. Therefore, coupling ILAMB and PEcAn into a synthetic virtual framework would serve to significantly expand the model evaluation capabilities available to the community and avoid any potential redundancies in software development. Importantly ILAMB has historically been focused on the Earth system models (ESMs) at the centennial scale but is shifting focus to include regional and site-level evaluation with
	for model improvement. 

	Figure
	Figure E.4.9. Simplified example of the PEcAn state data assimilation (SDA) forecast/analysis cycle used to inform model projections within PEcAn. Adapted from Dietze 2017 Ecological Forecasting. 
	Figure E.4.9. Simplified example of the PEcAn state data assimilation (SDA) forecast/analysis cycle used to inform model projections within PEcAn. Adapted from Dietze 2017 Ecological Forecasting. 
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	University of New South Wales, Sydney NSW 2052, Australia Australian Research Council Centre of Excellence for Climate System Science (ARCCSS), Sydney NSW 2052, Australia 
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	†AuthorAn increasing number of land surface model evaluation packages are becoming available, including ILAMB, LVT, EMSValTool and others. The first phase of the PALS web application also represented a something of a limited attempt at a standardised evaluation package, but was restricted to site-based evaluation and benchmarking. PALS facilitated the 
	 to whom correspondence should be addressed; e-mail: gabsun@gmail.com 

	PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER; a MIP), also discussed at this meeting, and in particular promoted the use of empirical benchmarking as a way of defining model performance expectations. With the arrival of the more comprehensive evaluation packages listed above, what have we learnt from PALS that is still 
	of use? This presentation will focus in particular on the benefits of bringing tools such as these into an online web-based environment. These benefits include: » ability to quickly and easily compare results internationally » potential for better capture of simulation provenance information, increasing reproducibility » simplicity and speed of creating MIPs » MIPs can continue indefinitely, since they can be automated » the ability to keep evaluation datasets for evaluation only (i.e. not calibration) » id
	» increased transparency Difficulties include sufficiently rigid i/o standards to enable automated analysis of model outputs, as well as intellectual property and security issues. Development of a second phase of a PALS-like environment that could incorporate a range of different analysis packages will also be discussed. 
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	†Author to whom correspondence should be addressed; e-mail: martin.best@metoce.gov.uk 
	Many studies make the claim of undertaking model benchmarking. Unfortunately, there is often confusion about what “benchmarking” means; some undertake true benchmarking, others are undertaking the more traditional evaluation or comparison activities. In this presentation we will attempt to clarify the differences between the three approaches and demonstrate how the interpretation of model results can differ depending on which of the three measures of model performance are used. To enable this, data from the
	In addition, a brief overview of the PLUMBER experimental protocol will be presented along with the key findings from the experiment to date. All land surface models had a consistent performance compared to the set of benchmarks when using standard statistical measures. These results demonstrated that the current day models perform better than older physical models, hence as a community we have progressed our knowledge over the last few decades. However, none of the models out performed the empirical benchm
	Analysis using distribution statistics resulted in the land surface models having differing performance compared to the set of benchmarks. This result is inconsistent with the standard statistical measures and suggests that the models have been optimised for statistics such as mean bias error, standard deviation and correlation coefficient. 
	The conclusions from this study challenge our traditional view of the surface energy balance. In addition, the results suggest that improvements can be made to these models without the introduction of complexity, but by making better use of the currently available information content in the atmospheric forcing. 
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	A more routine benchmarking and evaluation of models is envisaged to be a central part of CMIP6. One purpose of the DECK and CMIP historical simulations is to provide a basis for documenting model simulation characteristics. A few analysis packages currently under development will be routinely executed whenever new model experiments are contributed to the CMIP archive. The foundation that will enable this to be efficient and systematic is the community-based experimental protocols and conventions of CMIP, i

