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Acronyms and Abbreviations
AMIP Atmospheric Model Intercomparison 

Project 

ASoP Analysing Scales of Precipitation

AR atmospheric river

ARM  Atmospheric Radiation Measurement

ARTMIP Atmospheric River Tracking Method 
Intercomparison Project

BOG breakout group

CCB cold conveyor belt

CCl Commission for Climatology

CCS cold cloud system

CDD consecutive dry days

CESM Community Earth System Model

CLIVAR Climate and Ocean: Variability, 
Predictability and Change

CLUBB Cloud Layers Unified By Binormals

CMEC Coordinated Model 
Evaluation Capabilities

CMIP  Coupled Model Intercomparison 
Project 

CORDEX  Coordinated Regional Climate 
Downscaling Experiment

CWV column water vapor

DECK CMIP Diagnostic, Evaluation and 
Characterization of Klima experiments 

DI dry intrusion

DJF December–January–February 

DOE U.S. Department of Energy 

E3SM Energy Exascale Earth System Model 

ECMWF European Centre for Medium-Range 
Weather Forecasts

EESM Earth and Environmental 
Systems Modeling

EGU European Geophysical Union

ENA Eastern North Atlantic

ENSO El Niño Southern Oscillation

ERA ECMWF Re-Analysis

ESM earth system model

ET Expert Team

ETC extra-tropical cyclone

ETCCDI Expert Team on Climate Change 
Detection and Indices

FROGS Frequent Rainfall Observations 
on Grids

GASS GEWEX Global Atmosphere and 
System Studies

GDAP GEWEX Data Assessment Panel

GEWEX Global Energy and Water 
cycle Exchanges

GEV Generalized Extreme Value

GFDL Geophysical Fluid Dynamics 
Laboratory 

GISS Goddard Institute of Space Studies

GPCP Global Precipitation 
Climatology Project

HighResMIP  High-Resolution Model 
Intercomparison Project

IDF intensity-duration-frequency
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ILAMB International Land Model 
Benchmarking Project

IMILAST Intercomparison of Midlatitude Storm 
Diagnostics 

IOC Intergovernmental 
Oceanographic Commission

IPWG International Precipitation 
Working Group

IVT integrated vapor transport

JCOMM Joint Technical Commission  
for Oceanography and 
Marine Meteorology

MAE mean absolute error

MAPP NOAA Modeling, Analysis,  
Predictions and Projections

MCS mesoscale convective systems

MD monsoon depression

MDTF Model Diagnostics Task Force

MJO Madden-Julian Oscillation

NASA National Aeronautics and 
Space Administration

NCAR National Center for 
Atmospheric Research

NOAA National Oceanic and 
Atmospheric Administration

NSA North Slope of Alaska

NWP numerical weather prediction

PCMDI Program for Climate Model  
Diagnosis & Intercomparison

PDF probability distribution function

PF precipitation feature

PMP PCMDI Metrics Package 

PNA Pacific North America Pattern

RGMA Regional and Global Model Analysis

RMCS robust mesoscale convective system

RMS root mean square

RMSE root-mean-square error

Rx1day monthly maximum 1-day precipitation

Rx3h monthly maximum three 
hourly precipitation

Rx5day monthly maximum consecutive 
5-day precipitation

SDII Simple Daily Intensity Index

SGP Southern Great Plains

SJ sting jet

SLP sea level pressure

SPI Standardized Precipitation Index

SST sea surface temperature

TC tropical cyclone

TRMM Tropical Rainfall Measuring Mission

UNICON Unified Convection Scheme

USGCRP United States Global Change 
Research Program

WCB warm conveyor belt

WCRP World Climate Research Programme

WGNE Working Group on 
Numerical Experimentation

WMO World Meteorological Organization

WS weather state
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Executive Summary
Earth system models (ESMs) bridge observationally based 
and theoretical understanding of the Earth system. They are 
among the best tools to study a variety of questions related 
to variability and changes in the Earth’s climate. ESMs 
realistically simulate observed large-scale precipitation 
patterns and seasonal cycles that have a multitude of 
societal and national security implications. 

Despite steady improvement in the simulation of precipitation 
characteristics, persistent errors in several aspects of simulated 
precipitation preclude higher confidence in using ESMs  
to understand earth system variability and change and to 
make decisions. 

In July 2019, the Regional and Global Model Analysis (RGMA) 
Program Area within the Earth and Environmental Systems 
Modeling (EESM) Program in the Climate and Environmental 
Sciences Division at the U.S. Department of Energy (DOE) 
led a two-day Precipitation Metrics Workshop, led by DOE 
Program Manager Renu Joseph and co-chaired by Peter 
Gleckler of Lawrence Livermore National Laboratory, 
Angeline Pendergrass of the National Center for Atmospheric 
Research (NCAR), and Ruby Leung of Pacific Northwest 
National Laboratory. 

A diverse group of experts participated in the workshop, 
including model developers, observational experts, 
scientists with expertise in diagnosing or evaluating 
simulated precipitation and related processes, and  
several with experience in objectively summarizing model 
performance with metrics. Among others, they represented 
the National Aeronautics and Space Administration (NASA), 
National Oceanic and Atmospheric Administration (NOAA), 
DOE national laboratories, and universities. 

The impetus for the workshop: Improve modeled 
precipitation by designing a capability to comprehensively 
evaluate ESMs—a capability that will help ESM developers 
better understand their models, providing them with 
quantitative targets for demonstrating model improvements. 
Two main thrusts drove the workshop dialogue: 

• identify a holistic set of observed rainfall characteristics 
that could be used to define metrics to gauge the 
consistency between ESMs and observations

• assess state-of-the-science methods used to evaluate 
simulated rainfall and identify areas of research for 
exploratory metrics for improved understanding of 
model biases and meeting stakeholder needs.

Baseline Metrics
Throughout the workshop, discussions frequently addressed 
a key expectation of the workshop—identification of a set of 
observed characteristics to be used for model benchmarking. 
It was widely recognized that there is no one right way to 
do this, and multiple viable approaches were discussed. 
Workshop participants did, however, agree that it was 
important to establish a starting point and that this effort 
would improve and expand over time.

During the final plenary session, a set of six large-scale 
characteristics was agreed upon as an appropriate starting 
point for developing a set of baseline precipitation metrics. 
A proposed tiered system includes a wider range of quantitative 
measures that would provide much more detail than the six 
scales. These measures are designed to be applied to the 
common set of simulations requested from all modeling 
groups participating in the current phase of the Coupled 
Model Intercomparison Project (CMIP6).

Exploratory Metrics
While the basic function of precipitation metrics is  
to benchmark model simulations of precipitation for 
documenting model performance and improvements over 
time, precipitation metrics are useful for a broad community 
of researchers and stakeholders with interest in precipitation. 

Key Workshop Expectation

Identify a set of performance metrics that can 
serve as a baseline to gauge the agreement 
between observed and simulated precipitation 
and discuss exploratory metrics for future use.
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Exploratory metrics go beyond the baseline metrics and 
often include aspects of model simulations that require 
higher-temporal-frequency precipitation data or cannot  
be evaluated based on precipitation data alone.

They can be useful for model developers in guiding model 
development, for earth system scientists investigating 
precipitation variability and change, and for researchers and 
stakeholders interested in specific aspects of precipitation 
relevant to their applications. Based on the users and  
their needs, exploratory metrics were grouped into three 
types according to their functions and characteristics: 
process-oriented metrics, regime-oriented metrics, and 
use-inspired metrics.

Charting a Path Forward
Research Community Engagement: Representatives of 
several related international activities attended and were 
engaged in the workshop. Both the Global Energy and 
Water cycle Exchanges (GEWEX) Data Assessment Panel 
and the International Precipitation Working Group (IPWG) 
provided crucial expertise with respect to remote and in 
situ-based measurements.

As progress with precipitation metrics advances with both 
groups, collaboration with the World Climate Research 
Programme (WCRP) will help expand the effort to engage 
with the broader modeling community. Briefings of this 
activity are expected at upcoming sessions of the Working 
Group on Numerical Experimentation (WGNE) and 
GASS (GEWEX Global Atmosphere and System Studies).

Benchmarking: To establish a baseline for climate model 
precipitation benchmarking, the first step is to apply the 
initial set of metrics agreed upon to CMIP6. A publication 
will document the skill, according to these metrics, of 
precipitation in CMIP6 simulations. Results from earlier 
generations of climate models will be included in the 
publication to document progress over the last 20 years.

In five to seven years, this procedure will be revisited to 
assess the progress made in the intervening period. The 
goal is to both motivate progress on improving model 

precipitation and to facilitate it by providing appropriate 
and holistic observational targets. In the interim, baseline 
metrics will gradually develop as they are informed by the 
exploratory efforts.

Exploratory: There are long-term needs to develop and 
improve exploratory metrics for broad use; there are  
also strong foundations for metrics applied to climate 
simulations. A working group on exploratory metrics  
was established at the workshop to develop coordinated 
near-term activities to advance the development and use  
of exploratory metrics. 

The first identified activity is a collaborative effort on a 
manuscript to discuss the need for exploratory metrics,  
to introduce an initial set of exploratory metrics, and to 
apply them to simulations produced by CMIP6 models. 
These model outputs can be useful for different communities 
of users (model developers, climate scientists, and impacts 
researchers and stakeholders).

The working group identified the following topics to 
include from the process-oriented, regime-oriented, and 
use-inspired metrics for demonstration of an initial set of 
exploratory metrics:

• Coherence in space and time

• Frontal precipitation

• Top 10 extreme events

• Convection onset

• Orographic enhancement

• Monsoon

• Mesoscale convective systems

• Madden-Julian Oscillation

• Atmospheric rivers.

Near-term activities will be coordinated within the group 
and with relevant activities supported by other agencies 
and programs.
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Next Steps: 

1. Assess the current generation of models to document a baseline.

2. Bring metrics together into a common analysis framework.

3. Make the capability available to modelers and challenge them to improve their models.

4. Work with the WCRP to promote an initiative to stimulate the challenge and—ideally—bring 
resources to modelers.

5. Revisit with a next generation of models to see how well models have improved.

Figure 1. The workshop addressed existing needs and gaps from the research community by defining  
and prioritizing a set of precipitation metrics and developing a future strategy for model evaluation  
and intercomparison.
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Introduction
Earth System Models (ESMs) have continuously struggled 
with simulating precipitation accurately, which has resulted 
in persistent biases evident across generations of models. A 
key factor driving this lack of progress on precipitation is the 
lack of attention that many of its facets receive in the model 
development and tuning process; namely, insufficient attention 
is paid to most aspects of precipitation aside from the mean 
spatial pattern. Instead, the tuning process focuses on the time 
series of global mean surface temperature, often optimizing 
temperature at the expense of the fidelity of precipitation. 
One barrier to addressing these shortcomings is a lack of 
consensus about which characteristics of precipitation to 
target, and what the best observations of these characteristics 
are. The result is that precipitation characteristics, such as 
intensity, duration, or intermittency, are often incorrect. 

Accurately simulating the many processes that contribute to 
precipitation is not the only challenge—observing precipitation 
is also a persistent difficulty. Model development groups 
are less than ideally situated to assess which characteristics 
of precipitation are observed with the highest confidence. 
Furthermore, uncertainty in observations of precipitation is 
usually large—so including uncertainty information along 
with observations is essential to avoid over-fitting during the 
model development and tuning process. 

The precipitation metrics workshop was prompted by the 
need to expedite the improvement of precipitation in models. 
The main thrust of the workshop was to identify benchmarks 
and metrics to evaluate models, including understanding the 
limitations in the observations used to characterize reality and 
track progress in models. To address the gap in information 
about the quality of simulated precipitation, a prioritized set 
of precipitation characteristics and a set of observational 
benchmarks, including uncertainty, has been needed. This 
workshop thus gathered an expert team on model evaluation 
and precipitation observations to: identify a set of metrics for 
precipitation that address salient features, processes, and use 
cases; prioritize those characteristics that should be targeted 
for improvement in model development and evaluation; and 
identify the best available observations of these metrics and 
their uncertainty. This set of observational benchmarks for 
precipitation can facilitate a focus on improving precipitation 
in the model development process.

Faithfully reproducing the many spatial and temporal scales 
of precipitation (Figure 2) is one of the most important and 
yet also the most challenging tasks of ESMs. Precipitation is 
also the signature of atmospheric latent heating, determining 
circulation features from global to local scales, and is intimately 
linked to cloud processes and cloud-radiative effects that 
dominate modeling uncertainties in quantities such as the 
sensitivity of temperature to radiative forcing. Without 
progress in modeling precipitation, a multitude of barriers 
will remain. For example, a lack of fidelity in modeled rainfall 
will compromise the realism in simulating biogeochemical 
interactions with the land surface, which in turn will limit 
our ability to estimate carbon feedbacks. With a carefully 
selected expert team, we have begun the process of designing 
and implementing a capability that will enable routine and 
systematic evaluation of simulated precipitation at all scales 
in ESMs. This analysis suite will capture a holistic set of 
precipitation characteristics to quantifiably interrogate 
models with observations across space and time scales. It 
will provide clear targets to focus on modeling priorities 
toward improving key processes directly linked to simulating 
precipitation deficiencies. Certainly, this effort is an essential 
component of the process for evaluating and improving 
models (Figure 3).

Figure 2. Spatial and temporal characteristics of atmospheric 
processes and features relevant to precipitation.
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Just as precipitation spans many space and time scales, 
precipitation errors in model outputs can be found on  
all scales, ranging from large-scale, long-standing rainfall 
biases in the tropics, to errors in simulating rainfall associated 
with mid-latitude frontal systems and large-scale tropical 
circulations such as the Madden Julian Oscillation (MJO), 

to local errors in the diurnal phase and amplitude of 
precipitation. It will be essential to probe all relevant 
phenomena with a unified analysis capability to test the 
performance of CMIP-class ESMs, with an objective to 
quantify the added skill of the higher-resolution models on 
the horizon.

Figure 3. A flowchart depicting a simplified view of the metric and model development process.

2
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Workshop Structure
The two-day precipitation metrics workshop was organized 
to facilitate extensive participant discussions (Appendix A). 
Many of the approximately 40 participants gave presentations, 
and others were given frequent opportunities to contribute 
to the ideas being developed in breakouts and plenary 
discussion sessions. Breakouts were held on both days, 
followed by plenary sessions for breakout reports and 
continued discussion on advancing the objectives and  
goals of the workshop.

Objectives and Goals
Despite many years of effort and significant investment, 
model errors in precipitation have remained large, hindering 
the use of ESMs in decision making. Progress hinges on 
mobilizing ideas and resources to address the many problems 
likely involved in the poor simulation of precipitation, from 
cumulus parametrization to microphysical processes, and the 
atmospheric thermodynamic environment and circulation. 
This workshop has attempted to reinvigorate focus toward 
improving simulated precipitation, which is urgently needed, 
by bringing together model developers, observationalists, 
and theoreticians who focus on different aspects of 
precipitation, including its spatial distribution and the 
frequency of occurrence of extreme events.

The immediate goals of the workshop were accomplished by 
establishing a set of precipitation characteristics for gauging 
model performance (discussed in Section 3) and identifying 
research topics for developing exploratory metrics (Section 4). 
Furthermore, the active discussions and enthusiasm evident 
during the workshop indicated the group’s preparedness for 
embarking on a long-term initiative. 

After the workshop, the short-term goal is to establish a 
baseline by documenting the performance of the current-
generation models with the agreed-upon benchmarks. 
Related to this goal is the need to create an analysis capability 
that enables modelers to reapply the performance tests to 
newer model versions. During this and later phases of the 
effort, the exploratory group will be tasked with developing 
increasingly insightful metrics that are sufficiently robust for 
inclusion in the baseline set. It is envisioned that as these 
benchmarks mature, the modeling community will recognize 
them as viable targets for improving their models and that 
funding agencies will support them in striving to demonstrate 
improvement. This sequence will facilitate the longer-term 
goal of establishing performance targets that guide the 
improvement of models.

Scope
The impetus for this workshop was developed over several 
years, based on concerns that there has been inadequate 
progress in improving the quality of precipitation projections 
using ESMs, particularly during CMIP5 and CMIP6. Parallel 
to these concerns, it has also been recognized that forecasting 
precipitation using deterministic and stochastic numerical 
weather prediction (NWP) models has been lacking, 
particularly for subseasonal-to-decadal applications. But 
the research environment for longer-term coupled model 
projections is unique. In the NWP community, specific 
metrics for simulation skill have provided a useful target 
for general improvement, and these simple metrics have 
motivated and enabled documented progress towards 
higher-quality weather forecasts over the last several decades. 
A classic example of a simple metric that has provided a 
useful benchmark and target for NWP is the skill of 
simulating 500 hPa geopotential height, quantified by its 
anomaly correlation. Despite an emphasis on the importance 
of simulating precipitation in ESMs and a general sense that 
sufficient accuracy is lacking at present, the community has 
been more reluctant to take up specific metrics for skill in 
simulating precipitation. Limited resources have often been 
used to include additional processes considered important 
for century-scale simulations, arguably at the expense of 
progress in precipitation. A comprehensive approach to 
evaluating simulated precipitation would be useful for many 
applications (including NWP), but attempting to address all 
applications at once could limit progress, hence the initial 

Overarching Workshop Objectives

To identify precipitation characteristics that will 
be used to establish a limited set of benchmarks 
for gauging the consistency between ESMs 
and observations.

