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Overview 

1. Development of a synthetic H2-producing bacterial coculture 

2. Discovery highlights from the coculture system 

3. Unanticipated projects stemming from the coculture system 

4. Other impacts of the award on my research program and the 
people involved in it 



   

 

Microbial cross-feeding is important 

• Global elemental cycles 

• Agriculture 

• Biotechnology Lignocellulose

Glucose

Fuel

• Understanding the factors that govern cross-feeding interactions 
has implications for our environment, health, and industries 



  Cross-feeding of fermentation products 
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organic 
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Fermentation 

Anoxygenic phototrophy 

• The unidirectional excretion of organic acids can lead to cross-feeding 
• Resembles an anaerobic food-web 



   
   

 

Traditional cocultures lacked 
stable coexistence and reproducibility 

Sugar H2 

CO2 

organic 

acids 

Fermentation 

Anoxygenic phototrophy 

• Fast-growing fermentative bacteria paired with slow-growing phototrophs 

• Establishing stable synthetic communities is rarely trivial 

First example: Odom et al. 1983 Appl. Environ. Microbiol 



   
  

Building a practical coculture 
to study cross-feeding 

Ryan FrittsRyan Fritts Dr. Breah LaSarre Dr. Ali McCully 



  
      

Reciprocal cross-feeding of 
ammonium could lead to a stable mutualism 
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LaSarre et al. 2017. ISME J McCully et al. 2017. mBio 
McCully et al. 2017. Env. Microbiol McCully et al. 2018. Appl. Environ. Microbiol. 



   
    

  

 

R. palustris Nx mutation results in 
cross-feeding of ammonium to E. coli 

Glucose N2 

0 50 100 150
0.01

0.1

1

10

Time (h)
C

e
ll 

d
e
n
s
ity

 (
O

D
6
6
0
)

E. coli + R. palustris Parent

E. coli + R. palustris Nx

Coculture growth in phosphate buffered minimal medium 

• Cocultures move to equilibrium from starting ratios spanning >6-orders of magnitude 



      

  

A kinetic model for simulating coculture trends 

Ec RpGlucose N2 

Ethanol 
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With help from Spencer Hall and Jay Lennon 



     

  

Accumulation of organic acids can inhibit growth 

EcGlucose 

Ethanol 
Organic 

acids 

Formic 

acid 

CO2 

NH4 
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Organic acids can play 
dual roles with 
opposing functions 

Rp N2 

LaSarre, McCully, Lennon, and McKinlay. 2017 ISME J 



  
      

Growth-independent 
fermentation by E. coli is 
enough to stimulate reciprocal 
cross-feeding 

Rp 

Growth-independent cross-feeding 
can maintain a mutualism through periods of starvation 
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McCully*, LaSarre*, and McKinlay. 2017 
Environ Microbiol *equal contribution 



Nitrogen-deprived cocultures also have high a H2 yield 

Coculture Theoretical 
maximum E. coli 

yield 
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• H2 yields can exceed the theoretical maximum for a fermentation 



  

     

  
   

Competition during cross-feeding 

Competition for communally valuable cross-fed 
metabolites 

McKinlay Lab Drummond Lab Lynch Lab 
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McCully, LaSarre, and McKinlay. 2017. mBio 
McCully, Behringer, Gliessman, Pilipenko, Mazny, Lynch, Drummond, and McKinlay. 2018. Appl. Environ. Microbiol. 



   
     

Some cross-fed metabolites 
are of value to only one partner 

NH4 
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Other cross-fed metabolites 
are of value to both partners 

NH4 
+ 

OAcs Waste Nutrient 

Nutrient Nutrient 

• Other microbial examples 
• Nitrogen transfer from N2-fixing bacteria to other bacteria, fungi, and plants 
• Transfer of vitamin B12 between bacteria and abundant marine algae 



     
  

Do mutualistic partners compete for 
communally-valuable cross-fed nutrients? 

NH4 
+ 

OAcs Waste Nutrient 

Nutrient Nutrient 
NH4 

+ 

OAcs 

• Model predicts that competition for NH4
+ must be biased in favor of E. coli or the 

mutualism will collapse 



     

N2ase 

AmtB 

OM IMPG 

How is competition for ammonium occurring? 
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Competition is likely occurring 
at the level of AmtB NH4 

+ transporters 
E. coli 
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Coculture collapses whenever E. coli is lacking AmtB 
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E. coli AmtB is upregulated in coculture 

Fold-changes 
for WT E. coli 
transcripts 
and proteins 
in coculture 
vs 
monoculture 

RNA-seq Proteomics 

Gene Description 
Fold 

change 
Gene Description 

Fold 
change 

rutACDEFG 
Nitrogen scavenging 

from pyrimidines 157 argT Lys/Arg/Orn binding protein 11 

nac 
Nitrogen assimilation 

control 97 ddpA D-ala dipeptide permease 6 

ddpX D-ala dipeptidase 76 bfr Bacterioferritin 5 

csgB Curli 64 gss 
Glutathionylspermidine 

synthetase/amidase 4 

argT 
Lys/Arg/Orn binding 

protein 
61 potF 

Putrescine-binding 
periplasmic protein 4 

patA 
Putrescine 

aminotransferase 59 modA 
Molybdate-binding 
periplasmic protein 4 

glnK Nitrogen regulation 37 gabD 
Succinate-semialdehyde 

dehydrogenase 4 

amtB NH4 
+ Transporter 24 amtB NH4 

+ Transporter 4 



       
        

 