	P.4 Land surface Verification Toolkit (LVT): A formal benchmarking and evaluation framework for land surface models 
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	Though there is a vast amount of literature on land surface model development, model simulation studies and multi-model intercomparison projects, the evaluation methods and metrics used in them tend to be specific for individual case studies and mostly deterministic. These studies have not typically converged on standard measures of model performance for evaluating different LSMs. In this presentation, we describe the development and capabilities of a formal system for land surface model evaluation and benc
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	New approaches for evaluating earth system models (ESMs) are needed to improve the quality of simulations of future global environmental change and to speed model development. Here we describe the development of the International Land Model Benchmarking (ILAMB) software system. Version 1 of the ILAMB system (ILAMBv1) provides a framework for comparing model simulations with observations for 25 land surface variables. This set encompasses 9 carbon cycle and ecosystem, 5 hydrological and turbulent energy, 6 s
	F.2.2 Emergent Constraints and Evaluation Metrics I 
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	In recent generation Earth System Models (ESMs), land-surface grid cells are represented as tiles covered by different plant functional types (PFTs) such as trees or grasses. Here, we present an evaluation of the vegetation cover module of the MPI-ESM for present-day conditions. The vegetation continuous fields (VCF) product [Hansen et al., 2003] that is based on satellite observations in 2001 is used to evaluate the fractional distributions of woody vegetation cover and bare ground. The model performance i
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	0.61 and 0.19, respectively, which we consider as satisfactory values. The model simulates tree cover and bare ground with rthis analysis with an evaluation of the simulated land-surface albedo using the difference in net surface radiation. On global scale, the correlation between modeled and observed albedo is high during all seasons, while the main disagreement occurs in spring in the high northern latitudes. This discrepancy can be attributed to a high sensitivity of the land-surface albedo to the simula
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	 higher for the Northern Hemisphere (0.66) than for the Southern Hemisphere (0.48-0.50). We complement 
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	The Global Energy and Water Exchanges project (GEWEX), part of the World Climate Research Programme, has supported the investigation of processes involved in the local coupling between land and atmosphere and how they are simulated in models. From this effort, a compilation of coupling metrics has been produced that quantify both legs of the feedback from land to atmosphere: how biophysical land surface states affect surface fluxes, and what effect changes in surface fluxes have on the overlying atmosphere.
	F.2.3 Ecological Sampling Networks 
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	Fluxnet is an international network of long term flux measurements of carbon dioxide, water vapor, heat and momentum fluxes. The network spans the globe in terms of climate and ecological spaces. Plus many locales have clusters of sites that address land use, land use change, disturbance and management. The network has been in operation since 1997 and many sites have more than a decade of data. 
	These flux data are proving to be useful to validate and parameterize light use efficiency models that are used by the satellite remote sensing community, to identify important processes that must be captures by land modules in climate models and as priors for the new generation of data model fusion methods. Site metadata are proving critical for providing initial conditions for models. 
	Lessons learned from the network and opportunities for the two communities to collaborate will be discussed. 
	F.2.4 MIP Benchmarking Needs 
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	From Eyring et al., GMDD (2015): By coordinating the design and distribution of global climate model simulations of the past, current and future climate, the Coupled Model Intercomparison Project (CMIP) has become one of the foundational elements of climate science. However, the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. After a long and wide community consultation, a new and more f
	Reference: Eyring, V., Bony, S., Meehl, G. A., Senior, C., Stevens, B., Stouffer, R. J., and Taylor, K. E. (2015), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation, Geosci. Model Dev. Discuss., 8:10539-10583, doi:10.5194/gmdd-8-10539-2015. 
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	The objective of the Coupled Climate–Carbon Cycle Modeling Intercomparison Project (CMIP) is to design, document, and analyze carbon cycle feedbacks and nutrient interactions in climate simulations for the sixth phase of the Coupled Model Intercomparison Project (CMIP6). These biogeochemical feedbacks are uncertain and potentially large, and they play a strong role in determining future atmospheric CO levels in response to anthropogenic emissions and attempts to avoid dangerous climate change. Our recent pa
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	2) evaluate models by comparing historical simulations with observation-based estimates of climatological states of carbon cycle variables, their variability and long-term trends; 3) assess the future projections of components of the global carbon budget for different scenarios. Model benchmarking efforts being undertaken for ILAMB are particularly important for the second of these motivations. In this presentation, we will briefly describe the experimental design of the CMIP6 historical and CMIP experiment
	4