To assess state-of-the-science methods used to 
evaluate simulated precipitation, and to identify 
areas of research where well-established metrics 
are needed but currently lacking.
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focus here on CMIP-class ESMs. In many ways, a scope of 
CMIP-class models helps bring focus to the effort. Carefully 
designed experimental protocols are already in place and used 
by the modeling community. These include the CMIP6 
Diagnostic, Evaluation and Characterization of Klima 
(DECK) and coupled Historical experiments. The DECK 
experiments include coupled and uncoupled protocols that 
are useful for evaluating simulated precipitation, namely the 
pre-industrial control and prescribed sea surface temperature 
and sea-ice atmosphere-only simulations defined by the 
Atmospheric Model Intercomparison Project (AMIP) 
protocol. Additionally, the standard model output for each 
of these experiments is well defined, including, e.g., monthly 
mean, daily, and 3-hourly precipitation. Selected output 
fields are also available for snow cover.

To create a framework for evaluating simulated precipitation in 
ESM simulations, one focus of the workshop was to generate 
a set of metrics that are ready to be applied to CMIP6 
simulations to evaluate them against existing observational 
data sets. To be able to apply the metrics in short order to 
all model simulations, this initial set is limited in scope to 
metrics that require only precipitation data, which will be 
available from CMIP6 DECK and Historical simulations, 
and is also limited to metrics that are already established in 
the scientific literature. The set of metrics is intended to 
evaluate the characteristics of precipitation as holistically as 
possible within these constraints. The resulting set of metrics 
identified at the workshop include the spatial distribution 
of mean-state precipitation, its seasonal cycle, variability on 
timescales ranging from diurnal to decadal, the intensity and 
frequency distributions of precipitation, heavy precipitation 
extremes, and drought.

In parallel with this initial effort to describe benchmark skill 
in simulating precipitation for the current generation of 
model simulations with available model output, observational 
data, and methodologies, a second focus of the workshop 
was to identify what next steps will be needed beyond this 
initial benchmarking. The effort towards exploratory metrics 
considered questions including: what metrics are useful to 
quantify the processes that generate precipitation? These 
often require more model output and observational data 
than just precipitation, and in many cases, fall into gaps in 
the existing literature. Other exploratory metrics focus on 
specific weather regimes, which are associated with process-
based metrics but occur at a broader scale. Use-inspired 

metrics specifically focus on evaluating aspects of simulated 
precipitation that are important for the needs of users of 
these simulations. Invariably, there is interest in testing the 
veracity of simulated precipitation beyond the CMIP DECK 
and Historical experiments. The first test will be to scrutinize 
simulations performed at higher resolutions as in the 
CMIP6-endorsed High Resolution Model Intercomparison 
Project (HighResMIP). One challenge for evaluating simulated 
precipitation is determining the best way to quantify the 
skill that is added from increasing model resolution.

Organization of the Workshop
The workshop organization committee was led by DOE 
Program Manager Renu Joseph and co chaired by Peter 
Gleckler of Lawrence Livermore National Laboratory, Angeline 
Pendergrass of the National Center for Atmospheric Research 
(NCAR), and Ruby Leung of Pacific Northwest National 
Laboratory. The first morning began with presentations 
articulating background, motivation, and expectations of 
the workshop (Appendix A). All attendees were then given 
an opportunity to provide their reactions to the organizers’ 
presentations as well as the pre-meeting materials. Following 
these discussions, additional morning presentations 
emphasized topics relevant to defining the first set of 
precipitation metrics. These included perspectives from 
several modelers, who summarized challenges associated 
with evaluating simulated precipitation against satellite-
based observations, and several presentations related to 
extremes, impacts, and “use-inspired” metrics. After lunch, 
two breakout groups met to address the same set of discussion 
topics (in parallel) related to establishing a baseline set of 
metrics and how to establish them. The first day concluded 
with summaries from the breakouts and an extended 
discussion about the next steps. 

The second day began with a discussion period to enable 
participants to share evening discussions and overnight 
thoughts. A morning session of presentations followed  
with topics relevant to exploratory metrics. The second  
set of breakout groups met during the afternoon: one  
to advance the establishment of an initial set of metrics 
(Section 3) and a second to identify research topics  
that could ultimately lead to a more advanced set  
of precipitation metrics (Section 4).
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Community Participation
A diverse group of experts participated in the workshop, 
including model developers, observational experts, and 
scientists with expertise in diagnosing or evaluating simulated 
precipitation and related processes, and several with experience 
in objectively summarizing model performance with metrics. 
Recognizing the critical importance of observations in this 
effort, attendees included scientists involved in the preparation 

of an assessment of observationally based precipitation 
products, which is an effort being led by the GEWEX Data 
Assessment Panel (GDAP). Other examples include the 
targeted analysis of NOAA’s Model Diagnostics Task Force 
(MDTF; Maloney et al. 2019) emphasizing process-oriented 
diagnostics, and developers of the software Analyzing Scales 
of Precipitation (ASoP; Klingaman et al. 2015, Martin et 
al. 2017) that diagnose structures of coherence at shorter 
time scales.
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A key expectation of this workshop was to identify a limited 
set of performance metrics that could serve as a baseline  
to gauge the agreement between observed and simulated 
precipitation. The intent is for this to serve as a starting point 
or set of building blocks upon which newer performance tests 
would be included as they are vetted over time. More research 
is needed to establish these newer exploratory metrics as 
discussed in Section 4.

Benchmarking Strategy
This workshop has been motivated by the lack of progress in 
improving simulated precipitation. One reason for the limited 
progress is that insufficient attention has been given to this 
problem, sometimes resulting from limited resources being 
focused on modeling areas not directly related to precipitation 
and its variability. Given that precipitation is highly relevant 
to society, the intent of this workshop was to re invigorate 
interest by establishing a collective effort to tackle the problem. 
The benchmarking discussions during the workshop and 
subsequent strategic efforts, sequentially, include:

During the workshop

1. Establish a small group of scientists with a diverse set of 
expertise related to simulated precipitation, including 
modelers, analysts, and data experts.

2. Identify a holistic set of characteristics where well-
established performance tests already exist.

3. Identify research topics that could lead to more advanced 
performance metrics that can be applied in the future 
(Section 4).

After the workshop

1. Assess the current generation of models based on these 
tests to document a baseline.

2. Bring together these metrics into a common 
analysis framework.

3. Make this capability available to modelers and  
challenge them improve their models based on the 
performance benchmarks.

4. Work with the WCRP to promote an initiative to 
stimulate the challenge and hopefully bring resources  
to modelers to address it.

5. Revisit with next-generation models to see how well 
models have improved.

Baseline Metrics
The breakouts and discussions addressed a key expectation 
of the workshop—identification of a limited set of observed 
characteristics to be used for model benchmarking. This was 
challenging as it was widely recognized that there is no one 
right approach, and multiple viable approaches were discussed. 
The workshop participants did, however, agree that it was 
important to establish a starting point and that this would 
improve and expand over time via experience and community 
feedback. For example, some metrics require more information 
than just about precipitation and relate to generation 
mechanisms or the large-scale environment. Participants 
decided that these would not be included in the initial set 
of metrics, but rather classified as exploratory (discussed in 
Section 4). In the future, these may be reclassified into 
baseline metrics, after they are more extensively tested for 
feasibility in the CMIP archive and recognized as serving 
the needs of users of the metrics. During the final plenary 
session, a set of six broad categories was agreed upon as an 
appropriate starting point for developing a set of baseline 
precipitation metrics. A tiered system was discussed to include 
a wider range of quantitative measures that would provide 
more detail than six scalars (Figure 4). For example, global-
scale annual-mean characteristics may be appropriate for a 

Proposed Baseline for Precipitation Metrics

Figure 4. A draft layout of Tiers 1 and 2, resulting from workshop 
breakout discussions.
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top-level tier, but regional and seasonal statistics could be 
organized into additional tiers. These measures are all designed 
to be applied to the common set of simulations requested from 
all modeling groups participating in CMIP6—the Historical 
and DECK simulations—and focus on only precipitation data 
at timescales from monthly to 3-hourly, as well as snow. The six 
characteristics of simulated precipitation are summarized here:

1. How well do models simulate the spatial distribution 
of average precipitation?

Modelers and analysts have for many years compared global 
time mean maps of observed and simulated precipitation, and 
now routinely include difference maps to identify model errors 
in packages for the model development process as recently 
highlighted with several different versions of DOE’s Energy 
Exascale Earth System Model (Figure 5; Golaz et al. 2019).

Including standard metrics for the spatial pattern of the mean 
state enables the metrics set to build on existing workflows 
as observed and simulated seasonal means are often examined 
in routine model evaluation. The root-mean-square (RMS) 
error of the mean state and the pattern correlation are two 
integrative metrics for the skill of mean precipitation. The 
mean absolute error (MAE) is a useful complement not 
heavily weighted by outliers.

While examining the spatial pattern of total precipitation is 
routine, a lack of trustworthy snowfall measurements has 
precluded snowfall as being a routine measure. The CloudSat 
satellite provides a measure of snowfall amount (Figure 6) 
that can be used to evaluate the spatial pattern of snowfall 
in model simulations. But there are challenges in making 
an appropriate comparison between snow characteristics 
currently observed by satellites and simulated quantities, 
reducing the overall confidence in evaluation of snow 
compared to rainfall.

Figure 5. (a) Annual mean Global Precipitation Climatology Project 
estimated precipitation rates and the biases in several in several 
model versions (b) EAMv0 and (c) EAMv1L. The white color in (b) 
and (c) indicates the regions where differences are less than 0.2 
mm/d. Adapted from Xie et al. 2018.

Figure 6. Global map of present-day near-surface snow frequency: 
observed CloudSat snow (top), Community Earth System Model 
(CESM)1 CloudSat snow (bottom). CloudSat light snow and 
CloudSat snow definitions are based on reflectivity and fraction  
of ice present. (Adapted from Kay et al. 2018)

2. How well do models simulate the seasonal cycle 
of precipitation?

The seasonal means often examined in routine model evaluation 
reveal the spatial characteristics of a given season, but they 
do not yield information about the amplitude or phase of 
the seasonal cycle. A common way to do this is to apply a 
Fourier transform to the 12-monthly means at each spatial 
location (grid cell). This provides a map of both the amplitude 
and phase of the seasonal cycle (Figure 7). Straightforward 
statistics comparisons between model simulations and 
observations can then be made analogously to the spatial 
patterns of the mean state.

Figure 7. Total precipitation (mm/day). Top row: Observational 
(CMAP) annual amplitude and phase; Second row: Multi- 
model ensemble annual amplitude and phase. (Adapted from 
AchutaRao et al. 2008)
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A well-established approach to comparing model and 
observed patterns is via a Taylor diagram (Taylor 2001), 
providing a succinct quantitative display of three theoretically 
related statistics—the pattern correlation, standard deviation, 
and centered root-mean-square error. Many modeling groups 
routinely use Taylor diagrams to help summarize performance 
characteristics. These diagrams are one way the mean and 
seasonal metrics can be summarized (e.g., Figure 8).

3. How well do models simulate precipitation variability 
across time scales?

Precipitation varies across a wide range of timescales. At the 
shortest timescale of model integrations (O[timestep]), 
there are rich coherence characteristics that are not routinely 
analyzed but more directly capture modeled precipitation 
(c.f., Klingaman et al. 2017, Martin et al. 2017). Efforts are 
advancing to make these analyses more available (e.g., via 
an open-source package, Analysing Scales of Precipitation – 
ASoP), but they are not yet routine in model intercomparisons 
or model evaluation. The expectation is that these performance 
tests will become more widely adopted and applied in the 
model development and evaluation process, becoming part 
of baseline performance tests (see Section 4). With the value 
of these tests being increasingly recognized, it is expected that 
the next generation of CMIP will include some output to be 
saved by model time-step.

The diurnal cycle, a forced component of shorter-timescale 
variability, is resolved with standard (3-hourly) CMIP output. 
Models exhibit well-known deficiencies, such as a tendency 
to produce rainfall too early in the day (Figure 9; Covey  
et al. 2016, Diaz et al. 2006). Several recent studies have 
demonstrated that there are also systemic deficiencies in the 
sub-diurnal or intermittent precipitation in CMIP-class 
models (Trenberth et al. 2017, Covey et al. 2018), although 
differences among satellite-derived products are non-trivial. 
For these and longer timescales, complementary approaches 
were discussed in breakout groups for evaluating temporal 
variability: an examination of the temporal standard deviation 
with different averaging times and band-pass filtered time 
series. More regime-oriented metrics relevant to the diurnal 
cycle, such as mesoscale convective systems in the U.S. that 
exhibit a nocturnal maximum, are discussed in Section 4.

Figure 9. Harmonic dial plots of the amplitude and phase of 
Fourier components, after vector averaging over land and 
ocean areas separately, for Tropical Rainfall Measurement Mission 
(TRMM) 3B42 (black lines and dots), the four highest-resolution 
CMIP5 models (colored lines), and for the other 17 CMIP5–AMIP 
models with only July results shown for clarity (gray dots). 
(Adapted from Covey et al. 2016)

Figure 8. Taylor diagrams quantify the differences between 
observed and simulated precipitation for the four seasons. Model 
results are from the CMIP5 and compared to GPCP2.3. (Adapted 
from the Program for Climate Model Diagnosis & Intercomparison 
(PCMDI)’s mean-state simulation summaries [https://pcmdi.llnl.
gov/research/metrics])
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4. How well do models capture observed distributions  
of intensity and frequency?

Although longstanding systematic biases are evident in the 
mean-state spatial distributions of precipitation, tougher 
tests often involve examination of distributions in intensity 
and frequency (c.f., Pendergrass and Deser 2016). There are 
various ways to compare observed and simulated distributions. 
Challenges include qualitative effects of the resolution 
considered (Figure 10), particularly for reconciling point-
like station data with the area-averaged fields from models. 

To date, there is no universally adopted approach to quantify 
the differences between observed and simulated precipitation 
distributions. As the benchmarking of precipitation is advanced 
to assess the current generation of CMIP models, it will  
be necessary to use different approaches to assemble 
complementary information and determine if any 
underlying conclusions about changes in model 
performance depend upon the analysis method chosen. 
Several examples were discussed at the workshop of varying 
range in complexity, yielding different information about 
model agreement with observations.

The Simple Daily Intensity Index (SDII) is a measure of the 
average intensity of precipitation on days with precipitation. 
It is part of the World Meteorological Organization (WMO) 
Commission for Climatology (CCl)/WCRP Climate and 
Ocean: Variability, Predictability and Change (CLIVAR)/
WMO Intergovernmental Oceanographic Commission (IOC) 
Joint Technical Commission for Oceanography and Marine 
Meteorology (JCOMM) Expert Team (ET) on Climate 
Change Detection and Indices (ETCCDI; Zhang et al. 
2011), which is already routinely applied to models and 
observations—though correct interpretation requires 
carefully addressing the resolution of the data considered 
(as mentioned above). Another metric that complements 
SDII is the fraction of days with precipitation. 

The SDII integrates over all types of precipitating events—
light, typical, and extreme—obfuscating mechanistic 
identification and understanding of biases. One metric that 
focuses on the unevenness of how precipitation falls is the 
number of wettest days each year, during which half of the 
total precipitation falls (Figure 11; Pendergrass and Knutti 
2018). This measure informs about the relative intensity of 
heavy precipitation to total precipitation and is not yet part 
of regular diagnoses.

Figure 10. Example thresholds for precipitation occurrence and 
phase. The frequency of precipitation depends strongly on the 
scale. On smaller scales, precipitation frequency generally 
decreases with increasing spatial resolution, as seen clearly  
with CloudSat observations. (Courtesy T. Lécuyer, University  
of Wisconsin-Madison)

Figure 11. Unevenness of precipitation. Cumulative fraction of 
total precipitation as a function of the number of wettest days 
each year. The number of days for half of precipitation corresponds 
to the value of each line. Present-day observed at stations, 
according to TRMM 3b42 product at native 0.25° resolution and 
coarsened to 2.5° and simulated by CMIP5 climate models at 
native resolution and regridded to 2.5°. Lines show the median 
across stations. Uncertainty across stations is indicated by the gray 
shading, which show the 25th and 75th quantiles across stations 
for station observations. For models, lines show the multi-model 
median at grid points nearest to stations at native and coarse 
resolutions. Uncertainty across models is indicated by orange 
envelopes, which show the range across all models at 2.5° 
resolution. (Adapted from Pendergrass and Knutti 2018)
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Emerging work describes the entire distribution of 
precipitation with two metrics, which connect modeled  
and observed precipitation distributions to theoretically 
based models for precipitation (Martinez-Villalobos and 
Neelin 2019). A combination of the slope in the bulk of  
the precipitation distribution (called the “power-law scale”) 
and the rain rate at which the distribution transitions from 
this regime to a rapidly decreasing one (the “cutoff rate”), 
combined with a measure of the goodness of fit of this type 
of distribution, quantifies this integrated measure, which is 
also connected to a theoretical framework for convective 
precipitation. As there is room for the theoretical framework 
to be further developed to facilitate interpretation, more 
discussion of this type of metric is provided in Section 4.

