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Overcoming 
recalcitrance is the 

single coherent 
overarching theme

for the BESC

• A large-scale, integrated, interdisciplinary approach is needed
to overcome this problem

– Current research efforts are limited in scope
– BESC will launch a broad and comprehensive

attack on a scale well beyond any efforts to date

• Without advances, a cellulosic biofuels industry is unlikely to emerge
• Knowledge gained will benefit other

biofuels and biofeedstocks

The fundamental science
of biomass recalcitrance
is poorly understood

Sugars

Cellulosic
biomass

Fuel(s)
Recalcitrance:
Resistance to

breakdown
into sugars
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Complex Carbohydrate
Research Center
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The BESC Team

Joint Institute for
Biological Sciences (JIBS)
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Three linked scientific focus areas will enable 
BESC to understand and overcome biomass
recalcitrance
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BESC is organized to provide clear 
operations and science accountability
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Comparative impacts of R&D
on biomass processing cost

A1: Increase hydrolysis yield

A2: Halve cellulase loading

A3: Eliminate pretreatment

A4: Consolidate bioprocessing

B1: Simultaneous C5 and C6 use

B2: Increased fermentation yield

B3: Increased ethanol titer
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% of processing cost reduction

B: Conversion of
sugars into biofuels

A: Conversion of biomass
into available sugars

Without overcoming biomass recalcitrance (A), cellulosic biofuels will be more 
expensive than corn biofuels.  Improved sugar conversion (B) is not enough.

Ref: Lynd, L.R., M.S. Laser, D. Bransby, B.E. Dale, B. Davison, R. Hamilton, M. Himmel, M. Keller, J.D.
McMillan, J. Sheehan, C.E. Wyman, 2007. "Energy Biotechnology: Targeting a Revolution" Nature 
Biotechnology (in press)
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BESC has well-defined objectives
Revolutionize the
processing of biomass 
within 5 years

Apply a systems biology 
approach and new higher-
throughput pipelines

• Improve overall yields 

• Simplify operations
through consolidated
bioprocessing (CBP)

• Decrease (or eliminate)
the need for costly
chemical pretreatment

• Reduce recalcitrance
by targeted modification of 
plant cell wall composition
and structures

• Develop and understand single 
microbes or microbial 
consortia and their enzymes to 
enable CBP for low-cost 
cellulose hydrolysis and 
fermentation

• Provide a synergistic 
combination of modified plants 
and CBP for even more
cost-effective biofuel 
production
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BESC will revolutionize how biomass is 
processed within five years 
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Modifying cell wall composition
and structure can reduce recalcitrance

• More sugar is solubilized by cellulase
when the lignin content of alfalfa cell walls is reduced

• Strategy is feasible for Populus and switchgrass
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Chen, F., and Dixon, R.A. (2007) 
Nature Biotechnology 25, 759-761.
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BESC – a highly integrated cutting-
edge research team
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The challenges (part 1): Lignocellulosic 
biomass is complex and heterogeneous

Figure II.3Figure II.3

Fig. II.2. Biosynthesis of primary and secondary walls: from genes to polymers.  A. 
Primary wall polysaccharides are synthesized at the plasmamembrane (cellulose) and 
in the Golgi (pectin and hemicellulose) by the action of glycosyltransferases that use 
nucleotide-sugar substrates.  B. Some cells (e.g. xylem) form secondary walls internal 
to the primary wall. C. Secondary wall synthesis includes cellulose, hemicellulose and 
lignin deposition.  

Fig. II.2. Biosynthesis of primary and secondary walls: from genes to polymers.  A. 
Primary wall polysaccharides are synthesized at the plasmamembrane (cellulose) and 
in the Golgi (pectin and hemicellulose) by the action of glycosyltransferases that use 
nucleotide-sugar substrates.  B. Some cells (e.g. xylem) form secondary walls internal 
to the primary wall. C. Secondary wall synthesis includes cellulose, hemicellulose and 
lignin deposition.  
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“Omic” capabilities for systems biology

• Genomics

• Transcriptomics

• Proteomics

• Interactomics

• Metabolomics

• Together these can provide a deeper picture of how a 
microbe or plant is functioning

• This can help identify where improvements need to be 
made
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Woody plant genomics – designing 
crops for energy & C sequestration
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Using Poplar tree genome, the 
expression of one gene (IAA16.3) was 
altered.  This resulted in enhanced 
radial growth of  IAA16.3 transgenics vs. 
controls

Using Poplar tree genome, the Using Poplar tree genome, the 
expression of one gene (IAA16.3) was expression of one gene (IAA16.3) was 
altered.  This resulted in enhanced altered.  This resulted in enhanced 
radial growth of  IAA16.3 transgenics vs. radial growth of  IAA16.3 transgenics vs. 
controlscontrols

IAA16.3IAA16.3

ControlControl

90-day-old Populus cuttings

stem cross sectional area (cm)

transgenic

control

7.1
4.4

Populus - early results from genome sequence 
availability (Jerry Tuskan, ORNL)



15 Populus trichocarpa x deltoides
clone block

P. trichocarpa x nigra
clone block

Activation tagging to identify Poplar genes:
Some mutants can be detected using 
infrared aerial photography

