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By 2050, the demand for materials will

grow by 50

100%




The crisis of aging U.S. infrastructure will
also drive need for materials




Extracting raw minerals in an environmentally
benlgn Way IS challengmg
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The scientific opportunity




Naturally-occurring genome-encoded
materials have the properties we seek




Biological systems synthesize materials with
little energy input

Coccolith formation
and secretion in

Coccolithus pelagicus

Alison R. Taylor et al. (2007) European Journal of Phycology 42:125-136

Taylor, et al. European Journal of Phycology. 42:125-136 (2007).



Biological systems scavenge raw materials
from dilute sources

Biology
works
here!

Conventional

mini
Technological

advances?

Total reserves of an element ——>»

Decreasing ore quality —>»

A.M. Diederen, TNO Defence, Security and Safety, http://astrol.panet.utoledo.edu/~khare/sustainability/dierden-paper-

1.html and modified with permission; Racki, L. R., Tocheva, E. I., 272 Dieterle, M. G., Sullivan, M. C., Jensen, G. J.,
and Newman, D. K. (2017) Proc Natl Acad Sci 274 U S A 114, E2440-E2449


http://astro1.panet.utoledo.edu/~khare/sustainability/dierden-paper-1.html

Biological systems make multifunctional
materials using hierarchical structures

>
nanometers centimeters

Adapted from: A. Meyers, et al. Journal of the Mechanical Behavior of Biomedical Materials 2011, 4:626-657.



Technological advancements that enable this
opportunity now

= New DNA technologies have radically improved the speed, throughput, and
accuracy of DNA sequencing leading to discovery of new organisms;

= Gene synthesis supports combinatorial assemblies of genes and regulatory circuits
with optimized codon usage for specific host organisms;

» CRISPR-based technologies transform our ability to edit the genomes of organisms
in simple, precise, fast, and scalable ways;

= New gquantitative and scalable measurement technologies for bioprospecting,
single cell -omics, multi-modal spectroscopy, microscopy and crystallography; and

= Tools for in-vivo characterization have enabled discoveries and mechanistic
insights that were previously unattainable



New technologies have radically improved
DNA sequencing & synthesis

Eukarya

Archaea

Bacteria
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Hug, L. A, et al. 2016. “A New View of the Tree of Life,” Nature Microbiology 1, 16048 231 (CC BY 4.0)

Bioeconomy Capital, www.bioeconomycapital.com/bioeconomy-dashboard/ (CC BY-ND 4.0).



Simple, precise, fast and scalable genome
editing is now possible using CRISPR

Cells and organisms
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Knott, G. J., and J. A. Doudna. 2018. “CRISPR-Cas Guides the Future of Genetic Engineering,
Science 189 361(6405), 866—69.



New advances allow us to study biology
across scale and time

seconds - minutes hour - days days - years 10° years
0.1 nm (1 A) 1 nm (10 A) 2 um 10 ym 1m
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New approaches allow us to identify
organisms, genes and proteins

A. Bioinformatics

genome sequence analysis
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B. Transcriptomics

mRNA isolation
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C. Proteomics :
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D. Genetics

mutagenesis and screening for phenotype




Summary: Biological knowledge gaps

1. Full taxonomy of species capable of producing biominerals;

2. Catalog of genes and regulatory networks controlling transport, modification and
synthesis of inorganic biomaterials;

3. Intracellular metabolic processes governing the transport, modification, assembly,
and/or storage of inorganic biomaterials;

4. Mechanisms used by microbes and plants to acquire inorganic materials and
specific inorganic biominerals;

5. Engineered organisms and pathways resulting in new inorganic materials.



Biological knowledge gaps: What is made by
who?

Benzerara, K. et al. Intracellular Ca-carbonate biomineralization is widespread in
cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 111, 10933-10938 (2014).




Biological knowledge gaps: How is this made?
What are the minimal requirements?
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McConn, M. M. & Nakata, P. A. Planta 215, 380-386 (2002).
Franceschi, V. R. & Nakata, P. A. Annu. Rev. Plant Biol. 56, 41-71 (2005).
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Summary: Technology needs

1. New capabilities in cultivation, single-cell and -omics methods for discovery of
inorganic biominerals and the genetic potential underlying their synthesis;

2. Computational systems biology and biodesign tools that provide a systems-level
understanding and forward engineering of inorganic material synthesis;

3. Capabilities to manipulate organisms with a breadth of capabilities, including
control of transport, spatial patterning, and timing;

4. Technologies to support high-throughput or massively parallel determinations of
the function of pathways used for inorganic synthesis; and

5. Intentionally-aligned structural and functional tools to characterize inorganic
biomaterials.



We need computational tools for forward
engineering

Maturation

Nucleation

Uebe, R. & Schiiler, D. Nat. Rev. Microbiol. 14, 621-637 (2016).
Schuler, D. 2008. FEMS Microbiology Reviews 32(4), 654—-72.



We need new biosystems design capabilities in
spatial patterning & transport

Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. Nature 434, 1130-1134 (2005).
Charrier, M., et al. 2019. ACS Synthetic Biology 8(1), 181-190.



Technologies are needed to support high-
throughput ‘test’ for inorganic synthesis

“Old” — Rational Design
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Intentionally-aligned imaging across scales
IS needed

>

nanometers centimeters

Adapted from: A. Meyers, et al. Journal of the Mechanical Behavior of Biomedical Materials 2011, 4:626-657.



Materials that could be made

Sustainable versions of existing materials:

= functionalized nanoparticles
= photonic crystals and metamaterials
= Jightweight-strong composite materials

= Completely novel materials

= Self-healing cell-inorganic composites
» |on-specific chelators, transporters, and carrier proteins
= Novel classes of sequence-defined polymers for hybrid materials



Specific examples of genome engineered
materials (GEMSs)

Sustainable Fe;O, nanoparticles Diatoms for photonic crystals .
Self-healing

concrete that regains strength

F |

Jonkers,et al. Advanced Materials Interfaces (2018).

Kroéger & Scrutton,. Curr Opin Chem Biol. (2007).

Yan, et al. Microbiol. Res. (2012). Cabirini. et al. Phys. Rev. Lett. (2009).
Hyeon, et al. Acc. Chem. Res. (2015).



Summary

Genome engineering offers materials synthesis that requires less
energy, less pure raw materials to be made, and carries out multiple
functions.

Recent advances in gene synthesis, editing, and multiscale
characterization technologies enable genome engineering for materials
synthesis.

We identified knowledge gaps and technology gaps needed to enable
GEMS.

Both sustainable versions of existing materials and completely
novel materials could be GEMS targets.
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