A final integrated measure to evaluate the skill of the 
distribution of precipitation is the Perkins score (Perkins  
et al. 2007). This metric quantifies the difference between 
two probability distributions, in this case, modeled and 
observed distributions of precipitation. Applying the Perkins 
score to different moments of the precipitation distribution 
(the probability density, the frequency, and the amount/
volume distribution) provides information weighted 
towards different aspects of precipitation.

5. How well do models capture well-observed 
precipitation extremes?

Precipitation extremes drive climate impacts, so it is crucial 
for models to simulate them well. Despite their importance, 
the phenomena associated with precipitation extremes are 
not always well represented in model simulations, and the 
fine scales needed to observe highly impactful precipitation 
events are not always well captured by our observing systems 
and observational data products. Measures to evaluate 
simulated precipitation extremes should try to account  
for these factors. 

One set of metrics for extreme precipitation arises from  
the block-maximum precipitation over various timescales. 
The maximum daily precipitation accumulation each year, 
rx1day, describes relatively heavy precipitation and is 
sufficiently extreme that it behaves differently from mean 
precipitation (Pendergrass and Knutti 2018). The maximum 

consecutive 5-day accumulation each year, rx5day, captures 
protracted synoptic events that can drive flood events. The 
maximum 3-hourly precipitation each year, rx3h, is a measure 
of sub-daily extreme precipitation and corresponds more 
closely to convective timescales than daily precipitation does. 
These daily indices were first developed by ETCCDI (Zhang 
et al. 2011) with the sub-daily indices later roughly adapted 
to be consistent with the ETCDDI daily definitions.

Another set of measures for extreme precipitation are derived 
from the theory of Generalized Extreme Value (GEV) 
distributions and rely on statistical modeling of observed 
and modeled time periods. Long-period return values 
describe much rarer events than seasonal or annual block 
maxima. Recent developments in non-stationary methods 
reduce the statistical uncertainty in their estimation (e.g., 
Risser et al. 2019), permitting their usage as model 
evaluation metrics.

Because the phenomena driving precipitation extremes and 
also the impacts of extremes can be seasonally dependent, 
examining the seasonal breakdown of extremes will be 
featured among the tiers of evaluation metrics. Connecting 
precipitation extremes with their generation mechanisms is 
considered under exploratory metrics (Section 4).

6. How well do models capture dry periods?

Drought is driven in large part by periods that lack 
precipitation; meteorological drought is the component  
of drought that describes this lack of precipitation. The 
Standardized Precipitation Index (SPI; McKee et al. 1993) 
quantifies the anomalous precipitation for a given location 
and can be calculated over different lengths of time, for 
example, one month to three years, which is normalized to  
the average precipitation over the time period for the location. 
Then, the frequency of events falling below a threshold of 
less-than-normal SPI (such as -1) can be calculated. 

Another measure of meteorological drought is the length  
of dry spells. The ETCCDI indices include the number of 
Consecutive Dry Days (CDD), which is one measure of 
dry-spell length. 
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While many of the basic characteristics highlighted above 
are at least casually monitored by modelers, a well-organized 
hierarchy for each of them could be more informative. 
Partitioning, for example, between the tropics and extra-
tropics or over ‘wet’ and ‘dry’ land and/or seasons can help 
better understand the contributions to global-scale statistical 
comparison. Each measure will be computed over a variety 
of sub-domains to facilitate this breakdown, forming 
another component of the second tier of measures.

Observational Data Sets  
and Their Uncertainty
One challenge for evaluating precipitation in climate models 
is the uncertainty in observational data sets, and variation 
among them. For example, even a broad measure like total 
annual precipitation over a large domain (Figure 12) can vary 
substantially among data sets. To address observational 
uncertainty, an evaluation system needs to incorporate 
multiple observational data sets—an ensemble of in situ 
and satellite data—to enable quantification of agreement 
across observational products, since no one data set is 
uniformly superior across all characteristics of precipitation 
(Bador et al. 2020, Alexander et al. 2020). Data set choices 
will be informed by recommendations from the GDAP 
precipitation assessment. Quantifying the observational 
uncertainties is one challenge that will continue to be 
addressed with future research.

Figure 12. Global land (50S-50N) average timeseries for prcptot 
(total annual daily precipitation, in mm) in an ensemble of 22 
observational products from the Frequent Rainfall Observations 
on Grids (FROGS) database (Roca et al. 2019). Box and whiskers  
in each panel provide information on the distribution of prcptot 
for all products while vertical colored lines indicate the range of 
values for each type of product: in situ (blue), satellite corrected 
(orange), satellite uncorrected (red) and reanalyses (green). 
(Adapted from Alexander et al. 2020)
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As discussed in Section 3, baseline metrics are performance 
metrics to be established as a starting point to measure  
the agreement between observed and model-simulated 
precipitation. They cover many aspects of precipitation,  
but because they are intended as building blocks, baseline 
metrics are initially limited to those that can be calculated 
using the standard outputs from a common set of simulations 
from all modeling groups participating in CMIP6. Building 
on and complementing the baseline metrics, exploratory 
metrics can serve as benchmarks for increasingly diverse 
aspects of precipitation to meet the needs of different user 
communities. Through presentations and breakout group 
discussions, workshop participants identified the needs for 
and the types of exploratory metrics that need to be developed 
to advance the initial set of precipitation metrics in the future. 
Many of the exploratory metrics require further research and 
development before they can be implemented in metrics 
packages for broad community use. A working group  
on exploratory metrics was established in parallel with  
the working group on baseline metrics, with a focus on 
defining coordinated activities towards developing and 
demonstrating the value of exploratory metrics. These  
topics are summarized in the subsections below. 

The Need for Exploratory Metrics
While the basic function of precipitation metrics is to 
benchmark model simulations of precipitation for 
documenting model performance and improvements  
over time, precipitation metrics are useful for a broad 
community of researchers and stakeholders with interest  
in precipitation. Examples of users and their needs for 
exploratory precipitation metrics are discussed here.  
Going beyond the baseline metrics (discussed in Section 3), 
exploratory metrics often require higher-temporal-frequency 
precipitation output or cannot be evaluated based on 
precipitation alone.

An important use of precipitation metrics for model developers 
is to inform or guide model development. Because models are 
focused around equations that represent individual processes, 
model developers need process-oriented metrics to diagnose 
the deficiencies in model parameterizations and gain insights 
for improving precipitation simulations. For example, they 
can benefit from metrics that partition the model biases into 
their component parts to help narrow down aspects of the 
model parameterizations that may be responsible for biases in 
each of the precipitation metrics. Relationships that connect 

precipitation with the thermodynamic and dynamical 
variables involved in cloud and convection processes may  
be summarized as metrics to help diagnose model errors  
in simulating precipitation. Quantifying model biases in the 
large-scale environment associated with precipitation can  
also inform model developers whether or how much of  
the biases in precipitation are a result of model biases in 
simulating the large-scale environment (e.g., moisture) 
versus limitations of the model parameterizations in 
simulating precipitation given a large-scale environment  
for precipitation that is reasonably captured by the models. 
There is also a need for metrics that can be applied to 
short-term initialized forecasts from weather to subseasonal-
to-seasonal timescales to differentiate biases associated with 
fast and slow processes. 

Scientists using earth system model simulations to understand 
the thermodynamic and dynamical contributions to 
precipitation changes in the future can use more information 
regarding model skill in variables relevant to precipitation. 
For example, moisture budget analysis is often used to 
quantify the thermodynamic and dynamical effects of 
warming; this type of analysis makes use of information 
about moisture and vertical motion, which are sensitive to 
physics parameterizations and model resolutions. Hence, 
metrics relating precipitation to moisture and vertical 
motion, or more generally relating precipitation to its 
generation mechanisms or phenomena such as tropical and 
extratropical cyclones and different cloud or convection 
types, are useful for quantifying uncertainty in attributing 
precipitation changes to thermodynamic and dynamical 
effects. Quantifying model biases in the specific precipitation 
regimes of interest is important for guiding the selection of 
credible models for analysis and characterizing uncertainty 
in projected changes. Metrics based on emergent relationships 
that connect model biases in precipitation or closely related 
variables such as moisture and temperature with the 
precipitation response to different forcings are also  
useful for understanding and characterizing uncertainty  
in projections of precipitation in the future.

Researchers and stakeholders of model precipitation 
simulations, predictions, and projections often have interests  
in specific aspects of precipitation relevant to their particular 
applications. For example, use-inspired precipitation metrics 
may focus on characteristics related to the space-time variability 
and coherence as well as intensity, frequency, and duration that 
impact soil moisture, snowpack, and runoff, with subsequent 

Exploratory Precipitation Benchmarks
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effects on ecosystems, crops, water resources, and 
infrastructure. Use-inspired metrics may also include 
relationships connecting precipitation biases to impacts  
of precipitation in sectors such as water resources and 
agricultural production. With a profile of precipitation 
metric performance, users may be able to identify a subset  
of more skillful models for their regional applications. 
Precipitation metrics may potentially provide information 
that can be incorporated into bias adjustment or scenario 
creation. The development of use-inspired metrics may 
initially focus on crop and hydrologic impacts while 
recognizing that precipitation is relevant to many sectors  
of our society, so there will be a growing need to expand in 
this area. Strong and continued engagement with impacts/
risk/disaster communities will help identify specific hazard 
thresholds beyond distribution/percentile metrics.

Types and Examples  
of Exploratory Metrics
Based on the users and their needs, exploratory metrics can 
be roughly grouped into a few categories according to their 
functions and characteristics (Figure 13). Here we summarize 
the discussion of exploratory metrics under three key categories: 
process-oriented metrics, regime-oriented metrics, and 
impacts and use-inspired metrics. Although different types 
of metrics may be developed by different communities and, 
therefore, be more relevant to their needs, many metrics 
provide complementary information about precipitation so 
they can serve multiple purposes and communities of users. 

a. Process-oriented metrics 

To inform model development, a subset of baseline metrics 
applied to specific sites where many types of measurement 
data are available can be useful. These differ from the 
baseline metrics discussed in Section 3 mainly in the spatial 
and temporal scale of the analysis, as baseline metrics tend to 
be calculated based on large-to-global domains to provide a 
broader view of regional differences aggregated to larger scales. 
However, similar metrics can be applied at a local scale to 
provide a starting point for more in-depth analysis to reveal 
the underlying causes of model biases. The subset of baseline 
metrics may include the diurnal (Figure 14) and seasonal 
cycles of precipitation and the probability distribution 
function (PDF) of precipitation rates applied to DOE’s 
Atmospheric Radiation Measurement (ARM) sites where 
long-term precipitation data and other measurements  
from in situ and remote-sensing instruments are available. 
Three heavily instrumented fixed-location atmospheric 

observatories have been supported by ARM to collect data at 
the Southern Great Plains (SGP) in the central U.S., North 
Slope of Alaska (NSA), and Eastern North Atlantic (ENA) 
capturing different cloud regimes relevant to precipitation. 
Data from the ARM atmospheric observatories are particularly 
useful for evaluating present-day climatological CMIP 
simulations that can be derived from standard coupled and 
fixed-sea-surface-temperature (SST) model outputs. While 
field campaigns also provide diverse measurements for model 
evaluation, the relatively shorter periods they cover require 

Figure 13. A categorization of the exploratory metrics considered 
at the workshop.

Figure 14. (Left) Mean diurnal cycle of precipitation in June-July-
August (JJA) from ARM observations at the Southern Great Plains 
(black), CMIP5 simulations (grey), and E3SM simulations with  
the Zhang McFarlane (red), Cloud Layers Unified By Binormals 
(CLUBB; blue), and Unified Convection Scheme (UNICON; green) 
convective parameterizations. (Right) Similar to the left panel  
but including three new E3SM simulations that test two new 
convection trigger functions (green, purple) and their 
combination (blue) as described in Xie et al. (2019). (Source: 
Shaocheng Xie, Lawrence Livermore National Laboratory)



14

Precipitation in Earth System Models Workshop Report

specific numerical experiments such as initialized simulations 
or simulations constrained by observed large-scale circulation.

On the PDF of precipitation rates, three regimes can be 
identified from the PDF curve—a non-precipitating regime, 
and a power-law regime at lower precipitation rates that 
transitions at a cutoff scale to an exponential regime at 
higher precipitation rates (Figure 15). Since the exponent  
of the power-law range and the cutoff scale depend only on 
the physics of the processes controlling precipitation, and 
stochastic process models can capture such features to guide 
physical interpretations (Martinez-Villalobos and Neelin 2019), 
they are good candidates for process-oriented metrics for 
precipitation. The exponent and cutoff scale can be determined 
from the PDF of daily precipitation rates. As the latter generally 
follows the gamma distribution, the exponent and cutoff 
are simple functions of the mean and variance of daily 
precipitation. With satellite or in situ daily precipitation 
data, the exponent and cutoff scale can be estimated globally 
or at specific locations and used as metrics for benchmarking 
an important aspect of precipitation.

Process-oriented metrics may include relationships between 
precipitation and other variables intimately involved in the 
processes that generate precipitation. For example, satellite 
observations have revealed a relationship between column 
relative humidity and precipitation on daily to monthly 
time scales (Bretherton et al. 2004, Sobel et al. 2004). On 
shorter, convective time scales, a similar relationship has 
also been established between column water vapor (CWV) 
and precipitation from satellite data (e.g., Peters and Neelin 
2006) and in situ data (e.g., Holloway and Neelin 2009, 
Schiro et al. 2016). The relationship features a sharp increase 
in precipitation rate, referred to as precipitation pickup, 
which occurs when the column water vapor exceeds a 
certain threshold value. As an indication of the interactions 
between lower tropospheric humidity and the onset of 
convection, this relationship is sensitive to various aspects  
of how models represent shallow and deep convection, as 
well as microphysical processes (e.g., Kuo et al. 2017, 
Hagos et al. 2018a). 

Models have been shown to reproduce the CWV-precipitation 
relationship to varying degrees, with implications for model 
skill in simulating a wide range of phenomena such as the 
Madden-Julian Oscillation (Klingaman et al. 2015, Rushley et 
al. 2019, Kim et al. 2019), monsoon precipitation (Hagos et al. 
2018b), and tropical precipitation variance and extremes 
(Hagos et al. 2018a). Using satellite and in situ data of CWV 
and precipitation, this relationship and the PDF of CWV 

can be determined at locations representing different convection 
regimes for evaluating model parameterizations of clouds and 
convection (Figure 16). Information from the relationship 
can be condensed to derive simple metrics to determine 
whether precipitation in the models occurs in the right 
thermodynamic environment.

Besides the CWV-precipitation relationship discussed 
above, other relationships relating precipitation with 
temperature, vertical velocity, moist static energy, and 

Figure 16. Convective transition collapsed statistics. Conditionally 
averaged precipitation rate (mm hr-1) (far left) and conditional 
probability of precipitation (middle left) for various tropospheric-
averaged temperatures (colored markers). PDF of all events (middle 
right) and precipitating events only (i.e., precipitation > 0.25 mm 
hr-1) (far right) as a function of various tropospheric-averaged 
temperatures (colored markers). All variables are plotted against 
CWV-wc where wc is the threshold of CWV above which a rapid 
increase of precipitation occurs. All plots are based on observations 
in the tropical (20S 20N) western Pacific. (Source: David Neelin, 
University of California at Los Angeles)

Figure 15. Probability density function of precipitation rate (mm hr-1) 
based on data from TRMM (solid grey) and ARM (solid blue and 
open rectangles in magenta, green, and grey) in log-linear plot 
(left) and log-log plot (right). The fitted linear black line in (a) and 
(b) shows the exponential range and power law range, respectively. 
(Source: David Neelin, University of California at Los Angeles)
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entrainment and convective triggering can also be explored to 
derive process-oriented metrics for evaluating precipitation 
simulations, as well as providing insights on processes that 
may need improvement in their representation in the models. 
For example, partitioning the PDF of precipitation rates  
by regimes of vertical motion (updraft, neutral, downdraft) 
or conversely, partitioning the PDF of vertical velocity by 
regimes of precipitation (none, light, moderate, and heavy 
precipitation) provides useful information for evaluating 
the relationship between precipitation and vertical motion 
in the models. 

