9 DEC 2021

BERAC UPDATE

Nicki Hickmon¹

Forrest Hoffman²

Haruko Wainwright³

Scott Collis¹

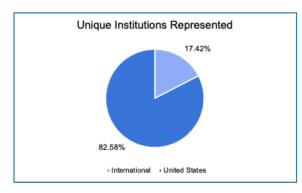

1 Argonne National Laboratory

2 Oak Ridge National Laboratory

3 Lawrence Berkeley National Laboratory

WHAT IS AI4ESP

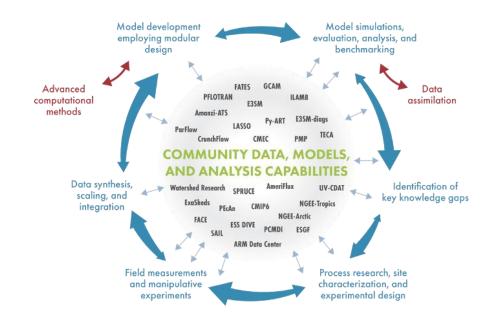
AI4ESP is a BER-ASCR planning project to create a paradigm shift in the science of predictability and prediction, based on the codesign of artificial intelligence methodologies with physics-based observing, data assimilation, modeling, and prediction. It directly supports the DOE strategy to advance climate science and capabilities.



2021 AI4ESP WORKSHOP

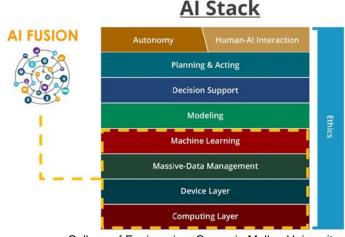
- Spring '21: Community delivered 156 white papers on concepts that combined Al
 with climate science to inform the design of a game-changing workshop
- Oct-Dec '21: Al4ESP workshop held to further refine concepts towards a community strategy in support of the goals of DOE
 - Goal: How can we combine AI and machine learning with the traditional physics-based approach to
 prediction research, in order to reduce uncertainties for climate predictions of complex extreme phenomena
 in high gradient environments
 - Sessions:
 - Atmospheric Modeling
 - Land Modeling
 - Data Acquisition to Distribution
 - Human Systems & Dynamics
 - Hydrology
 - Watershed Science
 - Neural Networks
 - Ecohydrology
 - Surrogate Models & Emulators

- Aerosols & Clouds
- Knowledge-Informed Machine Learning
- Coastal Dynamics, Oceans & Ice
- Knowledge Discovery & Statistical Learning
- Climate Variability & Extremes
- Explainable/Interpretable/Trustworthy AI
- Hybrid Modeling
- Al Architecture Co-Design
- Feb '22 through June '22: Brief DOE plus other federal and international agencies on workshop results


- → 740+ participants
- → 178 institutions
- ► 17 sessions, 10 days, 5 weeks

Grand Challenge Groupings

- → Application Challenges
- Uncertainty Quantification Challenges
- + Data Challenges
- Human Systems Drivers & Stakeholders
- → Research Cultural Challenges



Codesign Is Critical

Codesign advanced computing, software, hybrid ML/physical models, observations and future Earth system modeling capabilities

- → Common/consistent language & format
- → Merged products (standardization, interoperability)
- → Adaptive data & parameter selection
- ★ Computation using large datasets without moving
- → Specialized AI/ML code & architecture
- Training and benchmarking datasets and hybrid model design

College of Engineering, Carnegie Mellon University

Cultural Change Is Compulsory

- ★ Communities excited to work together
 need combined purpose and early success
- ★ Existing & upcoming workforce development
- → Common terminology across groups & scales in AI4ESP space
- → Transfer learning for different domains & scales
- → Achieve & maintain FAIR, equitable data access
- → Open science community effort pulling in an ultimately singular direction
- ★ Environmental justice throughout the system

Modular Data Ecosystem to enable data interoperability for Al. Courtesy of Prakash & Serbin

Infrastructure Investment Is Imperative

- → Workforce development
- Multi-agency/institution coordination, cooperation, collaboration
- ★ Codesign, creation, implementation & maintenance
 - Computational resources
 - Training, benchmarking, & combined datasets
 - Al methodology development
 - Interoperable frameworks for data & hybrid modeling
- → FAIR/Equitable data & software practices
- ♦ Observations covering normal & capturing rare & extreme events
- ★ Adaptive observatories, data assimilation, & modeling

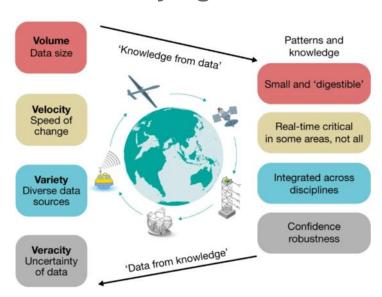
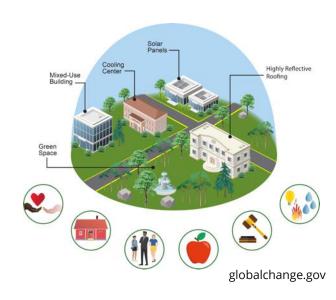


image from technologynetworks.com

Uncertainty Quantification & Propagation Is Underlying

- → Digital twin mindset
- Common understanding of uncertainty
- → Defined uncertainty
- Capture beginning with instrument/sensor calibration/operation
- Propagation requires formatting and transfer standards
- Assimilation, parameterization, surrogate, emulator, hybrid modeling


Data challenges in the earth sciences: different data sources, small data / big data challenges, and uncertainty in the data. Figure taken from (Reichstein, M. et al. 2019)

Human System Integration Is Significant

- Inclusion of complex human processes & decisions
- ★ Capture complex feedbacks between all components
- → Build decision-relevant process models
- ★ Ethically sensitive data synthesis and gap filling
- ★ Representation of human systems and dynamics in models
- ★ Results must be robust, explainable, & trustworthy
- Results must be shared efficiently (both positive & negative)

Advancements Must Accelerate

- → Build unified framework(s) across Earth system predictability space
 - Codesigned
 - Domain interoperability
 - Open, community contributed
 - Impactful, trusted & explainable results
- ★ Al initiatives beyond DOE
- → DOE uniquely positioned

Workshop Special Thanks:

Harriet Kung

Gary Geernaert

Barbara Helland

BERAC MEETING FEEDBACK (HELP US IMPROVE THE MESSAGE):

https://forms.gle/ftydsm4jzvaai2tt9 or if the shortened link doesn't work use

https://docs.google.com/forms/d/e/1faipglsd2uavsrpy_xvz13jrif5vpgyoeujk_oiedwe3npzrprjhufa/viewform?usp=sf_link

AI4ESP@ANL.GOV

AI4ESP Webpage: https://www.ai4esp.org

DOE BER AI Webpage: https://science.osti.gov/ber/research/artificial-intelligence-ai

