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Lignocellulose for bioenergy: The promise

1. Energy independence (EISA 2007)

Imports

~$0.5B/d

US Petroleum Flow 2016
million barrels per day

U.S. Energy Information Agency 2017 (https://www.eia.gov/totalenergy/data/monthly/pdf/flow/petroleum.pdf)



Lawrence Livermore National Lab 2017 (https://flowcharts.llnl.gov/)

Estimated U.S. Energy Generation and Consumption in 2017 (99 Quads)

1. Energy independence

(38%)

(37%)

Lignocellulose for bioenergy: The promise



1. Energy independence (EISA)

(34%)
(42%) (42%)

Lawrence Livermore National Lab 2017 (https://flowcharts.llnl.gov/commodities/carbon)

2. Climate mitigation
• Avoided CO2 emissions – substitute for petroleum

Estimated U.S. Carbon 
Emissions in 2014

(5.4 Gt CO2)

Lignocellulose for bioenergy: The promise



• Negative emissions – Bioenergy Carbon Capture and Storage

1. Energy independence

“Bioenergy use is substantial 
in 1.5°C-consistent pathways 
with or without BECCS due to 
its multiple roles in 
decarbonizing energy use.”

-IPCC 2018 1.5°C report

Anderson and Peters 2016 Science

Lignocellulose for bioenergy: The promise

2. Climate mitigation
• Avoided CO2 emissions – substitute for petroleum

Paris Accord
CO2 Impact



2. Key bioenergy considerations:

• Prior land use
• Crop choice
• Biodiversity impacts
• Reactive N loss
• Water use
• Land availability
• Landowner incentives

Robertson et al. 2017.  Science 356:eaal2324.

3. Remaining knowledge gaps

1. Sustainability writ large:
• Reaping benefits today without future harm

Lignocellulose for bioenergy: The promise of sustainability



Climate benefits are contingent first on prior land use

• Prior land use defines short-term and much of the mid-term 
benefit – due to potential C debt

• Carbon debt can be huge if prior C stores huge

• For Conservation Reserve Program grasslands, smaller than 
modeled (for perennial crops)

• For forests & wetlands, debilitating

• Net climate benefit also depends on foregone
(pre-existing) sequestration - often ignored

Use of existing cropland is risky

• Indirect Land Use Change (ILUC) effect is real
even if hard to quantify & turns out to be minor

• Likely to intensify as global food demand
grows – as will food-fuel conflicts

• Avoidable, depending on energy goals

Lignocellulose Bioenergy Sustainability: 1. Land use

Gelfand et al. 2011 PNAS 108:13864 CRP

CRP Acreage

CRP Conversion to Bioenergy

CRP



Lignocellulose Bioenergy Sustainability: 2. Crop choice

Major differences in
• Net primary productivity

• Water and nitrogen use efficiencies

• GHG emissions, Global warming impacts

• Microbiomes

GLBRC Bioenergy Cropping System Experiment (BCSE)
• 2 locations (Michigan Alfisol, Wisconsin Mollisol)

• 9 cropping systems x 5 replicate blocks of 30x40m plots

• Established 2008 (now 10 growing seasons)

K. Stepnitz



Lignocellulose Bioenergy Sustainability: 2. Crop choice

Choice of crops is key consideration

Perenniality is best predictor of    
unambiguous benefit
• with exception of crop residues 

and cover crops

Mixed species may or may not
provide a productivity benefit

Native species can provide biodiversity
conservation benefits

Gelfand et al., in review

Energy Production

Emissions Reduction 

60%



Lignocellulose Bioenergy Sustainability: 3. Biodiversity

Will cellulosic bioenergy enhance or diminish biodiversity      
conservation? – an important sleeper issue

A modest amount of plant diversity may go a long way

Werling et al. 2014 PNAS 111:1652

Taxa

Function



Lignocellulose Bioenergy Sustainability: 3. Biodiversity, cont.