In regions of complex terrain, the amount and phase of 
orographic precipitation play a dominant role in the regional 
water cycle, affecting soil moisture, snowpack, and runoff. 
In models, orographic precipitation is sensitive to model 
resolution as well as physics parameterizations (e.g., Leung 
and Qian 2003, Lebassi-Habtezion and Diffenbaugh 2013, 
Yang et al. 2017). Across a mountain transect, precipitation 
generally increases with elevation and peaks upwind of  
the mountain top. Model skill in simulating orographic 
precipitation can be measured by several metrics, such as  
the pattern correlation between the observed and simulated 
precipitation, the orographic enhancement (e.g., measured 
by the ratio of the maximum and minimum precipitation 
along topographic transects), and the distance between the 
upwind precipitation peak and the mountain peak along 
topographic transects. Orographic blocking, measured by  
a bulk Froude number that depends on the atmospheric 
stability and cross-mountain wind speed, has important 
effects on precipitation in mountainous regions (Leung et al.  
1998). The slope of the linear regression between the 
climatological precipitation and the elevation gradient, 
reflecting the dominance of blocking versus non-blocking 
regimes (Hughes et al. 2009), can also be explored as  
a metric for evaluating orographic precipitation in 
model simulations.

Precipitation exhibits large variability associated with 
different large-scale modes of variability. Teleconnection 
relationships between regional precipitation and modes  
of variability provide important information about model 
biases in precipitation variability. As an example, biases  
in simulating El Niño Southern Oscillation (ENSO) has  
an important bearing on precipitation biases in North 
America through the Pacific North America Pattern (PNA). 
Connections have been established between the MJO and 
tropical cyclones and atmospheric rivers, so the MJO also 

has influence on precipitation in different seasons and 
regions. Such relationships may be used to develop metrics  
to evaluate regional precipitation, particularly extreme 
precipitation, simulated by models.

The ASoP package (Klingaman et al. 2017) provides a 
quantitative approach to evaluation of intensity distributions 
and coherence in space and time across a wide range of 
scales and can reveal how models fundamentally produce 
precipitation. Martin et al. (2017) showed how the package 
can be used to understand the contribution from model 
errors on different time and space scales to climatological 
precipitation biases. Figure 17 shows the contribution to 
June-September mean rainfall from precipitation intensity 
distributions calculated at different timescales, from the model 
timestep (20 minutes) up to 20 days. This illustrates that, for 
the equatorial Indian Ocean, this model’s characteristic wet 
bias is related to too frequent sub-daily and daily rainfall 
amounts (not enough dry periods), which leads to an 
overestimate in 10-day and 20-day totals. Furthermore, too 
little shift in the distributions to the left with increased 
averaging period indicates poor intra-seasonal variability. In 
contrast, for West Africa, considerable intermittency at the 
timestep level and a poor diurnal cycle leads to 3-hourly 
rainfall amounts that are smaller than observed. This leads 
to an underestimate in daily, 10-day, and 20-day totals. 
Although the lack of shift in the distributions to the left 
with increased averaging period indicates little day-to-day 
variability, poor representation of sub-daily and daily rainfall 
contributes to the climatological dry bias in this model for 
this region. 

Figure 17. Contribution of June-July-August-September (JJAS) 
rainfall (mm/day) at different timescales to total rainfall as a 
function of precipitation amount (mm/day) in (a) equatorial Indian 
Ocean and (b) West Africa. Timescales are shown for 3-hourly 
(light blue), daily (dark blue), 10-day (light green), 20-day (dark 
green), and timestep (red). (Source: Gill Martin, UK Met Office)
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b. Regime-oriented metrics

Both moisture and vertical motion are needed to produce 
precipitation through condensation of water vapor and cloud 
formation. Dynamical forcing, convective instability, and 
orographic forcing are three mechanisms for generating 
upward motion. Hence precipitation, especially extreme 
precipitation that requires abundant moisture and strong 
upward motion, exists in distinct meteorological environments 
that define the precipitation regime. Kunkel et al. (2012) 
identified several meteorological causes or precipitation regimes 
that are particularly relevant to extreme precipitation in the 
U.S. These include fronts, extratropical cyclones (ETCs), 
monsoon, tropical cyclones (TCs), mesoscale convective 
systems (MCSs), isolated thunderstorms in convectively 
unstable air masses, and upslope flow or orographic 
precipitation. Note that these regimes are not all independent 
as fronts are usually associated with ETCs, and during spring, 
MCSs are often embedded in frontal systems. All of the 
aforementioned precipitation regimes are also relevant to 
precipitation in different regions around the world.

A set of exploratory metrics can be defined to evaluate how 
well models simulate precipitation associated with specific 
precipitation regimes. These regime-oriented metrics provide 
useful information for model developers and climate scientists 
to understand model biases, such as those related to model 
resolution or specific geographical regions. They are also useful 
for impacts researchers and stakeholders to evaluate and 
communicate the credibility of model precipitation in terms 
of meteorological phenomena that are more easily understood.

Automatic methods have been developed to detect and track 
precipitation or atmospheric circulation features associated 
with different precipitation regimes. For example, fronts can 
be identified using the method of Berry et al. (2011) and 
the thermal front parameter of Hewiston (1998) to identify 
locations of frontal points based on the maximum gradient 
of wet-bulb potential temperature in the direction of the 
moist isentropes (Catto et al. 2012). ETCs (Figure 18) can 
be tracked using the method of Hodges (1999) based on sea 
level pressure (SLP) minima and stitching together the SLP 
minima across time to produce cyclone tracks. TCs can be 
tracked by identifying the minima in SLP, the existence  
of a warm core defined by upper-to-mid-level tropospheric 
temperature, and surface wind speed exceeding a threshold 
value (e.g., Ullrich and Zarcycki 2017). Similarly, different 
MCS tracking methods have also been developed to identify 

contiguous areas of precipitation with certain features such 
as skewed rain rates reflecting the intense rainfall associated 
with the convective core of MCSs, and/or high clouds based 
on outgoing longwave radiation, reflecting the deep convection 
and the large stratiform area (Feng et al. 2016, 2018; Figure 19).

Figure 18. Features of an extratropical cyclone showing the fronts, 
dry intrusion (DI), warm conveyor belt (WCB), cold conveyor belt 
(CCB), and sting jets (SJ). (Source: Jennifer Cattoo, University of Exeter)

Figure 19. Schematic identification of a robust mesoscale 
convective system (RMCS). (a) Cold cloud systems (CCS) are 
identified using satellite Tb data. The thick black contours show 
the 241 K outline of CCS. The cold cloud cores (Tb < 225 K) shown 
in blue patches are dilated outward to 241 K to separate CCS with 
distinct cold cloud cores. (b) Precipitation features (PFs) within the 
CCS are identified with contiguous area of radar reflectivity >17 dBZ 
at 2.5 km height. PF major axis length and convective cells with 
imbedded 50-dBZ echoes anywhere within the PF are used to 
identify RMCS. The two-colored patches in (b) with thick black 
outlines denote two RMCSs. (Adapted from Feng et al. 2018)
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Atmospheric rivers (ARs) are intense horizontal moisture 
transport pathways associated with heavy precipitation in 
many regions worldwide. Many algorithms have been 
developed to detect and track ARs based on CWV and/or 
column integrated moisture transport above absolute or 
percentile thresholds, sometimes with added criteria 
regarding the geometry (length, width, orientation) of  
the CWV filaments (Shields et al. 2018; Figure 20).

Large biases in South Asian monsoon precipitation have 
been noted in two recent generations of CMIP models 
(Sperber et al. 2015). The precipitation biases can be linked to 
biases in the thermodynamic states (e.g., moist static energy) 
of the Asian monsoon (Boos and Hurley 2013). Synoptic-
scale vortices related to dynamical instability of the strongly 
sheared South Asian monsoon basic state (Diaz and Boos 
2019) produce much of the extreme precipitation in India 
(Boos et al. 2015). These vortices contribute around 60% 

Figure 20. (a) Time series of daily integrated vapor transport (IVT) 
anomalies for (orange) Iberia, (teal) the U.S. west coast, and (blue) 
Ireland and the United Kingdom. Four events of varying geometry 
and intensity are shaded in panel (a), and composites for each 
event are shown in panels (b)–(e). The black dots above the time 
series in panel (a) indicate time slices in which each event is 
detected by an algorithm. (Adapted from Shields et al. 2018)

Figure 21. (Left) Shading/colors show the number of genesis points 
of MDs per square degree (roughly 12 000 km2) per summer season 
(June–September), after smoothing with a Gaussian filter. Vectors 
show the average propagation speed of MDs and are coarsened 
to a 2◦ × 2◦ grid for clarity; vectors are shown only if the mean zonal 
or meridional propagation speed at each grid point is statistically 
significant at the 1% level by a two-tailed t-test. (Adapted from Boos 
et al. 2015) (Right) Fraction of 99th percentile of rainfall associated 
with a European Centre for Medium-Range Weather Forecasts 
(ECMWF) Re-Analysis (ERA)-Interim low-pressure system track. 
(Source: Bill Boos, University of California at Berkeley)

of the seasonal mean precipitation in eastern and central 
India, but in models this ratio varies between 5% and 60% 
(Praveen et al. 2015). Hence, quantifying model biases in 
the low-pressure systems, called Bay of Bengal monsoon 
depressions (MDs), which generate synoptic-scale vortices 
and propagate from the Bay of Bengal to produce heavy 
precipitation in northeastern India (Figure 21), is important 
for understanding the sources of these model biases. The MDs 
can be identified and tracked based on the maximum 850 hPa 
relative vorticity (e.g., Ashfaq et al. 2016, Cohen and Boos 
2014, Hurley and Boos 2015, Levine and Martin 2017).

Recently, machine-learning approaches have also been used  
to detect and track precipitation or circulation features 
associated with different precipitation regimes. For example, 
Biard and Kunkel (2019) tested the use of deep-learning 
neural networks to automate the detection of weather fronts 
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(Figure 22). The U.S. seasonal front climatology developed 
based on deep learning is comparable to the climatology 
derived from coded surface bulletins. Neural networks  
have also been used to segment and track ARs and TCs 
(Mudigonda et al. 2017).

Once the fronts, ETCs, TCs, MCSs, ARs, or MDs are 
identified using tracking methods, they can be combined 
with precipitation data to quantify the mean and extreme 
precipitation as well as other precipitation characteristics 
(e.g., diurnal and seasonal variability) associated with each 
regime regionally or globally. For example, model precipitation 
biases can be decomposed into biases associated with frontal 
and non-frontal precipitation, and for frontal precipitation, 
the biases can further be decomposed into biases associated 
with frequency versus intensity (Catto et al. 2015). Precipitation 
biases associated with MCSs can also be further investigated 
by combining the MCS tracks with large-scale circulation 
data to identify model biases in simulating the large-scale 
environment favorable for MCS development (Song et al. 
2019, Feng et al. 2019). 

Tselioudis et al. (2013) defined global weather states (WSs) 
using joint histograms of cloud optical thickness and cloud 
top pressure from satellite data. The 11 WSs they identified 
exhibit unique distributions of vertical layering of clouds 
that correspond well to the horizontal structure of cloud 
properties. Furthermore, the WSs represent a normal 
progression in dynamic regime from the most convective  
to the least convective WS. This suggests that the WSs may 
also be useful for delineating different precipitation regimes. 
Analysis depicted in Figure 23 shows clear separation of 
precipitation regimes (no, light, moderate, heavy precipitation) 
across the WSs, highlighting, for example, the dominance of 
“no precipitation” under fair weather (WS7) in contrast with 
deep convection (WS1) that produces significantly heavier 
precipitation. Representing a cloud-centric approach to 
delineate precipitation regime, the WS method may offer 
complementary insights compared to precipitation regimes 
defined by meteorological causes.

Regime information derived from the various analyses 
discussed above can be summarized in many forms to be 
used as precipitation metrics. Examples include monthly 
distribution of precipitation broken down by regimes, spatial 
distribution of the top 100 events and their corresponding 
regimes, and spatial distribution of amplification factor 
associated with different regimes, where amplification factor 

Figure 22. Fronts identified by human surface analysis (left) and 
deep-learning analysis (right) on 2009 01-01 00Z. Different types  
of fronts are shown in blue (cold), red (warm), occluded 
(magenta), and stationary (green). (Source: Ken Kunkel, North 
Carolina State University)

Figure 23. Precipitation distribution in cloud-defined weather states 
(1–12) as described in Tselioudis et al. (2013). Precipitation regimes 
are defined as no precipitation (red), and light (purple), moderate 
(blue), and heavy (black) precipitation. (Source: George Tselioudis, 
NASA Goddard Institute of Space Studies [GISS])

may be defined as the ratio of precipitation intensity for a 
particular regime to the mean intensity of all precipitation 
events. These regime-based metrics build on baseline metrics 
discussed in Section 3, providing more information about 
the distribution of precipitation and also extremes.
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c. Use-inspired metrics

Precipitation varies across a wide range of spatial and temporal 
scales, with important impacts on ecosystems, crop productivity, 
water resources, and other human activities, so evaluating the 
ability of models to simulate different aspects of precipitation 
variability is important for stakeholders managing a host of 
different types of resources. Precipitation variability can be 
characterized in many ways from the perspectives of both 
space and time, including coherence and diurnal variability 
already discussed in Section 3. Going beyond baseline metrics, 
variability can also be quantified by precipitation sequencing 
that can be measured by the fraction of wet days and the 
average length of consecutive wet periods, where wet days 
can be defined as the lowest precipitation amount recorded  
by rain gauges, or using different thresholds based on 
percentile values of interest. The spatial pattern of such 
statistics can reveal important information about regional 
climate characteristics and how well they are captured  
by the models.

Complementary to precipitation sequencing, the contribution 
of precipitation at different time scales (e.g., sub-daily, daily, 
pentad) to total precipitation also provides useful information 
about precipitation variability. As shown in Figure 17, contrasts 
in the contribution from different time scales can be large 
across regions such as the Indian Ocean and West Africa. 
Large contrasts are also found within Europe, and the ability 
to reproduce the observations varies with models and is 
sensitive to horizontal resolution (Berthou et al. 2018). 
Another aspect of precipitation variability can be measured 
by the space-time coherence of precipitation using metrics 
such as the de-correlation time of precipitation at different 
thresholds and timescales and the spatial autocorrelations of 
precipitation at different distances and lags. These metrics 
are useful for researchers using model precipitation data for 
hydrologic and crop modeling, as model biases revealed by 
the metrics may have important effects on their simulations. 
They are also useful for model developers to understand 
more detailed aspects of precipitation biases to set targets 
for improvements.

Figure 24. IDF estimates based on observations (upper left) and model simulations for the present 
climate (red line with yellow shading) and future climate (blue line with green shading) following  
the RCP8.5 scenario. Simulations are produced by 13 regional climate models that participated in  
the Coordinated Regional Climate Downscaling Experiment (CORDEX). The IDF curves show the 
relationships between precipitation intensity (inches/day) and return period (years) for duration  
of one day at station 36-0656. (Source: Paul Ullrich, University of California at Davis)
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Hydraulic structures such as flood drainage systems are 
designed to accommodate extreme flood events. For this 
purpose, civil engineers characterize storms by curves that 
relate the precipitation intensity with its duration and 
frequency of occurrence, referred to as the intensity-
duration-frequency (IDF) curves. As climate change is 
expected to alter precipitation characteristics, developing 
IDF curves that consider climate change is an important 
challenge, requiring assessments of how well model simulated 
precipitation can reproduce the IDF curves based on observed 
precipitation. IDF curves can be generated using univariate 
extreme value analysis to derive the best-fit distribution for 
exceedance probabilities corresponding to the extreme events 
with return periods such as 5, 10, 25, 50, and 100 years. 
IDF curves based on observation and model simulations 
show a large discrepancy (Figure 24), underscoring the 
need to improve simulations of precipitation to support 
infrastructure designs.

Correlated extremes are important concerns for agricultural 
production and water management. Three types of correlated 
extremes regarding precipitation should be explored as 
precipitation metrics. The first type highlights compound 
extremes such as torrential rain during coastal storm  
surge that may amplify coastal inundation compared to 
inundation caused by torrential rain or storm surge alone. 
Using tropical cyclones as examples, the aforementioned 
compound extreme requires models to properly simulate 
both rain and wind simultaneously, in addition to tropical 
cyclone track and translation speed. The second type of 
correlated extremes is concurrent extremes, such as 
simultaneous drought and flood that cause multi-breadbasket 
failure. Model ability to simulate such concurrent extremes 
requires realistic representation of system connections and 
coherence/teleconnections of extreme events. The third type 
of correlated extreme is sequential extremes, such as floods 
followed by a dry spell. This type requires models to be 
capable of capturing the shifting vulnerability owing to 
conditions prior to event onset.