	Reference: Jones, Chris D., Vivek Arora, Pierre Friedlingstein, Laurent Bopp, Victor Brovkin, John Dunne, Heather Graven, Forrest M. Hoffman, Tatiana Ilyina, Jasmin G. John, Martin Jung, Michio Kawamiya, Charles D. Koven, Julia Pongratz, Thomas Raddatz, James T. Randerson, and SÖnke Zaehle (2016), The CMIP experimental protocol for CMIP6, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-36. 
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	The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and its predictability, including effects on the energy and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. Recently, the Land Surface, Snow and Soil moisture Model Intercomparison Project (LS3MIP) was initiated as an intercommunity effort between Global Energy and Water Cycle Exchanges Project
	The experiment structure of the LS3MIP was designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Atmospheric-Ocean General Circulation Models and Earth System Models with the following objectives: 
	» evaluate the current state of land processes including surface fluxes, snow cover and soil moisture representation in CMIP6 DECK runs; 
	» estimate multi-model long-term terrestrial energy/water/carbon cycles, using the surface modules of CMIP6 
	models under observation constrained historical (land reanalysis) and projected future (impact assessment) 
	conditions considering land use/land cover changes; 
	» assess the role of snow and soil moisture feedbacks in the regional response to altered climate forcings, focusing on controls of climate extremes, water availability and high-latitude climate in historical and future scenario runs; 
	» assess the contribution of land surface processes to the current and future predictability of regional temperature/ 
	precipitation patterns. The outcomes of the LS3MIP will eventually contribute to the improvement of climate 
	change projections by reducing the systematic biases and representing better feedback mechanisms in 
	coupled models. 
	Further, the impacts of climate change on hydrological regimes and available freshwater resources including extreme events, such as floods and droughts, will be assessed based on multi-model ensemble estimates of long-term historical and projected future changes in energy, water, and carbon cycles over land surfaces. Those achievements will contribute to the next cycle of the Intergovernmental Panel on Climate Change. 
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	The main science questions that will be addressed by LUMIP (Lawrence et al. 2016), in the context of CMIP6 are: 
	» What are the global and regional effects of land-use and land-cover change on climate and biogeochemical cycling (past-future)? 
	» What are the impacts of land management on surface fluxes of carbon, water, and energy and are there regional land management strategies with promise to help mitigate and/or adapt to climate change? 
	In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on (1) the separation and quantification of the effects on climate from land-use change relative to fossil fuel emissions, (2) separation of biogeochemical from biogeophysical effects of land-use, (3) the uni
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	One of the activities of LUMIP is to develop a set of metrics and diagnostic protocols quantify model performance, and related sensitivities, with respect to land use. De Noblet-Ducoudr et al (2012) identified the lack of consistent evaluation of a land model’s ability to represent a response to a perturbation such as land-use change as a key contributor to the large spread in simulated land-cover change responses seen in the LUCID project. As part of this activity, benchmarking data products will be identi
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	Earth system models (ESMs) are indispensable for extrapolating local observations and process level understanding of land–atmosphere exchange in both time and space. ESMs have and will continue to serve as predictive tools to understand carbon–climate interactions and global change. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal intercomparison and evaluation effort focused on the land component of ESMs, i.e., land surface mo
	(1)
	(1)
	(1)
	 to improve the diagnosis, attribution and prediction of carbon exchange at regional to global scales; and 

	(2)
	(2)
	 to diagnose causes and consequences of inter-model variability. A key design tenet of MsMTIP is its standardized protocol. Forcing data, steady-state spin-up, and boundary conditions are uniform across all participating models. Modeler discretion is constrained to allow a mapping of skill to structure. The MsTMIP effort formally consists of two phases: Phase I (now complete) assembled a cohort of ca. 20 modeling teams and has released results from 15 LSMs. These results cover the 1901–2010 time period (hal
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	PLUME addresses DGVM/LSM responses to environmental drivers under current and future projections and attempts to advance the state-of-the-art in attributing modelled carbon cycle responses to underlying mechanisms, as represented in the models. 
	The project is divided into two main tiers. 
	Tier 1 involves standard transient simulations using CMIP5 recent past and future climate as forcing. The outcomes will be used to evaluate the different responses of the terrestrial C cycle to climate projections and CO pathways. 
	2