Werling et al. 2014 PNAS 111:1652

Benefits extend to other portions of the landscape

Local landscape context (placement) is important
• (A) Predation of pest eggs in annual crops

enhanced 3x with greater proportion of 
landscape in perennial grasses

• (B) Planted grassland provides same degree of 
benefit at field scale

http://images.google.com/imgres?imgurl=http://www.davidjesus-naturephotography.com/images/334_NEW_hawk_502_MG_8462Adult_Female_Northern_Harrier.jpg&imgrefurl=http://www.davidjesus-naturephotography.com/raptors.html&h=467&w=334&sz=13&hl=en&start=8&um=1&usg=__qNrbnjtA7qSRKWELtMvFPiNW12A=&tbnid=A8r9-0dXH2qnDM:&tbnh=128&tbnw=92&prev=/images?q=Northern+harrier&um=1&hl=en
http://images.google.com/imgres?imgurl=http://www.davidjesus-naturephotography.com/images/334_NEW_hawk_502_MG_8462Adult_Female_Northern_Harrier.jpg&imgrefurl=http://www.davidjesus-naturephotography.com/raptors.html&h=467&w=334&sz=13&hl=en&start=8&um=1&usg=__qNrbnjtA7qSRKWELtMvFPiNW12A=&tbnid=A8r9-0dXH2qnDM:&tbnh=128&tbnw=92&prev=/images?q=Northern+harrier&um=1&hl=en


Will cellulosic bioenergy production increase environmental N loading?
• Fertilization in excess of crop need forces disproportionate N loss

• Careful fertilizer use is crucial: many crops may need less N than harvest removal

• Also diminishes climate benefit

Climate 

benefit 

~50%

Net GHG Balance

GHG Components

Lignocellulose Bioenergy Sustainability: 4. Reactive N loss

Ruan et al. 2016 ERL 11:064007

Switchgrass N2O Emissions by N Fertilizer Rate

Year 1

Year 2

Year 3



Will cellulosic bioenergy systems deplete groundwater recharge?
• Regional modeling suggested potential aquifer, surface water depletion

• Field measurements in mesic climate (precip > ET) show large WUE differences but minimal 
differences in growing season ET – whether TDR, Eddy Covariance (EC), or watershed based

• All crops use most stored water plus growing season rainfall 

Lignocellulose Bioenergy Sustainability: 5. Water use

ET by Eddy Covariance (7-20 ha fields)

Abraha et al. 2015 GCB-B 7:1344;
Hamilton et al. 2015 ERL 10:064015 and 2018 Hydrol Proc.



Watershed water balance

• 50 years of stream flow and precipitation records for KBS 
area watershed

• Upland water balance yields ET by difference

Lignocellulose Bioenergy Sustainability:  5. Water use

Hamilton et al. 2018 Hydrol Proc. 32:655
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ET	as	%	of	precipita on	(1964-2014)	

• Watershed ET: 59 ± 6% of annual precipitation
• TDR-estimated ET: 52-62% (seasonal) 
• EC-estimated ET: 60% (annual)

• No temporal trend in spite of 
substantial cropland abandonment 
(50%) and reversion to grassland and 
forest



Lignocellulose Bioenergy Sustainability: 6. Land use
Land use availability will ultimately limit potential climate benefit

Marginal lands have the most unambiguous benefit:

• Non-farmed, non-grazed, non-forested, non-wetland, non-urban, privately held
• Models for Midwest suggest that 35 locations could provide enough biomass within 50 

miles to supply a 30 million gallon refinery
• About half of available marginal land in 10 states could meet  ~25% of the legislated fuel 

mandate for 2022

Gelfand et al. 2013. Nature

160 km

Each circle represents a 
potential cellulosic biorefinery



Lignocellulose Bioenergy Sustainability: 6. Land use, cont.

Land use availability will ultimately limit potential climate benefit
• The US target of 109 Mg total biomass will require 33-40 Mha of productive land or ~55 Mha 

of marginal land for dedicated bioenergy crops
• 30% of US cropland abandoned since 1900
• In US, 70-100 Mha currently available as marginal land (non-forested, non-wetland, non-

urban, non-public) based on satellite (70 Mha) and county land use history maps (100 Mha)

Campbell et al. 2013. ERL 8: 035012; Bandaru et al. 2015; Robertson et al. 2017 



Lignocellulose Bioenergy Sustainability:
Key remaining knowledge gaps

1. How to best integrate cropping systems into agricultural landscapes to deliver 
multiple ecosystem services: predicting tradeoffs at landscape scales

2. Understanding the microbiome to alleviate plant stress in challenging soils

3. Enhancing soil C accrual by better understanding mechanisms contributing to soil C 
persistence

4. The biodiversity services provided by combinations of cropping system traits

5. The integration of the field-to-product pipeline to design optimal value chains

6. How to incentivize optimal systems: climate benefits + co-benefits



A. Associative Nitrogen Fixation in Switchgrass

Evidence for unknown N source
• Switchgrass is often non-responsive to N fertilizer (~50%)