Research Needs
The examples of process-oriented, regime-oriented, and use- 
inspired metrics discussed at the workshop and summarized 
above have been explored and demonstrated in the analysis  
of observations and model outputs and to diagnose model 
biases. However, more research is needed to define the 
metrics before they can be implemented and standardized for 
broader use. Some research needs identified at the workshop 
are discussed below.

Synthesizing analysis into succinct metrics. Many examples 
discussed in Section 4.2 are analyses that can be used to 
produce visual and numerical comparisons of different 
aspects of observations and model simulations; however, 
there is a need to develop metrics that succinctly synthesize 
key aspects of the analyses. For the power-law and exponential 
regimes of the PDF of precipitation rates, the exponent of 
the power law and the cutoff scale of the transition from the 
power-law regime to the exponential regime are examples of 
metrics that succinctly encapsulate the physical properties of 
precipitation regimes. However, other metrics such as those 
for orographic precipitation are less specific and may be 
sensitive to the spatial scales of the analysis. For regime-
oriented analysis based on meteorological states, various 
information can be produced regarding the precipitation 
characteristics and the large-scale environment of the different 
precipitation regimes (e.g., frontal, ETCs, etc.). For each 
regime, what information is most important in quantifying 
model biases and revealing their sources requires more research. 
For example, what aspects of each precipitation regime most 
distinctly distinguish it from other regimes? For MCSs, their 
nocturnal timing and precipitation intensity and area are 
what distinguish them from non-MCS precipitation, but 
such distinguishing features may not be as obvious for other 
regimes such as fronts and ETCs. There are similar research 
needs to summarize the use-inspired metrics based on 
information produced by analysis of precipitation variability 
and IDF curves.

Relating precipitation characteristics with storm characteristics 
and large-scale environments. In parallel to developing succinct 
metrics, more research delving into the relationship between 
precipitation characteristics and storm characteristics could 
provide important insights on model biases. As an example, 
for frontal precipitation, relating the precipitation intensity to 
the strength of the fronts, the presence or absence of frontal 
features such as warm conveyor belt, dry intrusion, and 
cyclone depth may reveal how different storm characteristics 
alter the likelihood of a front producing an extreme 
precipitation event in observations and model simulations. 
For MCSs, relating the PDF of rain rates with the properties  
of the convective core and stratiform regions or storm 
propagation or lifetime may provide useful information 
regarding the microphysical processes simulated by the 
models (Feng et al. 2018). As the large-scale environment 
provides the meteorological context for the storms and 
precipitation, understanding and quantifying biases in the 
large-scale environments can provide important information 
on precipitation biases under different regimes.
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Improving physical interpretation of the metrics. Exploratory 
metrics are generally more complex than the baseline metrics, 
as they delve into the processes and meteorological causes of 
precipitation. Understanding the physical processes behind 
the metrics and interpreting the benchmarking results are 
important if the metrics are to inform model developers and 
other researchers. To this end, more research is needed to 
understand the physical properties or processes governing the 
metrics. As an example, stochastic process models based on 
water vapor and energy equations can be used to understand 
and interpret the leading aspects of the precipitation PDF. 
More research on the CWV-precipitation relationship can 
improve understanding of the processes that control the 
relationship and the threshold of the CWV for precipitation 
pickup. As analyses are summarized succinctly using metrics, 
exploring and documenting the threads connecting the 
analyses to the metrics is also important to improve the 
physical interpretation of the metrics. 

Developing emergent constraints. Some of the exploratory 
metrics discussed at the workshop could potentially be used 
as emergent relationships to constrain future projections of 
precipitation changes. For example, Hagos et al. (2018b) 
showed that CMIP5 model spread in projecting South 
Asian monsoon precipitation changes in the future is 
related to where each model is situated in the CWV-
precipitation curve derived for the equatorial Indian 
Ocean, which is also reflected in model biases in simulating 
the present-day monsoon precipitation. Other relationships 
such as that between precipitation characteristics and 
storm characteristics for frontal systems may potentially 
reveal a relationship between model biases in precipitation 
characteristics and the projected future changes. Given that 
ESMs are prominently used to understand and project 
future changes in precipitation, developing emergent 
relationships that extend the quantification of model  
biases based on precipitation metrics to constrain future 
projections is an important research area. The development 
of emergent relationships can take advantage of the process- 
oriented and regime-oriented metrics that emphasize process 
understanding, which aligns with the requirement of 
emergent constraints that must be physically explainable 
(Klein and Hall 2015). The numerous examples of 

exploratory metrics discussed in Section 4.2 offer 
opportunities for evaluating their use to provide 
emergent constraints.

Characterizing uncertainty of tracking methods for 
precipitation regimes. Many detection/tracking methods 
have been developed and used by researchers to study 
different precipitation regimes, how well they are simulated  
or predicted by models, and their variability and change. 
These methods may differ in many ways, including the 
variables being tracked, the thresholds used to define the 
features, methods based on the physics/dynamics of the 
phenomena versus methods based mainly on geometry  
or other visual features, etc. There is a need to understand 
and quantify uncertainty in tracking precipitation regimes 
and the resulting uncertainty in the metrics derived from  
the feature tracking. Coordinated efforts such as IMILAST 
(Intercomparison of Midlatitude Storm Diagnostics; Neu et al. 
2013) and ARTMIP (Shields et al. 2018) have investigated 
algorithm diversity of ETCs and ARs, respectively. However, 
more research is needed to relate uncertainty in tracking 
fronts, ETCs, TCs, ARs, etc., to uncertainty in characterizing 
the precipitation produced by these regimes.

Characterizing uncertainty in observation data. Besides 
uncertainty in the tracking/detection methods, uncertainty  
in observation data can also contribute importantly to 
uncertainty in the metrics used to benchmark precipitation  
in model simulations. For exploratory metrics, uncertainty 
in observation data goes beyond precipitation data because 
many exploratory metrics require information from other 
variables related to precipitation. As an example, reanalysis 
data is often used in the analysis of the thermodynamic 
and dynamical environments of the atmosphere combined 
with precipitation data from in situ or remote-sensing 
measurements, as precipitation data from reanalysis is less 
reliable. However, this may create inconsistency between 
precipitation and the variables (e.g., moisture) that are being 
related to precipitation. We need to understand different 
sources of uncertainty that may be introduced by the 
observation data, combination of observation data, and  
their use at different time/space scales.
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National and International  
Collaborations
Representatives from several related international activities 
engaged in this workshop. Both the GEWEX Data Assessment 
Panel and the International Precipitation Working Group 
(IPWG) provided crucial expertise with respect to remote 
and in situ-based measurements. CMIP6 publications  
from both working groups will serve as a foundation from 
which a WCRP activity can be formalized. Briefings on  
the precipitation metrics activity will be included in future 
sessions of the Working Group on Numerical Experimentation 
(WGNE) and GASS (GEWEX Global Atmosphere and 
System Studies). This will likely lead to the formation of a 
WCRP precipitation metrics panel to establish a longer-term 
strategy to engage with the broader modeling community. 
As outreach opportunities arise, the broader community will 
have an opportunity to engage, for example, through a 
session proposed for the 2020 meeting of the European 
Geophysical Union (EGU). Both DOE and NOAA have 
expressed an interest to sponsor a follow-on workshop to 
this precipitation metrics workshop as part of the U.S. 
GEWEX activities under the U.S. Global Change Research 
Program (USGCRP) to further explore opportunities to 
quantify precipitation biases and improve modeling and 
prediction of precipitation across timescales from weather 
to multidecadal.

ESM Model Evaluation Capabilities
As a first step, the baseline metrics highlighted in Section 3 
are being implemented into the PCMDI Metrics Package 
(PMP; Gleckler et al. 2016), an open-source software 
package designed for producing objective comparisons 
between ESMs and observations. A feature of the PMP 
that is needed for long-term benchmarking is a provenance 
framework to document versions of all data (simulations and 
observations), analysis codes, dependencies, and operating 
conditions. Coordination with other precipitation-related 
capabilities will help strengthen the precipitation metrics. 
One example is the DOE-supported ARM Data-Oriented 
Metrics and Diagnostics Package (Zhang and Xie 2017), 

which already includes some of the process-oriented metrics 
highlighted in Section 4. Another is the International Land 
Model Benchmarking (ILAMB) package for land models 
that targets uncertainties associated with key biogeochemical 
processes and feedbacks (ILAMB; Collier et al. 2018). Realistic 
simulation of precipitation is critical in biogeochemical 
processes, and a land-based benchmarking component will 
provide a value bridge with the atmospheric focus. Within 
NOAA, the Model Diagnostics Task Force (MDTF; 
Maloney et al. 2019) is developing a model evaluation 
package that includes process-oriented diagnostics based  
on precipitation that can provide valuable insight and 
contributions in the exploratory metrics. The ASoP package 
(Klingaman et al. 2015) provides a quantitative approach to 
evaluation coherence in space and time on shorter scales and  
can reveal how models fundamentally produce precipitation. 
Progress in systematic model evaluation and benchmarking  
of precipitation will benefit from synergies across all 
these capabilities.

One particular effort presently underway that has the 
potential to standardize and accelerate model evaluation 
across disparate metric development efforts is the Coordinated 
Model Evaluation Capabilities project (CMEC; https://
cmec.llnl.gov/). This project aims to develop high-level 
seamless integration of distinct, yet complementary, diagnostics 
and metrics capabilities. A central expectation of CMEC  
is that through coordination, these efforts can be made 
stronger than the sum of their parts. Specifically, CMEC 
targets accelerated analysis by coordinating multiple 
capabilities (including PMP, ILAMB, and modules 
developed by university and laboratory partners) within a 
single lightweight operational execution and visualization 
framework. It further aims to enable execution of distinct 
evaluation capabilities regardless of the structural differences 
between climate data sets, facilitate version control of 
observational data sets, and allow users to navigate among 
evaluation products in a single framework. As such, CMEC 
provides a pathway towards rapid intercomparison of 
baseline and exploratory metrics, including those related  
to precipitation. 

Engaging with the Broader Research Community
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Benchmarking
To establish a baseline of skill for earth system model 
precipitation, the first step is to apply the initial set of 
metrics agreed upon at the workshop (Section 3) to the 
current generation of climate model simulations—CMIP6. 
These metrics will be implemented into the PMP, and they 
will be applied to the CMIP6 DECK and Historical 
simulations. A publication will document the skill, 
according to these metrics, of precipitation in CMIP6 
simulations, and compare it against previous generations  
of ESMs (as archived in CMIP)—CMIP5, CMIP3, and 
earlier generations as data archival allows. In approximately 
5–7 years, this evaluation will be revisited to evaluate 
progress made in the intervening period. The goal is for 
this challenge to both motivate progress on improving 
model precipitation, and also facilitate it by providing 
appropriate and holistic observational targets. In the 
interim, we envisage that the baseline metrics will gradually  
be augmented as informed by the exploratory efforts 
outlined below.

Exploratory
While there are longer-term research needs to develop and 
improve the exploratory metrics for broader use, there are 
strong foundations for some metrics to be applied to climate 
simulations for demonstration. Parallel to the working group 
on baseline metrics, a working group on exploratory metrics 
was established at the workshop with the goal of developing 
coordinated near-term activities to advance the development 
and use of exploratory metrics. The first activity identified 
by the group is a collaborative effort on a manuscript to  
discuss the need for exploratory metrics, introduce an 
initial set of exploratory metrics, and apply them to 

CMIP6 model outputs to demonstrate their usefulness for 
different communities of users (model developers, climate 
scientists, and impacts researchers and stakeholders).

The working group identified the following topics to include 
from the process-oriented, regime oriented, and use-inspired 
metrics for demonstration of an initial set of exploratory metrics:

• Coherence in space and time

• Frontal precipitation

• Top 10 extreme events

• Convection onset

• Orographic enhancement

• Monsoon

• Mesoscale convective systems

• Madden-Julian Oscillation

• Atmospheric rivers.

As part of CMIP6, HighResMIP (Haarsma et al. 2016) 
includes simulations at low and high resolution to facilitate 
analysis of the impacts of model horizontal resolution  
on climate simulations. Exploratory metrics on the  
above-selected topics will be applied to a set of low- and 
high-resolution simulations available from HighResMIP, 
with the goal to demonstrate their use across multi-models 
and a range of spatial resolution and insights that can be 
gained regarding model performance in simulating diverse 
aspects of precipitation. The near-term activities will be 
coordinated within the group and with relevant activities 
supported by other agencies and programs. The working 
group is open for broader participation by researchers in 
the community.

Next Steps
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Appendix A – Workshop Agenda
DOE Precipitation Metrics Workshop Agenda  |  July 1-2, 2019  |  Hilton Washington D.C., Rockville

Day 1
  8:00 AM Gather

Welcome and Introductions

  8:20 AM Welcome from DOE (R. Joseph, G. Geernaert)

Background, Motivation, Starting Point and Expectations

  8:35 AM Aims of the workshop – Why are we here? (C. Jakob) 
  8:45 AM Perspectives on what to include as a baseline (A. Pendergrass)
  8:55 AM A strawman as a starting point (P. Gleckler)
  9:20 AM Perspectives on exploratory metrics (R. Leung)
  9:35 AM Attendee intros, reactions and 1–3-minute perspectives on pre-meeting ideas

10:30 AM Break

Topics relevant to defining Precipitation Benchmarks
In addition to presenting their expertise as it relates to the workshop, presenters are asked to discuss 
their views on: 1) the co-chairs’ strawman, 2) additional/alternate candidates for an initial set of 
benchmarks and 3) topics relevant for future research that may lead to a more comprehensive 
and advanced set of metrics.

10:45 AM A modeler’s perspective (R. Neale)
11:00 AM Evaluating Simulated Precipitation (including Snowfall) with Satellite  

Observations (T. L’Ecuyer) 
11:20 AM Extremes evaluation under observational uncertainty (M. Bador)
11:40 AM Connecting spatial and temporal scales of precipitation (G. Martin) 
11:50 AM An Impacts-related perspective (A. Ruane) 
12:05 PM Return value extremes and scale mismatch in model evaluation (M. Wehner)
12:25 PM Use-inspired metrics (P. Ullrich)

12:45 PM Lunch

Break Out Group (BOG) discussion – Identifying initial set of benchmarks

2:00 PM Group 1 Chair: Christian Jakob Rapporteur: George Tselioudis

Group 2 Chair: Peter Gleckler Rapporteur: Travis O’Brien

Discussion topics

1. A set of metrics, comprehensive but also concise and ready to go, and 
supported by the group, for evaluating precip in models

• How should we address observational uncertainty? (building on the 
GEWEX observational assessment)

• How should we address observational uncertainty? (building on the 
GEWEX observational assessment)

• A plan for efficient implementation

2. A plan for turning this into a publication evaluating the CMIP6 models; 
consider the feasibility of doing this by December 31, 2019

3. A set of (research) priorities for what should go into the next benchmarking 
round (which won’t have the same time pressure as the IPCC/CMIP deadline)
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  3:30 PM Break

  3:45 BOG Report out and plenary discussion

  5:30 End of session

Day 2
9:00 AM Discussion – overnight thoughts 

Topics relevant to exploratory metrics

9:30 AM Evaluating simulated precipitation with ARM data (S. Xie)

9:40 AM Convection onset metrics (D. Neelin)

10:00 AM Machine learning and frontal systems (K. Kunkel)

10:15 AM Discussion 

10:30 AM Break

10:45 AM Extratropical and frontal rainfall (J. Catto)

11:00 AM A regime-oriented perspective on evaluation of precipitation (G. Tselioudis)

11:20 AM Variability of monsoons (B. Boos)

11:30 AM Discussion

12:30 PM Lunch 

Breakout Group (BOG) discussions – 1) establishing initial set and 2) areas of needed research

2:00 PM Group 3: What needs to happen for:

1. Solidifying 
the strawman – initial set of benchmarks, and other details of the approach

2. Strategy for analysis + publication by IPCC deadline?
Chair: Angie Pendergrass  
Rapporteur: Rich Neale
People in this group: Margot Bador, Jiwoo Lee, Tristan L’Ecuyer, Michael 
Wehner, Christian Jakob, Peter Gleckler, Paul Ullrich

Group 4: What should the next generation of metrics look like? - exploratory 
and process-oriented metrics discussion 
Chair: Ruby Leung
Rapporteur: Shaocheng Xie

1. What aspects (e.g., precipitation types, higher-order moments) of 
precipitation should the exploratory metrics focus on to complement the 
standard metrics?

2. Should relationships between precipitation and other quantities be 
considered in the exploratory metrics?

3. What principles should be used to prioritize the exploratory metrics?

4. How to implement a phased approach for exploratory metrics?
People in this group: Bill Boos, Jennifer Catto, Ken Kunkel, Gill Martin, David 
Neelin, George Tselioudis, Travis O’Brien

3:30 PM Break

4:00 PM Reports from BOGs
Discuss how we will move forward

5:00 PM End of workshop
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	Executive Summary
	Earth system models (ESMs) bridge observationally based and theoretical understanding of the Earth system. They are among the best tools to study a variety of questions related to variability and changes in the Earth’s climate. ESMs realistically simulate observed large-scale precipitation patterns and seasonal cycles that have a multitude of societal and national security implications. 
	Despite steady improvement in the simulation of precipitation characteristics, persistent errors in several aspects of simulated precipitation preclude higher confidence in using ESMs to understand earth system variability and change and to make decisions. 
	 