	Tier 2 adopts the transient Traceability Framework (TF) to identify underlying causes of differences in the responses of different models to current and future climate forcing. The framework is designed to facilitate model inter-comparisons by tracking a few traceable components across models. 
	Both Tiers contribute to the aim of isolating the processes responsible for differences between models and their future projections, using a transparent and systematic methodology. The TF represent the ﬂows of carbon in the models and allows for a set of novel experiments. These experiments are based on replacing components and ﬂuxes in the models with common or observed forcing, e.g. forcing the transient TF emulator of the models with NPP or vegetation inputs to soil, to isolate and estimate the relative 
	Within the project we offer assistance to help implementation of the framework, data harmonization and storage on a common database. 
	F.2.5 Emergent Constraints and Evaluation Metrics II 
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	The northern high latitudes, with large stocks of carbon, high anticipated rates of climate change, and importance of abrupt change in ecosystem state with warming due to the importance of freeze/thaw processes, are a crucial 
	The northern high latitudes, with large stocks of carbon, high anticipated rates of climate change, and importance of abrupt change in ecosystem state with warming due to the importance of freeze/thaw processes, are a crucial 
	component of the Earth system that global models must represent. The CMIP5 ESMs fared particularly poorly in this region, due to the historical lack of attention paid to high latitude terrestrial processes in global models. I will discuss a variety of benchmarks focused around three areas: soil temperature dynamics and permafrost state, soil carbon stocks and turnover times, and hydrology dynamics. Each of these allow constraints on high latitude dynamics and may help to reduce uncertainty in model projecti
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	The Permafrost Benchmark System (PBS) will evaluate simulated permafrost dynamics against observed permafrost conditions. The project goals are 1) to develop a set of generic benchmarking tools capable of calculating performance statistics in multiple benchmarking efforts, and 2) develop benchmark datasets of permafrost dynamics based on available observations and 3) apply the PBS by evaluating models that ran the CMIP5 and MsTMIP simulations. We will collaborate with ILAMB to optimize resources and maximiz
	F.2.6 Strategies for Improving Models Through Evaluation 
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	Global land models have become increasingly complicated over the past decades as more and more processes are incorporated into the models to simulate C cycle responses to global change. As a consequence, it becomes very difficult to understand or evaluate complex behaviors of these models. Differences in predictions among models cannot be easily diagnosed and attributed to their sources. In the past few years, we have developed a new theoretical framework to quantify terrestrial carbon storage dynamics. Our
	The theoretical framework offers a suite of new techniques for evaluating and improving global land carbon cycle models. Those techniques include high-ﬁdelity emulator, three- dimensional (3D) parameter space, traceability analysis, and semi-analytic spin-up (SASU). 
	A high ﬁdelity emulator is a matrix representation of soil carbon processes. The matrix equation consists of carbon balance equations, each of which carbon input into and output from each of the individual carbon pools. We have developed emulators of CLM3.5, CLM4.5, CABLE, LPJ-GUESS, and regional TECO, which can exactly replicate 
	A high ﬁdelity emulator is a matrix representation of soil carbon processes. The matrix equation consists of carbon balance equations, each of which carbon input into and output from each of the individual carbon pools. We have developed emulators of CLM3.5, CLM4.5, CABLE, LPJ-GUESS, and regional TECO, which can exactly replicate 
	simulations of C pools and ﬂuxes with their original models when driven by a limited set of inputs from the full model (GPP, soil temperature, and soil moisture). 

	The 3D parameter space can place outputs of any carbon cycle models with a common metric to measure differences among models in terms of NPP, carbon residence time, and carbon storage potential. 
	The traceability analysis is to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. By doing so, we can attribute model-model differences to sources in model structure, parameter, and forcing ﬁelds. The traceability analysis also can be used to evaluate effectiveness of newly incorporated modules into existing models, such as adding the N module on simulated C dynamics.
	 The semi-analytical spin-up (SASU) is the analytic solution to a set of equations that describe carbon transfers within ecosystems over time. 
	F.2.7 Emergent Constraints and Evaluation Metrics III 
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	Experimental evidence suggests that productivity of most land ecosystems is limited by supplies of major nutrients, particularly nitrogen at high latitudes and phosphorus at low latitudes. However, representation of nutrient limitation in different global land models has rarely been assessed systematically. 
	Here, I will discuss three types of data for evaluating the performance of global nutrient cycles: spatially explicit data of soil nitrogen and phosphorus pools; nitrogen isotope composition; variations of C:N and N:P ratios of leaf, wood and root tissues by plant functional types or latitude; and ﬁeld long-term (>10 years) fertilizing experiments or 15N tracer experiments. Examples from the published studies will be presented to show how each type of observations are used to assess global nutrient cycle si
	Nevertheless, three major issue challenges remain. First, estimates of nitrogen ﬁxation from the unmanaged land vary from 58 to over 200 Tg N/year, and the response of the observed of nitrogen ﬁxation to CO can also be highly uncertain. Yet there is currently no globally integrated approach to reduce this uncertainty. 
	2