• At KBS, mass balance suggests >35 kg N yr-1 of unaccounted N 
inputs (58 kg N yr-1 during production phase)

Ruan et al. 2016 ERL; Roley et al. 2018 PLoS One

7-year mass balance for N (0 N fert)

Inputs (kg N ha-1 yr-1)
Precipitation 6
N mineralization 0

Outputs (kg N ha-1 yr-1)
Harvest 41
Leaching >0
Denitrification >0
N immobilization >0

Balance -35 kg N yr-1
N fertilizer addition (kg N/ha/yr)N fertilizer addition (kg N/ha/yr)
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A. Establishment phase

Year 1 (2009)

Year 2

Year 3

B. Production phase

Year 4
(drought)

Year 5

Year 6

Year 7



A. Associative Nitrogen Fixation in Switchgrass

Evidence for biological source
• Rhizosphere hosts a rich nifH community

• 15N2 added to rhizosphere in situ is incorporated into plant tissue

Guo et al., in review;  Roley et al. 2018 SBB (in press)

nifH taxa in rhizosphere



B. Soil Carbon Stabilization

Soil carbon gain is crucial for climate benefit
• fn(physical, chemical, biological attributes)

• Importance of soil pores largely unrecognized

Kravchenko et al. 2017 Nature Geosci; Quigley et al. 2018 

Annual cropping system

Argonne

0.75 cm

J. Frey

Perennial mixed species

AJMS Smucker



B. Soil Carbon Stabilization

Porosity (pore size distributions) matter
• Large pores (>35 µm) allow residue (particulate organic matter) to accumulate water 

Kravchenko et al. 2017 Nature Geo 

• With consequences for CO2 and N2O emissions

1.3x

Decomposition N2O Emissions

2x

Water in intra-aggregate and 
inter-aggregate soil pores

250 µm

Leaf residue water content



C. An expanded view of marginal lands

Basso et al., in review

Using low yielding cropland for bioenergy
• Crop yield stability maps for 10 U.S. states (2010-2017): 108 fields, 30 Mha

• Based on remotely sensed NDVI differences at peak biomass 

• Subfield areas of stable low productivity comprise 26% of region 

• Responsible for most fertilizer nitrogen loss

Stable

high

Unstable

Stable

low



C. An expanded view of marginal lands

Basso et al., in review

Using low yielding cropland for bioenergy
• In 2017, 37% of total corn crop was used for ethanol

State
Fertilizer 

Rate (kg N 
ha-1 y-1)

Fertilizer loss (kg N ha-1 y-1)

Stable High Stable Low Unstable
IL

183 – 191 0 45 – 53 5 – 13
IN

175 – 209 0 – 23 50 – 84 11 – 45
IA

158 – 173 0 12 – 27 0
MI

151 – 165 0 30 – 44 0 – 5
MN

160 – 177 0 14 – 31 0 – 0
MO

197 – 217 34 – 54 89 – 109 55 – 75
ND

143 – 158 0 – 5 37 – 52 6 – 21
OH

174 – 195 0 – 7 47 – 68 9 – 30
SD

138 – 152 0 25 – 39 0 – 5
WI

117 – 129 0 0 – 2 0
Average loss

3 – 9 35 – 51 9 – 19

• Converting this 37% of corn 
cropland (17 Mha) to perennial 
cellulosic bioenergy would provide 
similar level of biofuel with

• ↑ climate mitigation

• ↑ biodiversity benefits

• ↑ nitrogen conservation

Total N loss                                                          0.33-0.48 Tg N yr-1

NDVI vs. Combine 
yield monitor 
estimates of yield



Lignocellulose Bioenergy Sustainability:
Key Remaining Knowledge Gaps

1. How to best integrate cropping systems into agricultural landscapes to deliver 
multiple ecosystem services: predicting tradeoffs at landscape scales

2. Understanding the microbiome to alleviate plant stress in challenging soils

3. Enhancing soil C accrual by better understanding mechanisms contributing to soil C 
persistence

4. The biodiversity services provided by combinations of cropping system traits

5. The integration of the field-to-product pipeline to design optimal value chains

6. How to incentivize optimal systems: climate benefits + co-benefits at multiple scales
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