	In July 2019, the Regional and Global Model Analysis (RGMA) Program Area within the Earth and Environmental Systems Modeling (EESM) Program in the Climate and Environmental Sciences Division at the U.S. Department of Energy (DOE) led a two-day Precipitation Metrics Workshop, led by DOE Program Manager Renu Joseph and co-chaired by Peter Gleckler of Lawrence Livermore National Laboratory, Angeline Pendergrass of the National Center for Atmospheric Research (NCAR), and Ruby Leung of Pacific Northwest National
	A diverse group of experts participated in the workshop, including model developers, observational experts, scientists with expertise in diagnosing or evaluating simulated precipitation and related processes, and several with experience in objectively summarizing model performance with metrics. Among others, they represented the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), DOE national laboratories, and universities. 
	 

	The impetus for the workshop: Improve modeled precipitation by designing a capability to comprehensively evaluate ESMs—a capability that will help ESM developers better understand their models, providing them with quantitative targets for demonstrating model improvements. Two main thrusts drove the workshop dialogue: 
	• 
	• 
	• 
	• 

	identify a holistic set of observed rainfall characteristics that could be used to define metrics to gauge the consistency between ESMs and observations

	• 
	• 
	• 

	assess state-of-the-science methods used to evaluate simulated rainfall and identify areas of research for exploratory metrics for improved understanding of model biases and meeting stakeholder needs.


	Baseline Metrics
	Throughout the workshop, discussions frequently addressed a key expectation of the workshop—identification of a set of observed characteristics to be used for model benchmarking. It was widely recognized that there is no one right way to do this, and multiple viable approaches were discussed. Workshop participants did, however, agree that it was important to establish a starting point and that this effort would improve and expand over time.
	During the final plenary session, a set of six large-scale characteristics was agreed upon as an appropriate starting point for developing a set of baseline precipitation metrics. A proposed tiered system includes a wider range of quantitative measures that would provide much more detail than the six scales. These measures are designed to be applied to the common set of simulations requested from all modeling groups participating in the current phase of the Coupled Model Intercomparison Project (CMIP6).
	Exploratory Metrics
	While the basic function of precipitation metrics is to benchmark model simulations of precipitation for documenting model performance and improvements over time, precipitation metrics are useful for a broad community of researchers and stakeholders with interest in precipitation. Exploratory metrics go beyond the baseline metrics and often include aspects of model simulations that require higher-temporal-frequency precipitation data or cannot be evaluated based on precipitation data alone.
	 
	 

	They can be useful for model developers in guiding model development, for earth system scientists investigating precipitation variability and change, and for researchers and stakeholders interested in specific aspects of precipitation relevant to their applications. Based on the users and their needs, exploratory metrics were grouped into three types according to their functions and characteristics: process-oriented metrics, regime-oriented metrics, and use-inspired metrics.
	 

	Charting a Path Forward
	Research Community Engagement: Representatives of several related international activities attended and were engaged in the workshop. Both the Global Energy and Water cycle Exchanges (GEWEX) Data Assessment Panel and the International Precipitation Working Group (IPWG) provided crucial expertise with respect to remote and in situ-based measurements.
	As progress with precipitation metrics advances with both groups, collaboration with the World Climate Research Programme (WCRP) will help expand the effort to engage with the broader modeling community. Briefings of this activity are expected at upcoming sessions of the Working Group on Numerical Experimentation (WGNE) and GASS (GEWEX Global Atmosphere and System Studies).
	Benchmarking: To establish a baseline for climate model precipitation benchmarking, the first step is to apply the initial set of metrics agreed upon to CMIP6. A publication will document the skill, according to these metrics, of precipitation in CMIP6 simulations. Results from earlier generations of climate models will be included in the publication to document progress over the last 20 years.
	In five to seven years, this procedure will be revisited to assess the progress made in the intervening period. The goal is to both motivate progress on improving model precipitation and to facilitate it by providing appropriate and holistic observational targets. In the interim, baseline metrics will gradually develop as they are informed by the exploratory efforts.
	Exploratory: There are long-term needs to develop and improve exploratory metrics for broad use; there are also strong foundations for metrics applied to climate simulations. A working group on exploratory metrics was established at the workshop to develop coordinated near-term activities to advance the development and use of exploratory metrics. 
	 
	 
	 

	The first identified activity is a collaborative effort on a manuscript to discuss the need for exploratory metrics, to introduce an initial set of exploratory metrics, and to apply them to simulations produced by CMIP6 models. These model outputs can be useful for different communities of users (model developers, climate scientists, and impacts researchers and stakeholders).
	 

	The working group identified the following topics to include from the process-oriented, regime-oriented, and use-inspired metrics for demonstration of an initial set of exploratory metrics:
	• 
	• 
	• 
	• 

	Coherence in space and time

	• 
	• 
	• 

	Frontal precipitation

	• 
	• 
	• 

	Top 10 extreme events

	• 
	• 
	• 

	Convection onset

	• 
	• 
	• 

	Orographic enhancement

	• 
	• 
	• 

	Monsoon

	• 
	• 
	• 

	Mesoscale convective systems

	• 
	• 
	• 

	Madden-Julian Oscillation

	• 
	• 
	• 

	Atmospheric rivers.


	Near-term activities will be coordinated within the group and with relevant activities supported by other agencies and programs.
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	Introduction
	Earth System Models (ESMs) have continuously struggled with simulating precipitation accurately, which has resulted in persistent biases evident across generations of models. A key factor driving this lack of progress on precipitation is the lack of attention that many of its facets receive in the model development and tuning process; namely, insufficient attention is paid to most aspects of precipitation aside from the mean spatial pattern. Instead, the tuning process focuses on the time series of global m
	Accurately simulating the many processes that contribute to precipitation is not the only challenge—observing precipitation is also a persistent difficulty. Model development groups are less than ideally situated to assess which characteristics of precipitation are observed with the highest confidence. Furthermore, uncertainty in observations of precipitation is usually large—so including uncertainty information along with observations is essential to avoid over-fitting during the model development and tuni
	The precipitation metrics workshop was prompted by the need to expedite the improvement of precipitation in models. The main thrust of the workshop was to identify benchmarks and metrics to evaluate models, including understanding the limitations in the observations used to characterize reality and track progress in models. To address the gap in information about the quality of simulated precipitation, a prioritized set of precipitation characteristics and a set of observational benchmarks, including uncert
	Faithfully reproducing the many spatial and temporal scales of precipitation (Figure 2) is one of the most important and yet also the most challenging tasks of ESMs. Precipitation is also the signature of atmospheric latent heating, determining circulation features from global to local scales, and is intimately linked to cloud processes and cloud-radiative effects that dominate modeling uncertainties in quantities such as the sensitivity of temperature to radiative forcing. Without progress in modeling prec
	Just as precipitation spans many space and time scales, precipitation errors in model outputs can be found on all scales, ranging from large-scale, long-standing rainfall biases in the tropics, to errors in simulating rainfall associated with mid-latitude frontal systems and large-scale tropical circulations such as the Madden Julian Oscillation (MJO), to local errors in the diurnal phase and amplitude of precipitation. It will be essential to probe all relevant phenomena with a unified analysis capability 
	 

	Workshop Structure
	The two-day precipitation metrics workshop was organized to facilitate extensive participant discussions (Appendix A). Many of the approximately 40 participants gave presentations, and others were given frequent opportunities to contribute to the ideas being developed in breakouts and plenary discussion sessions. Breakouts were held on both days, followed by plenary sessions for breakout reports and continued discussion on advancing the objectives and goals of the workshop.
	 

	Objectives and Goals
	Despite many years of effort and significant investment, model errors in precipitation have remained large, hindering the use of ESMs in decision making. Progress hinges on mobilizing ideas and resources to address the many problems likely involved in the poor simulation of precipitation, from cumulus parametrization to microphysical processes, and the atmospheric thermodynamic environment and circulation. This workshop has attempted to reinvigorate focus toward improving simulated precipitation, which is u
	The immediate goals of the workshop were accomplished by establishing a set of precipitation characteristics for gauging model performance (discussed in Section 3) and identifying research topics for developing exploratory metrics (Section 4). Furthermore, the active discussions and enthusiasm evident during the workshop indicated the group’s preparedness for embarking on a long-term initiative. 
	After the workshop, the short-term goal is to establish a baseline by documenting the performance of the current-generation models with the agreed-upon benchmarks. Related to this goal is the need to create an analysis capability that enables modelers to reapply the performance tests to newer model versions. During this and later phases of the effort, the exploratory group will be tasked with developing increasingly insightful metrics that are sufficiently robust for inclusion in the baseline set. It is env
	Scope
	The impetus for this workshop was developed over several years, based on concerns that there has been inadequate progress in improving the quality of precipitation projections using ESMs, particularly during CMIP5 and CMIP6. Parallel to these concerns, it has also been recognized that forecasting precipitation using deterministic and stochastic numerical weather prediction (NWP) models has been lacking, particularly for subseasonal-to-decadal applications. But the research environment for longer-term couple
	To create a framework for evaluating simulated precipitation in ESM simulations, one focus of the workshop was to generate a set of metrics that are ready to be applied to CMIP6 simulations to evaluate them against existing observational data sets. To be able to apply the metrics in short order to all model simulations, this initial set is limited in scope to metrics that require only precipitation data, which will be available from CMIP6 DECK and Historical simulations, and is also limited to metrics that 
	In parallel with this initial effort to describe benchmark skill in simulating precipitation for the current generation of model simulations with available model output, observational data, and methodologies, a second focus of the workshop was to identify what next steps will be needed beyond this initial benchmarking. The effort towards exploratory metrics considered questions including: what metrics are useful to quantify the processes that generate precipitation? These often require more model output and
	Organization of the Workshop
	The workshop organization committee was led by DOE Program Manager Renu Joseph and co chaired by Peter Gleckler of Lawrence Livermore National Laboratory, Angeline Pendergrass of the National Center for Atmospheric Research (NCAR), and Ruby Leung of Pacific Northwest National Laboratory. The first morning began with presentations articulating background, motivation, and expectations of the workshop (Appendix A). All attendees were then given an opportunity to provide their reactions to the organizers’ prese
	The second day began with a discussion period to enable participants to share evening discussions and overnight thoughts. A morning session of presentations followed with topics relevant to exploratory metrics. The second set of breakout groups met during the afternoon: one to advance the establishment of an initial set of metrics (Section 3) and a second to identify research topics that could ultimately lead to a more advanced set of precipitation metrics (Section 4).
	 
	 
	 
	 
	 

	Community Participation
	A diverse group of experts participated in the workshop, including model developers, observational experts, and scientists with expertise in diagnosing or evaluating simulated precipitation and related processes, and several with experience in objectively summarizing model performance with metrics. Recognizing the critical importance of observations in this effort, attendees included scientists involved in the preparation of an assessment of observationally based precipitation products, which is an effort b
	Proposed Baseline for Precipitation Metrics
	A key expectation of this workshop was to identify a limited set of performance metrics that could serve as a baseline to gauge the agreement between observed and simulated precipitation. The intent is for this to serve as a starting point or set of building blocks upon which newer performance tests would be included as they are vetted over time. More research is needed to establish these newer exploratory metrics as discussed in Section 4.
	 

	Benchmarking Strategy
	This workshop has been motivated by the lack of progress in improving simulated precipitation. One reason for the limited progress is that insufficient attention has been given to this problem, sometimes resulting from limited resources being focused on modeling areas not directly related to precipitation and its variability. Given that precipitation is highly relevant to society, the intent of this workshop was to re invigorate interest by establishing a collective effort to tackle the problem. The benchma
	During the workshop
	1. 
	1. 
	1. 
	1. 

	Establish a small group of scientists with a diverse set of expertise related to simulated precipitation, including modelers, analysts, and data experts.

	2. 
	2. 
	2. 

	Identify a holistic set of characteristics where well-established performance tests already exist.

	3. 
	3. 
	3. 

	Identify research topics that could lead to more advanced performance metrics that can be applied in the future (Section 4).


	After the workshop
	1. 
	1. 
	1. 
	1. 

	Assess the current generation of models based on these tests to document a baseline.

	2. 
	2. 
	2. 

	Bring together these metrics into a common analysis framework.

	3. 
	3. 
	3. 

	Make this capability available to modelers and challenge them improve their models based on the performance benchmarks.
	 


	4. 
	4. 
	4. 

	Work with the WCRP to promote an initiative to stimulate the challenge and hopefully bring resources to modelers to address it.
	 


	5. 
	5. 
	5. 

	Revisit with next-generation models to see how well models have improved.


	Baseline Metrics
	The breakouts and discussions addressed a key expectation of the workshop—identification of a limited set of observed characteristics to be used for model benchmarking. This was challenging as it was widely recognized that there is no one right approach, and multiple viable approaches were discussed. The workshop participants did, however, agree that it was important to establish a starting point and that this would improve and expand over time via experience and community feedback. For example, some metric
	1. 
	1. 
	1. 
	1. 

	How well do models simulate the spatial distribution of average precipitation?


	Modelers and analysts have for many years compared global time mean maps of observed and simulated precipitation, and now routinely include difference maps to identify model errors in packages for the model development process as recently highlighted with several different versions of DOE’s Energy Exascale Earth System Model (Figure 5; Golaz et al. 2019).
	Including standard metrics for the spatial pattern of the mean state enables the metrics set to build on existing workflows as observed and simulated seasonal means are often examined in routine model evaluation. The root-mean-square (RMS) error of the mean state and the pattern correlation are two integrative metrics for the skill of mean precipitation. The mean absolute error (MAE) is a useful complement not heavily weighted by outliers.
	While examining the spatial pattern of total precipitation is routine, a lack of trustworthy snowfall measurements has precluded snowfall as being a routine measure. The CloudSat satellite provides a measure of snowfall amount (Figure 6) that can be used to evaluate the spatial pattern of snowfall in model simulations. But there are challenges in making an appropriate comparison between snow characteristics currently observed by satellites and simulated quantities, reducing the overall confidence in evaluat
	2. 
	2. 
	2. 
	2. 

	How well do models simulate the seasonal cycle of precipitation?


	The seasonal means often examined in routine model evaluation reveal the spatial characteristics of a given season, but they do not yield information about the amplitude or phase of the seasonal cycle. A common way to do this is to apply a Fourier transform to the 12-monthly means at each spatial location (grid cell). This provides a map of both the amplitude and phase of the seasonal cycle (Figure 7). Straightforward statistics comparisons between model simulations and observations can then be made analogo
	A well-established approach to comparing model and observed patterns is via a Taylor diagram (Taylor 2001), providing a succinct quantitative display of three theoretically related statistics—the pattern correlation, standard deviation, and centered root-mean-square error. Many modeling groups routinely use Taylor diagrams to help summarize performance characteristics. These diagrams are one way the mean and seasonal metrics can be summarized (e.g., Figure 8).
	3. 
	3. 
	3. 
	3. 

	How well do models simulate precipitation variability across time scales?


	Precipitation varies across a wide range of timescales. At the shortest timescale of model integrations (O[timestep]), there are rich coherence characteristics that are not routinely analyzed but more directly capture modeled precipitation (c.f., Klingaman et al. 2017, Martin et al. 2017). Efforts are advancing to make these analyses more available (e.g., via an open-source package, Analysing Scales of Precipitation – ASoP), but they are not yet routine in model intercomparisons or model evaluation. The exp
	The diurnal cycle, a forced component of shorter-timescale variability, is resolved with standard (3-hourly) CMIP output. Models exhibit well-known deficiencies, such as a tendency to produce rainfall too early in the day (Figure 9; Covey et al. 2016, Diaz et al. 2006). Several recent studies have demonstrated that there are also systemic deficiencies in the sub-diurnal or intermittent precipitation in CMIP-class models (Trenberth et al. 2017, Covey et al. 2018), although differences among satellite-derived
	 

	4. 
	4. 
	4. 
	4. 

	How well do models capture observed distributions of intensity and frequency?
	 