	Second, estimates of phosphorus input to land ecosystems through rock weathering and tectonic uplift vary by a factor of two. A recent study also found the phosphorus deposition input is signiﬁcantly larger than previous estimate. These large uncertainties make the simulations of phosphorus cycles at global scale highly uncertain. 
	Third, most global nutrient models do not represent nutrient losses from particulate matter (both organic and inorganic). These models need to be coupled to hydraulic models to simulate the nutrient exports, in both organic and inorganic forms, from land to river, which have been measured over all major rivers in the world, and can be used to evaluate global nutrient cycles in the future. 
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	Vegetated land ecosystems are shaped by climate across the globe to best take advantage of the conditions and resources available. Acclimation to different climatological states changes how each ecosystem functions, with the supply of different resources determining constraints on growth. Here we derive an empirical global map of the 
	Vegetated land ecosystems are shaped by climate across the globe to best take advantage of the conditions and resources available. Acclimation to different climatological states changes how each ecosystem functions, with the supply of different resources determining constraints on growth. Here we derive an empirical global map of the 
	sensitivity of vegetation to climate using the response of satellite-based greenness to interannual variations in surface air temperature and precipitation. We infer constraints on ecosystem function by analyzing how the sensitivity of vegetation to climate varies across climate space. We ﬁnd four broad climate regions of ecosystem function. There is a cold region below 15C, which is generally greener during warmer and drier years. There is a transition region between cold climate regions and hotter regions
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	(1) We have developed global hourly 0.5 degree land surface 2 m temperature (T) datasets based on four reanalysis products and the in situ dataset for 1948–2009. Our three-step adjustments ensure that our ﬁnal products have exactly the same monthly-mean maximum (T) and minimum (T) temperature as the CRU data. One of the uncertainties in our ﬁnal products can be quantiﬁed by their differences (Wang and Zeng 2013). 
	2m
	CRUTS3.10 
	x
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	Based on these results, we make two suggestions for model land surface T evaluation metrics: 
	2m

	» To evaluate model monthly mean temperature, which is averaged over all time steps, using the true monthly mean based on hourly values from our datasets, rather than using T = (T+ T) /2 
	m
	x 
	n

	» To save monthly averaged diurnal cycle from models and compare its range with that based on our datasets, rather than using DTR = T − T. 
	x 
	n 