Delayed senescence / cold hardinessDelayed senescence / cold hardiness
(air photo during autumn senescence)(air photo during autumn senescence)

Tree rows

Provided by: Provided by: 

Dr. Peggy Payne, Dr. Peggy Payne, 

Boise CascadeBoise Cascade
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Others are evident at the whole-tree level
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Schematic of sample flow in BESC
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Identify structural and chemical 
features of recalcitrance
• High throughput analysis

− Compositional analysis of 1000’s of samples
• NREL pbMS is being adapted to Populus and 

switchgrass    
− Pretreatment screens
− Biomass enzyme digestibility (recalcitrance 

phenotoype)

• High resolution analysis of plant cell walls
− Monoclonal antibodies
− AFM mapping of surface chemistry
− Imaging MS
− MicroCat for plant anatomy

• Biomass surface chemistry
• Baseline samples of biomass provided across 

BESC for methods testing, control, and shared 
insights 

• Pretreatment insights to understanding 
recalcitrance
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Comparison of 13C CPMAS NMR 
spectra of different celluloses show 
increasing crystalinity (Iα).
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New combined imaging tools to elucidate 
cell wall formation

• utilizing polysaccharide antibodies to visualize 
layers in the cell wall

*Antibody mix composition: CCRC-M1, M13, M38, 
M48, M56. This mixture of antibodies targets wall 
polysaccharides such as pectin 
(Rhamnogalacturonan I) and hemicelluose
(Xyloglucan). 

Positive signal in cell walls of 2-day old 
spheroplasts (Populus protoplasts growing 
in wall formation culture condition)  obtained 
using CCRC monoclonal antibodies *.

In the near term, the study will involve the use of ~140 
antibodies to track spatiotemporal developments during wall 
formation around a single cell.

Green fluorescence from 
positive antibody reaction

Red autofluorescence from 
Chloroplasts (intracellular)

Kalluri, Hahn: unpublished results



The challenge 
(part 2): 
Lignocellulosic   
biomass is           
difficult to 
breakdown and  
ferment

GLUCOSE ETHANOL
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Microbial hydrolysis (CBP)

• Hydrolysis mediated mainly by CEM complexes   

Cellulase 
enzyme(s), E

Microbes, M 
(cellulolytic)Cellulose, C

• Enzymes both bound & free

• Cells both bound & free

Enzymatic hydrolysis (classical approach)

• Hydrolysis mediated by CE complexes

Cellulase 
enzyme(s), E

Microbes, M 
(non-cellulolytic)Cellulose, C

• Enzymes (several) both bound & free

• Cells may or may not be present

Microbial hydrolysis and enzymatic hydrolysis:    
A fundamentally different relationship between 
microbes and cellulose

A. Dumitrache & G. Wolfaardt
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Growth Rate (hr-1) of Microorganisms
on Crystalline Cellulose in Relation to Temperature

Search for new biocatalysts
• Hypothesis: will higher temperature microbes be 

more effective?

Aerobes
Anaerobes

The growth of microbes on cellulose increases linearly with 
temperature. Lynd, et al., Microb. Molec. Biol. Rev. 66: 506 (2002).

1  Anaerocellum thermophilum
2 Clostridium thermocellum
3  Thermomonospora sp N-35
4  Ruminococcus flavefaciens
5  Fibrobacter succinogenes
6  Clostridium cellulolyticum
7  Trichoderma reesei
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Biodiversity access

• Sampling trip to Yellowstone in October

• Enrichments are growing at different 
temperatures
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“Omics” technologies applied to help 
design better CBP microbes 

Cellulose   Cellulose   Ethanol 
& Byproducts

Biochemical pathway

Transcriptome -
Gene expression
measured by 
microarray
analysis

Proteome- Protein 
expression 
measured by mass 
spectrometry

Metabolome - Cellulose 
hydrolysis fragments 
and fermentation 
products measured by 
mass spectrometry

Genome annotation 
gives possible genes, 
proteins, etc.
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C1: 309 Genes

C2: 184 Genes

C3: 92 Genes

C4: 177 Genes

C5: 67 Genes
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K - Transcription 
L - DNA replication, recombination, repair 
M - Cell envelope biogenesis, outer membrane 
N - Cell motility, secretion 
O - Post-translational modification, protein turnover, chaperones
P - Inorganic ion transport, metabolism 
Q - Secondary metabolites biosynthesis, transport, catabolism
R - General function prediction only 
S - Function unknown 
T - Signal transduction mechanisms 
U - Intracellular trafficking, secretion, vesicular transport
V - Defense mechanisms
X - Miscellaneous 
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During cellulose fermentation, the capacity of C. thermocellum to 
sense and respond to its environment increases and cells 
become more motile over time; however the metabolic capacity 
decreases progressively with time during batch growth.

Raman, Mielenz 2007

Gene expression changes during 
C. thermocellum fermentation
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Goal: Understanding leading to an 
improved cellulosome

• A deep proteome analysis of the 
cellulosome of C. thermocellum identified 
more than 20 ‘new’ cellulosomal
components

C. thermocellum image courtesy of 
Bayer and Lamed, The Weizmann 
Institute of Science.
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Thank you

BESC is a U.S. Department of Energy Bioenergy
Research Center supported by the Office of 
Biological and Environmental 
Research in the DOE Office of Science
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