	Although longstanding systematic biases are evident in the mean-state spatial distributions of precipitation, tougher tests often involve examination of distributions in intensity and frequency (c.f., Pendergrass and Deser 2016). There are various ways to compare observed and simulated distributions. Challenges include qualitative effects of the resolution considered (Figure 10), particularly for reconciling point-like station data with the area-averaged fields from models. 
	To date, there is no universally adopted approach to quantify the differences between observed and simulated precipitation distributions. As the benchmarking of precipitation is advanced to assess the current generation of CMIP models, it will be necessary to use different approaches to assemble complementary information and determine if any underlying conclusions about changes in model performance depend upon the analysis method chosen. Several examples were discussed at the workshop of varying range in co
	 

	The Simple Daily Intensity Index (SDII) is a measure of the average intensity of precipitation on days with precipitation. It is part of the World Meteorological Organization (WMO) Commission for Climatology (CCl)/WCRP Climate and Ocean: Variability, Predictability and Change (CLIVAR)/WMO Intergovernmental Oceanographic Commission (IOC) Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM) Expert Team (ET) on Climate Change Detection and Indices (ETCCDI; Zhang et al. 2011), which is alr
	The SDII integrates over all types of precipitating events—light, typical, and extreme—obfuscating mechanistic identification and understanding of biases. One metric that focuses on the unevenness of how precipitation falls is the number of wettest days each year, during which half of the total precipitation falls (Figure 11; Pendergrass and Knutti 2018). This measure informs about the relative intensity of heavy precipitation to total precipitation and is not yet part of regular diagnoses.
	Emerging work describes the entire distribution of precipitation with two metrics, which connect modeled and observed precipitation distributions to theoretically based models for precipitation (Martinez-Villalobos and Neelin 2019). A combination of the slope in the bulk of the precipitation distribution (called the “power-law scale”) and the rain rate at which the distribution transitions from this regime to a rapidly decreasing one (the “cutoff rate”), combined with a measure of the goodness of fit of thi
	 
	 

	A final integrated measure to evaluate the skill of the distribution of precipitation is the Perkins score (Perkins et al. 2007). This metric quantifies the difference between two probability distributions, in this case, modeled and observed distributions of precipitation. Applying the Perkins score to different moments of the precipitation distribution (the probability density, the frequency, and the amount/volume distribution) provides information weighted towards different aspects of precipitation.
	 

	5. 
	5. 
	5. 
	5. 

	How well do models capture well-observed precipitation extremes?


	Precipitation extremes drive climate impacts, so it is crucial for models to simulate them well. Despite their importance, the phenomena associated with precipitation extremes are not always well represented in model simulations, and the fine scales needed to observe highly impactful precipitation events are not always well captured by our observing systems and observational data products. Measures to evaluate simulated precipitation extremes should try to account for these factors. 
	 

	One set of metrics for extreme precipitation arises from the block-maximum precipitation over various timescales. The maximum daily precipitation accumulation each year, rx1day, describes relatively heavy precipitation and is sufficiently extreme that it behaves differently from mean precipitation (Pendergrass and Knutti 2018). The maximum consecutive 5-day accumulation each year, rx5day, captures protracted synoptic events that can drive flood events. The maximum 3-hourly precipitation each year, rx3h, is 
	 

	Another set of measures for extreme precipitation are derived from the theory of Generalized Extreme Value (GEV) distributions and rely on statistical modeling of observed and modeled time periods. Long-period return values describe much rarer events than seasonal or annual block maxima. Recent developments in non-stationary methods reduce the statistical uncertainty in their estimation (e.g., Risser et al. 2019), permitting their usage as model evaluation metrics.
	Because the phenomena driving precipitation extremes and also the impacts of extremes can be seasonally dependent, examining the seasonal breakdown of extremes will be featured among the tiers of evaluation metrics. Connecting precipitation extremes with their generation mechanisms is considered under exploratory metrics (Section 4).
	6. 
	6. 
	6. 
	6. 

	How well do models capture dry periods?


	Drought is driven in large part by periods that lack precipitation; meteorological drought is the component of drought that describes this lack of precipitation. The Standardized Precipitation Index (SPI; McKee et al. 1993) quantifies the anomalous precipitation for a given location and can be calculated over different lengths of time, for example, one month to three years, which is normalized to the average precipitation over the time period for the location. Then, the frequency of events falling below a t
	 
	 

	Another measure of meteorological drought is the length of dry spells. The ETCCDI indices include the number of Consecutive Dry Days (CDD), which is one measure of dry-spell length. 
	 

	While many of the basic characteristics highlighted above are at least casually monitored by modelers, a well-organized hierarchy for each of them could be more informative. Partitioning, for example, between the tropics and extra-tropics or over ‘wet’ and ‘dry’ land and/or seasons can help better understand the contributions to global-scale statistical comparison. Each measure will be computed over a variety of sub-domains to facilitate this breakdown, forming another component of the second tier of measur
	Observational Data Sets and Their Uncertainty
	 

	One challenge for evaluating precipitation in climate models is the uncertainty in observational data sets, and variation among them. For example, even a broad measure like total annual precipitation over a large domain (Figure 12) can vary substantially among data sets. To address observational uncertainty, an evaluation system needs to incorporate multiple observational data sets—an ensemble of in situ and satellite data—to enable quantification of agreement across observational products, since no one dat
	Exploratory Precipitation Benchmarks
	As discussed in Section 3, baseline metrics are performance metrics to be established as a starting point to measure the agreement between observed and model-simulated precipitation. They cover many aspects of precipitation, but because they are intended as building blocks, baseline metrics are initially limited to those that can be calculated using the standard outputs from a common set of simulations from all modeling groups participating in CMIP6. Building on and complementing the baseline metrics, explo
	 
	 
	 
	 
	 

	The Need for Exploratory Metrics
	While the basic function of precipitation metrics is to benchmark model simulations of precipitation for documenting model performance and improvements over time, precipitation metrics are useful for a broad community of researchers and stakeholders with interest in precipitation. Examples of users and their needs for exploratory precipitation metrics are discussed here. Going beyond the baseline metrics (discussed in Section 3), exploratory metrics often require higher-temporal-frequency precipitation outp
	 
	 
	 

	An important use of precipitation metrics for model developers is to inform or guide model development. Because models are focused around equations that represent individual processes, model developers need process-oriented metrics to diagnose the deficiencies in model parameterizations and gain insights for improving precipitation simulations. For example, they can benefit from metrics that partition the model biases into their component parts to help narrow down aspects of the model parameterizations that
	 
	 
	 
	 
	 

	Scientists using earth system model simulations to understand the thermodynamic and dynamical contributions to precipitation changes in the future can use more information regarding model skill in variables relevant to precipitation. For example, moisture budget analysis is often used to quantify the thermodynamic and dynamical effects of warming; this type of analysis makes use of information about moisture and vertical motion, which are sensitive to physics parameterizations and model resolutions. Hence, 
	 
	 

	Researchers and stakeholders of model precipitation simulations, predictions, and projections often have interests in specific aspects of precipitation relevant to their particular applications. For example, use-inspired precipitation metrics may focus on characteristics related to the space-time variability and coherence as well as intensity, frequency, and duration that impact soil moisture, snowpack, and runoff, with subsequent effects on ecosystems, crops, water resources, and infrastructure. Use-inspir
	 
	 
	 
	 

	Types and Examples of Exploratory Metrics
	 

	Based on the users and their needs, exploratory metrics can be roughly grouped into a few categories according to their functions and characteristics (Figure 13). Here we summarize the discussion of exploratory metrics under three key categories: process-oriented metrics, regime-oriented metrics, and impacts and use-inspired metrics. Although different types of metrics may be developed by different communities and, therefore, be more relevant to their needs, many metrics provide complementary information ab
	a. Process-oriented metrics 
	To inform model development, a subset of baseline metrics applied to specific sites where many types of measurement data are available can be useful. These differ from the baseline metrics discussed in Section 3 mainly in the spatial and temporal scale of the analysis, as baseline metrics tend to be calculated based on large-to-global domains to provide a broader view of regional differences aggregated to larger scales. However, similar metrics can be applied at a local scale to provide a starting point for
	 

	On the PDF of precipitation rates, three regimes can be identified from the PDF curve—a non-precipitating regime, and a power-law regime at lower precipitation rates that transitions at a cutoff scale to an exponential regime at higher precipitation rates (Figure 15). Since the exponent of the power-law range and the cutoff scale depend only on the physics of the processes controlling precipitation, and stochastic process models can capture such features to guide physical interpretations (Martinez-Villalobo
	 

	Process-oriented metrics may include relationships between precipitation and other variables intimately involved in the processes that generate precipitation. For example, satellite observations have revealed a relationship between column relative humidity and precipitation on daily to monthly time scales (Bretherton et al. 2004, Sobel et al. 2004). On shorter, convective time scales, a similar relationship has also been established between column water vapor (CWV) and precipitation from satellite data (e.g
	 

	Models have been shown to reproduce the CWV-precipitation relationship to varying degrees, with implications for model skill in simulating a wide range of phenomena such as the Madden-Julian Oscillation (Klingaman et al. 2015, Rushley et al. 2019, Kim et al. 2019), monsoon precipitation (Hagos et al. 2018b), and tropical precipitation variance and extremes (Hagos et al. 2018a). Using satellite and in situ data of CWV and precipitation, this relationship and the PDF of CWV can be determined at locations repr
	Besides the CWV-precipitation relationship discussed above, other relationships relating precipitation with temperature, vertical velocity, moist static energy, and entrainment and convective triggering can also be explored to derive process-oriented metrics for evaluating precipitation simulations, as well as providing insights on processes that may need improvement in their representation in the models. For example, partitioning the PDF of precipitation rates by regimes of vertical motion (updraft, neutra
	 

	In regions of complex terrain, the amount and phase of orographic precipitation play a dominant role in the regional water cycle, affecting soil moisture, snowpack, and runoff. In models, orographic precipitation is sensitive to model resolution as well as physics parameterizations (e.g., Leung and Qian 2003, Lebassi-Habtezion and Diffenbaugh 2013, Yang et al. 2017). Across a mountain transect, precipitation generally increases with elevation and peaks upwind of the mountain top. Model skill in simulating o
	 
	 
	 
	 
	 

	Precipitation exhibits large variability associated with different large-scale modes of variability. Teleconnection relationships between regional precipitation and modes of variability provide important information about model biases in precipitation variability. As an example, biases in simulating El Niño Southern Oscillation (ENSO) has an important bearing on precipitation biases in North America through the Pacific North America Pattern (PNA). Connections have been established between the MJO and tropic
	 
	 
	 
	 

	The ASoP package (Klingaman et al. 2017) provides a quantitative approach to evaluation of intensity distributions and coherence in space and time across a wide range of scales and can reveal how models fundamentally produce precipitation. Martin et al. (2017) showed how the package can be used to understand the contribution from model errors on different time and space scales to climatological precipitation biases. Figure 17 shows the contribution to June-September mean rainfall from precipitation intensit
	b. Regime-oriented metrics
	Both moisture and vertical motion are needed to produce precipitation through condensation of water vapor and cloud formation. Dynamical forcing, convective instability, and orographic forcing are three mechanisms for generating upward motion. Hence precipitation, especially extreme precipitation that requires abundant moisture and strong upward motion, exists in distinct meteorological environments that define the precipitation regime. Kunkel et al. (2012) identified several meteorological causes or precip
	A set of exploratory metrics can be defined to evaluate how well models simulate precipitation associated with specific precipitation regimes. These regime-oriented metrics provide useful information for model developers and climate scientists to understand model biases, such as those related to model resolution or specific geographical regions. They are also useful for impacts researchers and stakeholders to evaluate and communicate the credibility of model precipitation in terms of meteorological phenomen
	Automatic methods have been developed to detect and track precipitation or atmospheric circulation features associated with different precipitation regimes. For example, fronts can be identified using the method of Berry et al. (2011) and the thermal front parameter of Hewiston (1998) to identify locations of frontal points based on the maximum gradient of wet-bulb potential temperature in the direction of the moist isentropes (Catto et al. 2012). ETCs (Figure 18) can be tracked using the method of Hodges (
	 

	Atmospheric rivers (ARs) are intense horizontal moisture transport pathways associated with heavy precipitation in many regions worldwide. Many algorithms have been developed to detect and track ARs based on CWV and/or column integrated moisture transport above absolute or percentile thresholds, sometimes with added criteria regarding the geometry (length, width, orientation) of the CWV filaments (Shields et al. 2018; Figure 20).
	 

	Large biases in South Asian monsoon precipitation have been noted in two recent generations of CMIP models (Sperber et al. 2015). The precipitation biases can be linked to biases in the thermodynamic states (e.g., moist static energy) of the Asian monsoon (Boos and Hurley 2013). Synoptic-scale vortices related to dynamical instability of the strongly sheared South Asian monsoon basic state (Diaz and Boos 2019) produce much of the extreme precipitation in India (Boos et al. 2015). These vortices contribute a
	Recently, machine-learning approaches have also been used to detect and track precipitation or circulation features associated with different precipitation regimes. For example, Biard and Kunkel (2019) tested the use of deep-learning neural networks to automate the detection of weather fronts (Figure 22). The U.S. seasonal front climatology developed based on deep learning is comparable to the climatology derived from coded surface bulletins. Neural networks have also been used to segment and track ARs and 
	 
	 

	Once the fronts, ETCs, TCs, MCSs, ARs, or MDs are identified using tracking methods, they can be combined with precipitation data to quantify the mean and extreme precipitation as well as other precipitation characteristics (e.g., diurnal and seasonal variability) associated with each regime regionally or globally. For example, model precipitation biases can be decomposed into biases associated with frontal and non-frontal precipitation, and for frontal precipitation, the biases can further be decomposed in
	Tselioudis et al. (2013) defined global weather states (WSs) using joint histograms of cloud optical thickness and cloud top pressure from satellite data. The 11 WSs they identified exhibit unique distributions of vertical layering of clouds that correspond well to the horizontal structure of cloud properties. Furthermore, the WSs represent a normal progression in dynamic regime from the most convective to the least convective WS. This suggests that the WSs may also be useful for delineating different preci
	 

	Regime information derived from the various analyses discussed above can be summarized in many forms to be used as precipitation metrics. Examples include monthly distribution of precipitation broken down by regimes, spatial distribution of the top 100 events and their corresponding regimes, and spatial distribution of amplification factor associated with different regimes, where amplification factor may be defined as the ratio of precipitation intensity for a particular regime to the mean intensity of all 
	c. Use-inspired metrics
	Precipitation varies across a wide range of spatial and temporal scales, with important impacts on ecosystems, crop productivity, water resources, and other human activities, so evaluating the ability of models to simulate different aspects of precipitation variability is important for stakeholders managing a host of different types of resources. Precipitation variability can be characterized in many ways from the perspectives of both space and time, including coherence and diurnal variability already discu
	 
	 

	Complementary to precipitation sequencing, the contribution of precipitation at different time scales (e.g., sub-daily, daily, pentad) to total precipitation also provides useful information about precipitation variability. As shown in Figure 17, contrasts in the contribution from different time scales can be large across regions such as the Indian Ocean and West Africa. Large contrasts are also found within Europe, and the ability to reproduce the observations varies with models and is sensitive to horizon
	Hydraulic structures such as flood drainage systems are designed to accommodate extreme flood events. For this purpose, civil engineers characterize storms by curves that relate the precipitation intensity with its duration and frequency of occurrence, referred to as the intensity-duration-frequency (IDF) curves. As climate change is expected to alter precipitation characteristics, developing IDF curves that consider climate change is an important challenge, requiring assessments of how well model simulated
	Correlated extremes are important concerns for agricultural production and water management. Three types of correlated extremes regarding precipitation should be explored as precipitation metrics. The first type highlights compound extremes such as torrential rain during coastal storm surge that may amplify coastal inundation compared to inundation caused by torrential rain or storm surge alone. Using tropical cyclones as examples, the aforementioned compound extreme requires models to properly simulate bot
	 

	Research Needs
	The examples of process-oriented, regime-oriented, and use- inspired metrics discussed at the workshop and summarized above have been explored and demonstrated in the analysis of observations and model outputs and to diagnose model biases. However, more research is needed to define the metrics before they can be implemented and standardized for broader use. Some research needs identified at the workshop are discussed below.
	 