	(2) 
	(2) 
	(2) 
	We have used measurements for several years at ﬁve ﬂux tower sites in the U.S. (with a total of 315,576 hours of data) along with in situ snow measurements for the coupled evaluation of both below- and above-ground processes from three global reanalysis products and six global land data assimilation products. While errors in T are highly correlated with errors in skin temperature for all sites, the correlations between skin and soil temperature errors are weaker, particularly over the sites with seasonal sn
	2m
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	It is well known that snow depth or water equivalent (SWE) varies substantially horizontally and with elevations, but we found that four methods for the spatial interpolation of peak of winter SWE and snow depth based on distance and elevation can result in large errors based on (SNOTEL and COOP) in situ data. These errors are reduced substantially by our new method; i.e., the spatial interpolation of these quantities normalized by accumulated snowfall. Our method results in signiﬁcant improvement in SWE es
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	Increase in atmospheric CO concentration stimulates plant growth, and promotes carbon uptake by land ecosystems. This process, often called CO fertilization, causes a negative feedback between atmospheric CO concentration and terrestrial carbon uptake. The feed back is considered to have a strong impact on the climate–carbon cycle 
	Increase in atmospheric CO concentration stimulates plant growth, and promotes carbon uptake by land ecosystems. This process, often called CO fertilization, causes a negative feedback between atmospheric CO concentration and terrestrial carbon uptake. The feed back is considered to have a strong impact on the climate–carbon cycle 
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	system, but that has large inter-model variation in exiting Earth system models (ESMs). In this study, we examined in detail the sensitivity of change in land carbon storage to that in atmospheric CO concentration (ΔCO) for the CMIP5 participant ESMs by breaking that down into the ratios of ΔCO, changes in gross primary production, leaf area index, net primary production, vegetation carbon, soil carbon, heterotrophic respiration, and land carbon storage. The results showed that increase in atmospheric CO co
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	F.2.8 Uncertainty Quantification (UQ) Methods 
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	Representing terrestrial processes and their exchanges with the atmosphere, land surface models are important components of Earth system models used to predict climate variations and change. Most land surface models include numerous sub-models, each representing key processes with mathematical equations and model parameters. Optimizing the parameter values may improve model skill in capturing the observed behaviors. In this presentation, we will discuss recent progress in quantifying uncertainty associated 
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	Direct application of robust uncertainty quantiﬁcation techniques, such as Monte Carlo methods, to high-resolution land models is typically infeasible even with existing high-end computing ecosystems. To reduce the computational burden of applying these techniques, we develop certiﬁed reduced order models, or emulators, to efficiently approximate solutions to high-resolution land models at a signiﬁcant reduced cost. For a watershed-scale land model, we demonstrated that the proper orthogonal decomposition m
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	For computationally expensive climate models, Monte-Carlo approaches of exploring the in put parameter space are often prohibitive due to slow convergence with respect to ensemble size. To alleviate this, we build inexpensive surrogates using uncertainty quantiﬁcation (UQ) methods employing Polynomial Chaos (PC) expansions that approximate the input-output relationships using as few model evaluations as possible. However, when many uncertain input parameters are present, such UQ studies suffer from the curs
	We apply the surrogate construction and variance-based uncertainty decomposition to Accelerated Climate Model for Energy (ACME) Land Model for several output quantities of interest at model grid cells representing the locations of 100 FLUXNET sites, covering multiple plant functional types and a broad array of climates, varying 65 input parameters over ranges of possible values deﬁned by literature and expert opinion. We ﬁnd general consistency of the top 10–15 most sensitive parameters across sites and acr
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	Models are our primary tool for synthesizing our understanding of ecosystems and projecting the impact of global change on ecosystem services associated with carbon, energy and water ﬂuxes and storage. Recently the use of models as a scaffold for data-driven synthesis has expanded and there is increasing interest in formal model– data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration of observations, and guide model developments as well as focus data colle
	Models are our primary tool for synthesizing our understanding of ecosystems and projecting the impact of global change on ecosystem services associated with carbon, energy and water ﬂuxes and storage. Recently the use of models as a scaffold for data-driven synthesis has expanded and there is increasing interest in formal model– data experimentation (ModEx) frameworks to quantify uncertainties, evaluate models, enable the integration of observations, and guide model developments as well as focus data colle
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	conduct mulit-model, multi-institutional model comparisons and synthesis activities. In this talk, we will review the capabilities within PEcAn for formal UQ/VD to guide modeling activities but also discuss the many other features and provide an example of the capability for data assimilation and model–data experimentation. 
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	ACME Accelerated Climate Modeling for Energy AGU American Geophysical Union ALM ACME Land Model ALMA Assistance for Land-surface Modeling Activities convention for NetCDF files AMIP Atmospheric Model Intercomparison Project API application programming interface ASCAT Advanced SCATterometer 
	BCS Bayesian Compressive Sensing 
	C carbon CESM Community Earth System Model CF Climate and Forecast convention for NetCDF files C-LAMP Carbon-Land Model Intercomparison Project CLM Community Land Model CMIP Coupled Climate-Carbon Cycle MIP CMIP Coupled Model Intercomparison Project CRU Climate Research Unit CTFS Center for Tropical Forest Science CZO Critical Zone Observatory 
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	DA data assimilation DECK Diagnostic, Evaluation, and Characterization of Klima DGVM dynamic global vegetation model DOE U.S. Department of Energy DVM dynamic vegetation model 
	ECV essential climate variable ESGF Earth System Grid Federation ESM Earth System Model ESM-SnowMIP Earth System Model Snow Model Intercomparison Project ESMValTool Earth System Model Evaluation Tool ET evapotranspiration 
	FACE Free-Air Carbon dioxide Enrichment FIA Forest Inventory and Analysis FLUXNET Global eddy covariance flux network of regional networks ForestGEO Forest Global Earth Observatory 
	GEDI Global Ecosystem Dynamics Investigation GEM Global Ecosystem Monitoring network GFDL Geophysical Fluid Dynamics Laboratory GLACE Global Land-Atmosphere Coupling Experiment GPP gross primary production GRDC Global Runoff Data Center GRACE Gravity Recovery And Climate Experiment GSA global sensitivity analysis GSWP3 Global Soil Wetness Project 3 GUI graphical user interface 
	HPC high-performance computing 
	HPC high-performance computing 
	ICOS Integrated Carbon Observation System ILAMB International Land Model Benchmarking IS imaging spectroscopy ITCZ Inter-Tropical Convergence Zone ITEX International Tundra Experiment 