	Synthesizing analysis into succinct metrics. Many examples discussed in Section 4.2 are analyses that can be used to produce visual and numerical comparisons of different aspects of observations and model simulations; however, there is a need to develop metrics that succinctly synthesize key aspects of the analyses. For the power-law and exponential regimes of the PDF of precipitation rates, the exponent of the power law and the cutoff scale of the transition from the power-law regime to the exponential reg
	Relating precipitation characteristics with storm characteristics and large-scale environments. In parallel to developing succinct metrics, more research delving into the relationship between precipitation characteristics and storm characteristics could provide important insights on model biases. As an example, for frontal precipitation, relating the precipitation intensity to the strength of the fronts, the presence or absence of frontal features such as warm conveyor belt, dry intrusion, and cyclone depth
	 

	Improving physical interpretation of the metrics. Exploratory metrics are generally more complex than the baseline metrics, as they delve into the processes and meteorological causes of precipitation. Understanding the physical processes behind the metrics and interpreting the benchmarking results are important if the metrics are to inform model developers and other researchers. To this end, more research is needed to understand the physical properties or processes governing the metrics. As an example, stoc
	Developing emergent constraints. Some of the exploratory metrics discussed at the workshop could potentially be used as emergent relationships to constrain future projections of precipitation changes. For example, Hagos et al. (2018b) showed that CMIP5 model spread in projecting South Asian monsoon precipitation changes in the future is related to where each model is situated in the CWV-precipitation curve derived for the equatorial Indian Ocean, which is also reflected in model biases in simulating the pre
	 

	Characterizing uncertainty of tracking methods for precipitation regimes. Many detection/tracking methods have been developed and used by researchers to study different precipitation regimes, how well they are simulated or predicted by models, and their variability and change. These methods may differ in many ways, including the variables being tracked, the thresholds used to define the features, methods based on the physics/dynamics of the phenomena versus methods based mainly on geometry or other visual f
	 
	 
	 

	Characterizing uncertainty in observation data. Besides uncertainty in the tracking/detection methods, uncertainty in observation data can also contribute importantly to uncertainty in the metrics used to benchmark precipitation in model simulations. For exploratory metrics, uncertainty in observation data goes beyond precipitation data because many exploratory metrics require information from other variables related to precipitation. As an example, reanalysis data is often used in the analysis of the therm
	 
	 
	 

	Engaging with the Broader Research Community
	National and International Collaborations
	 

	Representatives from several related international activities engaged in this workshop. Both the GEWEX Data Assessment Panel and the International Precipitation Working Group (IPWG) provided crucial expertise with respect to remote and in situ-based measurements. CMIP6 publications from both working groups will serve as a foundation from which a WCRP activity can be formalized. Briefings on the precipitation metrics activity will be included in future sessions of the Working Group on Numerical Experimentati
	 
	 

	ESM Model Evaluation Capabilities
	As a first step, the baseline metrics highlighted in Section 3 are being implemented into the PCMDI Metrics Package (PMP; Gleckler et al. 2016), an open-source software package designed for producing objective comparisons between ESMs and observations. A feature of the PMP that is needed for long-term benchmarking is a provenance framework to document versions of all data (simulations and observations), analysis codes, dependencies, and operating conditions. Coordination with other precipitation-related cap
	 
	 
	 

	One particular effort presently underway that has the potential to standardize and accelerate model evaluation across disparate metric development efforts is the Coordinated Model Evaluation Capabilities project (CMEC; https://cmec.llnl.gov/). This project aims to develop high-level seamless integration of distinct, yet complementary, diagnostics and metrics capabilities. A central expectation of CMEC is that through coordination, these efforts can be made stronger than the sum of their parts. Specifically,
	 
	 

	Next Steps
	Benchmarking
	To establish a baseline of skill for earth system model precipitation, the first step is to apply the initial set of metrics agreed upon at the workshop (Section 3) to the current generation of climate model simulations—CMIP6. These metrics will be implemented into the PMP, and they will be applied to the CMIP6 DECK and Historical simulations. A publication will document the skill, according to these metrics, of precipitation in CMIP6 simulations, and compare it against previous generations of ESMs (as arch
	 
	 

	Exploratory
	While there are longer-term research needs to develop and improve the exploratory metrics for broader use, there are strong foundations for some metrics to be applied to climate simulations for demonstration. Parallel to the working group on baseline metrics, a working group on exploratory metrics was established at the workshop with the goal of developing coordinated near-term activities to advance the development and use of exploratory metrics. The first activity identified by the group is a collaborative
	The working group identified the following topics to include from the process-oriented, regime oriented, and use-inspired metrics for demonstration of an initial set of exploratory metrics:
	• 
	• 
	• 
	• 

	Coherence in space and time

	• 
	• 
	• 

	Frontal precipitation

	• 
	• 
	• 

	Top 10 extreme events

	• 
	• 
	• 

	Convection onset

	• 
	• 
	• 

	Orographic enhancement

	• 
	• 
	• 

	Monsoon

	• 
	• 
	• 

	Mesoscale convective systems

	• 
	• 
	• 

	Madden-Julian Oscillation

	• 
	• 
	• 

	Atmospheric rivers.


	As part of CMIP6, HighResMIP (Haarsma et al. 2016) includes simulations at low and high resolution to facilitate analysis of the impacts of model horizontal resolution on climate simulations. Exploratory metrics on the above-selected topics will be applied to a set of low- and high-resolution simulations available from HighResMIP, with the goal to demonstrate their use across multi-models and a range of spatial resolution and insights that can be gained regarding model performance in simulating diverse aspe
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	Identify a set of performance metrics that can serve as a baseline to gauge the agreement between observed and simulated precipitation and discuss exploratory metrics for future use.
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	Figure 1. The workshop addressed existing needs and gaps from the research community by defining and prioritizing a set of precipitation metrics and developing a future strategy for model evaluation and intercomparison.
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	Figure 2. Spatial and temporal characteristics of atmospheric processes and features relevant to precipitation.
	Figure 2. Spatial and temporal characteristics of atmospheric processes and features relevant to precipitation.

	Figure
	Figure 3. A flowchart depicting a simplified view of the metric and model development process.
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	Overarching Workshop Objectives
	Overarching Workshop Objectives
	To identify precipitation characteristics that will be used to establish a limited set of benchmarks for gauging the consistency between ESMs and observations.
	To assess state-of-the-science methods used to evaluate simulated precipitation, and to identify areas of research where well-established metrics are needed but currently lacking.
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	Figure
	Figure 4. A draft layout of Tiers 1 and 2, resulting from workshop breakout discussions.
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	Figure
	Figure 6. Global map of present-day near-surface snow frequency: observed CloudSat snow (top), Community Earth System Model (CESM)1 CloudSat snow (bottom). CloudSat light snow and CloudSat snow definitions are based on reflectivity and fraction of ice present. (Adapted from Kay et al. 2018)
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	Figure
	Figure 5. (a) Annual mean Global Precipitation Climatology Project estimated precipitation rates and the biases in several in several model versions (b) EAMv0 and (c) EAMv1L. The white color in (b) and (c) indicates the regions where differences are less than 0.2 mm/d. Adapted from Xie et al. 2018.
	Figure 5. (a) Annual mean Global Precipitation Climatology Project estimated precipitation rates and the biases in several in several model versions (b) EAMv0 and (c) EAMv1L. The white color in (b) and (c) indicates the regions where differences are less than 0.2 mm/d. Adapted from Xie et al. 2018.

	Figure 7. Total precipitation (mm/day). Top row: Observational (CMAP) annual amplitude and phase; Second row: Multi-model ensemble annual amplitude and phase. (Adapted from AchutaRao et al. 2008)
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	Figure
	Figure 8. Taylor diagrams quantify the differences between observed and simulated precipitation for the four seasons. Model results are from the CMIP5 and compared to GPCP2.3. (Adapted from the Program for Climate Model Diagnosis & Intercomparison (PCMDI)’s mean-state simulation summaries [https://pcmdi.llnl.gov/research/metrics])
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	Figure
	Figure 9. Harmonic dial plots of the amplitude and phase of Fourier components, after vector averaging over land and ocean areas separately, for Tropical Rainfall Measurement Mission (TRMM) 3B42 (black lines and dots), the four highest-resolution CMIP5 models (colored lines), and for the other 17 CMIP5–AMIP models with only July results shown for clarity (gray dots). (Adapted from Covey et al. 2016)
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	Figure
	Figure 10. Example thresholds for precipitation occurrence and phase. The frequency of precipitation depends strongly on the scale. On smaller scales, precipitation frequency generally decreases with increasing spatial resolution, as seen clearly with CloudSat observations. (Courtesy T. Lécuyer, University of Wisconsin-Madison)
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	Figure
	Figure 11. Unevenness of precipitation. Cumulative fraction of total precipitation as a function of the number of wettest days each year. The number of days for half of precipitation corresponds to the value of each line. Present-day observed at stations, according to TRMM 3b42 product at native 0.25° resolution and coarsened to 2.5° and simulated by CMIP5 climate models at native resolution and regridded to 2.5°. Lines show the median across stations. Uncertainty across stations is indicated by the gray sh
	Figure 11. Unevenness of precipitation. Cumulative fraction of total precipitation as a function of the number of wettest days each year. The number of days for half of precipitation corresponds to the value of each line. Present-day observed at stations, according to TRMM 3b42 product at native 0.25° resolution and coarsened to 2.5° and simulated by CMIP5 climate models at native resolution and regridded to 2.5°. Lines show the median across stations. Uncertainty across stations is indicated by the gray sh

	Figure
	Figure 12. Global land (50S-50N) average timeseries for prcptot (total annual daily precipitation, in mm) in an ensemble of 22 observational products from the Frequent Rainfall Observations on Grids (FROGS) database (Roca et al. 2019). Box and whiskers in each panel provide information on the distribution of prcptot for all products while vertical colored lines indicate the range of values for each type of product: in situ (blue), satellite corrected (orange), satellite uncorrected (red) and reanalyses (gre
	Figure 12. Global land (50S-50N) average timeseries for prcptot (total annual daily precipitation, in mm) in an ensemble of 22 observational products from the Frequent Rainfall Observations on Grids (FROGS) database (Roca et al. 2019). Box and whiskers in each panel provide information on the distribution of prcptot for all products while vertical colored lines indicate the range of values for each type of product: in situ (blue), satellite corrected (orange), satellite uncorrected (red) and reanalyses (gre
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	Figure 13. A categorization of the exploratory metrics considered at the workshop.
	Figure 13. A categorization of the exploratory metrics considered at the workshop.
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	Figure 14. (Left) Mean diurnal cycle of precipitation in June-July-August (JJA) from ARM observations at the Southern Great Plains (black), CMIP5 simulations (grey), and E3SM simulations with the Zhang McFarlane (red), Cloud Layers Unified By Binormals (CLUBB; blue), and Unified Convection Scheme (UNICON; green) convective parameterizations. (Right) Similar to the left panel but including three new E3SM simulations that test two new convection trigger functions (green, purple) and their combination (blue) a
	Figure 14. (Left) Mean diurnal cycle of precipitation in June-July-August (JJA) from ARM observations at the Southern Great Plains (black), CMIP5 simulations (grey), and E3SM simulations with the Zhang McFarlane (red), Cloud Layers Unified By Binormals (CLUBB; blue), and Unified Convection Scheme (UNICON; green) convective parameterizations. (Right) Similar to the left panel but including three new E3SM simulations that test two new convection trigger functions (green, purple) and their combination (blue) a
	 
	 


	Figure
	Figure 15. Probability density function of precipitation rate (mm hr) based on data from TRMM (solid grey) and ARM (solid blue and open rectangles in magenta, green, and grey) in log-linear plot (left) and log-log plot (right). The fitted linear black line in (a) and (b) shows the exponential range and power law range, respectively. (Source: David Neelin, University of California at Los Angeles)
	Figure 15. Probability density function of precipitation rate (mm hr) based on data from TRMM (solid grey) and ARM (solid blue and open rectangles in magenta, green, and grey) in log-linear plot (left) and log-log plot (right). The fitted linear black line in (a) and (b) shows the exponential range and power law range, respectively. (Source: David Neelin, University of California at Los Angeles)
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	Figure
	Figure
	Figure 16. Convective transition collapsed statistics. Conditionally averaged precipitation rate (mm hr) (far left) and conditional probability of precipitation (middle left) for various tropospheric-averaged temperatures (colored markers). PDF of all events (middle right) and precipitating events only (i.e., precipitation > 0.25 mm hr) (far right) as a function of various tropospheric-averaged temperatures (colored markers). All variables are plotted against CWV-wc where wc is the threshold of CWV above wh
	Figure 16. Convective transition collapsed statistics. Conditionally averaged precipitation rate (mm hr) (far left) and conditional probability of precipitation (middle left) for various tropospheric-averaged temperatures (colored markers). PDF of all events (middle right) and precipitating events only (i.e., precipitation > 0.25 mm hr) (far right) as a function of various tropospheric-averaged temperatures (colored markers). All variables are plotted against CWV-wc where wc is the threshold of CWV above wh
	-1
	-1


	Figure
	Figure 17. Contribution of June-July-August-September (JJAS) rainfall (mm/day) at different timescales to total rainfall as a function of precipitation amount (mm/day) in (a) equatorial Indian Ocean and (b) West Africa. Timescales are shown for 3-hourly (light blue), daily (dark blue), 10-day (light green), 20-day (dark green), and timestep (red). (Source: Gill Martin, UK Met Office)
	Figure 17. Contribution of June-July-August-September (JJAS) rainfall (mm/day) at different timescales to total rainfall as a function of precipitation amount (mm/day) in (a) equatorial Indian Ocean and (b) West Africa. Timescales are shown for 3-hourly (light blue), daily (dark blue), 10-day (light green), 20-day (dark green), and timestep (red). (Source: Gill Martin, UK Met Office)
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	Figure 18. Features of an extratropical cyclone showing the fronts, dry intrusion (DI), warm conveyor belt (WCB), cold conveyor belt (CCB), and sting jets (SJ). (Source: Jennifer Cattoo, University of Exeter)
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	Figure
	Figure 19. Schematic identification of a robust mesoscale convective system (RMCS). (a) Cold cloud systems (CCS) are identified using satellite Tb data. The thick black contours show the 241 K outline of CCS. The cold cloud cores (Tb < 225 K) shown in blue patches are dilated outward to 241 K to separate CCS with distinct cold cloud cores. (b) Precipitation features (PFs) within the CCS are identified with contiguous area of radar reflectivity >17 dBZ at 2.5 km height. PF major axis length and convective ce
	Figure 19. Schematic identification of a robust mesoscale convective system (RMCS). (a) Cold cloud systems (CCS) are identified using satellite Tb data. The thick black contours show the 241 K outline of CCS. The cold cloud cores (Tb < 225 K) shown in blue patches are dilated outward to 241 K to separate CCS with distinct cold cloud cores. (b) Precipitation features (PFs) within the CCS are identified with contiguous area of radar reflectivity >17 dBZ at 2.5 km height. PF major axis length and convective ce
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	Figure
	Figure 21. (Left) Shading/colors show the number of genesis points of MDs per square degree (roughly 12 000 km) per summer season (June–September), after smoothing with a Gaussian filter. Vectors show the average propagation speed of MDs and are coarsened to a 2◦ × 2◦ grid for clarity; vectors are shown only if the mean zonal or meridional propagation speed at each grid point is statistically significant at the 1% level by a two-tailed t-test. (Adapted from Boos et al. 2015) (Right) Fraction of 99th percent
	Figure 21. (Left) Shading/colors show the number of genesis points of MDs per square degree (roughly 12 000 km) per summer season (June–September), after smoothing with a Gaussian filter. Vectors show the average propagation speed of MDs and are coarsened to a 2◦ × 2◦ grid for clarity; vectors are shown only if the mean zonal or meridional propagation speed at each grid point is statistically significant at the 1% level by a two-tailed t-test. (Adapted from Boos et al. 2015) (Right) Fraction of 99th percent
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	Figure 20. (a) Time series of daily integrated vapor transport (IVT) anomalies for (orange) Iberia, (teal) the U.S. west coast, and (blue) Ireland and the United Kingdom. Four events of varying geometry and intensity are shaded in panel (a), and composites for each event are shown in panels (b)–(e). The black dots above the time series in panel (a) indicate time slices in which each event is detected by an algorithm. (Adapted from Shields et al. 2018)
	Figure 20. (a) Time series of daily integrated vapor transport (IVT) anomalies for (orange) Iberia, (teal) the U.S. west coast, and (blue) Ireland and the United Kingdom. Four events of varying geometry and intensity are shaded in panel (a), and composites for each event are shown in panels (b)–(e). The black dots above the time series in panel (a) indicate time slices in which each event is detected by an algorithm. (Adapted from Shields et al. 2018)
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	Figure 22. Fronts identified by human surface analysis (left) and deep-learning analysis (right) on 2009 01-01 00Z. Different types of fronts are shown in blue (cold), red (warm), occluded (magenta), and stationary (green). (Source: Ken Kunkel, North Carolina State University)
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	Figure 23. Precipitation distribution in cloud-defined weather states (1–12) as described in Tselioudis et al. (2013). Precipitation regimes are defined as no precipitation (red), and light (purple), moderate (blue), and heavy (black) precipitation. (Source: George Tselioudis, NASA Goddard Institute of Space Studies [GISS])
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	Figure 24. IDF estimates based on observations (upper left) and model simulations for the present climate (red line with yellow shading) and future climate (blue line with green shading) following the RCP8.5 scenario. Simulations are produced by 13 regional climate models that participated in the Coordinated Regional Climate Downscaling Experiment (CORDEX). The IDF curves show the relationships between precipitation intensity (inches/day) and return period (years) for duration of one day at station 36-0656.
	Figure 24. IDF estimates based on observations (upper left) and model simulations for the present climate (red line with yellow shading) and future climate (blue line with green shading) following the RCP8.5 scenario. Simulations are produced by 13 regional climate models that participated in the Coordinated Regional Climate Downscaling Experiment (CORDEX). The IDF curves show the relationships between precipitation intensity (inches/day) and return period (years) for duration of one day at station 36-0656.
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