	JPL Jet Propulsion Laboratory JSON JavaScript Object Notation 
	KL Karhunen-Loeve 
	LAI leaf area index LH latent heat LiDAR Light Detection And Ranging LIS Land Information System LS3MIP Land Surface, Snow and Soil Moisture Model Intercomparison Program LSM land surface model LUCID Land-Use and Climate, IDentification of robust impacts LULCC land use and land cover change LUMIP Land Use Model Intercomparison Project LVT Land surface Verification Toolkit 
	MC Monte Carlo MCMC Markov Chain Monte Carlo MDF model–data fusion MIP model intercomparison project ModEx Model–data experimentation MOPEX Model Parameter Estimation Experiment MSE mean-square error MsTMIP Multi-scale Synthesis & Terrestrial Model Intercomparison Project MTE model tree ensemble 
	NACP North American Carbon Program NASA National Aeronautics and Space Administration NBP net biosphere productivity NCAR National Center for Atmospheric Research NCEP National Centers for Environmental Prediction NCL NCAR Command Language NDVI Normalized Difference Vegetation Index NEE net ecosystem exchange NEON National Ecological Observatory Network NEP net ecosystem productivity NetCDF Network Common Data Form NGEE Next Generation Ecosystem Experiments NOAA National Oceanic and Atmospheric Administrati
	OAT one at a time 
	PalEON Paleo-Ecological Observatory Network PALS Protocol for the Analysis for Land Surface models PC polynomial chaos PCMDI Program for Climate Model Diagnosis and Intercomparison PCN Permafrost Carbon Network PDA Parameter data assimilation PDF probability density function PEcAn Predictive Ecosystem Analyzer 
	PalEON Paleo-Ecological Observatory Network PALS Protocol for the Analysis for Land Surface models PC polynomial chaos PCMDI Program for Climate Model Diagnosis and Intercomparison PCN Permafrost Carbon Network PDA Parameter data assimilation PDF probability density function PEcAn Predictive Ecosystem Analyzer 
	PF particle filter PFT plant functional type PLUMBER PALS Land Surface Model Benchmarking Evaluation Project PLUME Processes Linked to Uncertainties Modelling Ecosystems PMP PCMDI Metrics Package 

	QOIs quantities of interest 
	RAINFOR Amazon Forest Inventory Network Re ecosystem respiration RECCAP REgional Carbon Cycle Assessment and Processes RMSE root-mean-square error RTM radiative transfer model 
	SA sensitivity analysis SAChES Scalable Adaptive Chain Ensemble Sampling SavMIP MIP focused on Australian savannas SDA state-variable data assimilation SFA Scientific Focus Area SH sensible heat SIF solar-induced fluorescence SMAP Soil Moisture Active Passive mission SMOS Soil Moisture and Ocean Salinity mission SOM soil organic matter SPRUCE Spruce and Peatland Responses Under Climatic and Environmental Change SST sea surface temperature SWE snow water equivalent 
	TBM terrestrial biosphere model TES Terrestrial Ecosystem Science TF Traceability Framework TIR thermal infrared TRACE Tropical Responses to Altered Climate Experiment TRIP Total Runoff Integrating Pathways TRMM Tropical Rainfall Measurement Mission TWS total water storage TWSA total water storage anomaly 
	UK United Kingdom UQ uncertainty quantification US United States USA United States of America USDA US Department of Agriculture 
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	WCE weather and climate extreme WIBCS Weighted Iterative Bayesian Compressive Sensing WMO World Meteorological Organization 
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