 

 

 
 

Most of the upregulated genes are controlled by NtrC, 
the master transcriptional activator of the nitrogen starvation response 

Fold-changes 
for WT E. coli 
transcripts 
and proteins 
in coculture 
vs 
monoculture 

RNA-seq Proteomics 

Gene Description 
Fold 

change 
Gene Description 

Fold 
change 

rutACDEFG 
Nitrogen scavenging 

from pyrimidines 157 argT Lys/Arg/Orn binding protein 11 

nac 
Nitrogen assimilation 

control 97 ddpA D-ala dipeptide permease 6 

ddpX D-ala dipeptidase 76 bfr Bacterioferritin 5 

csgB Curli 64 gss 
Glutathionylspermidine 

synthetase/amidase 4 

argT 
Lys/Arg/Orn binding 

protein 
61 potF 

Putrescine-binding 
periplasmic protein 4 

patA 
Putrescine 

aminotransferase 59 modA 
Molybdate-binding 
periplasmic protein 4 

glnK Nitrogen regulation 37 gabD 
Succinate-semialdehyde 

dehydrogenase 4 

amtB NH4 
+ Transporter 24 amtB NH4 

+ Transporter 4 

• Deleting ntrC can also lead to a collapse of the mutualism 



   

   

Mutualism favors the scavenger 

Emergence of a nascent mutualism 

McKinlay Lab Joint Genome Institute Lynch Lab 
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   A carefully engineered mutualism 

(OAcs) 

Escherichia 
coli 

Rhodopseudomonas 
palustris Nx 

(NifA* mutation) 

Could such a mutualism arise naturally? 
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Wildtype R. palustris does not support coculture 
growth in the short term 

E. coli + 
R. palustris Nx 

E. coli + 
WT R. palustris 

• Cocultures with wildtype R. palustris can be used to enrich for 
spontaneous mutants that support coculture growth 



Cocultures with wildtype R. palustris eventually grow 

E. coli + 
R. palustris Nx 

E. coli + 
WT R. palustris 

 

 
 

• Nascent mutualistic cross-feeding can emerge relatively quickly 
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Coculture growth improves through serial transfers 

Transfer 2 Transfer 25 
E. coli + E. coli + 
R. palustris Nx R. palustris Nx 

E. coli + E. coli + 
WT R. palustris WT R. palustris 

• What mutations are responsible for establishing nascent cross-feeding? 



 

 
 

Evolved E. coli alone 
is sufficient to support cross-feeding! 
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• Genetically-enhanced R. palustris ammonium excretion is not required 



 

Evolved E. coli lines have a common mutation in NtrC 

S163R 
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      Unanticipated projects stemming from the coculture system 

1.   Polar localization of R. palustris photosystems 

2. Using N2 as an inexpensive nitrogen source for 

ethanol production 

1 BChl focus 2 BCHl foci
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N2 fixation in ethanol-producing Z. mobilis 

Zymomonas mobilis 
FERMENTATION 

Glucose N2 

pyruvate 

e - e -

NH4 
+ 

2 ETHANOL Cellular 
material 

• How does Z. mobilis partition electrons between ethanol production and N2 

fixation/growth? 



N2 as a fertilizer for ethanol production 
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• Using N2-fixing Z. mobilis could save an ethanol facility >$1 million per year 

*Kremer, *LaSarre, Posto, and McKinlay. 2015. PNAS  *equal contribution 

Also supported by an Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award 



 

 

        
Grants

Impact of Early Career award on my research program 
Grants 

• JGI Community Science Program (PI) 
• Sequencing of naturally-evolved cross-feeding relationships 

• DoD Multidisciplinary University Research Initiative (co-PI) 
• Evolution of cooperative microbial communities 

• Defense University Research Instrumentation Program (PI) 
• High-throughput capabilities in anaerobic microbiology 

• NSF CAREER (PI) 
• Impact of bacterial motility and adhesion on cross-feeding interactions 



 

        Impact of Early Career award on my research program 
People 

• Dr. Breah LaSarre 
• Joined lab as a postdoc in 2013 

• Applied to lab after reading DOE award press release 

• NIH NRSA fellowship from 2014-2017 

• Dr. Alexandra ‘Ali’ McCully 
• Joined lab as a graduate student in 2014 

• Graduated in 2018 with numerous awards 

• Now a postdoc with Prof. Alfred Spormann at Stanford 

• Recently received a Simon’s Foundation Postdoctoral Fellowship 

• Ryan Fritts 
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Lennon Lab – Jay Lennon US Department of Energy 
Lynch Lab – Mike Lynch, Megan Behringer Army Research Office 
Drummond Lab – Allan Drummond, Evgeny Pilipenko National Science Foundation 
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IU College of Arts and Sciences 
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  Grants

Impact of Early Career award on my research program 
Publications and Patents 

1. McKinlay, Oda, Rühl, Posto, Sauer, Harwood. 2014. Non-growing Rhodopseudomonas palustris increases the hydrogen gas yield from 
acetate by shifting from the glyoxylate shunt to the tricarboxylic acid cycle. J Biol Chem. 289: 1960-1970. 

2. Gordon and McKinlay. 2014. Calvin cycle mutants of photoheterotrophic purple non-sulfur bacteria fail to grow due to an electron 
imbalance rather than toxic metabolite accumulation. J Bacteriol. 196: 1231-1237. 

3. Kremer, LaSarre, Posto, McKinlay. 2015. N2 gas is an effective fertilizer for bioethanol production by Z. mobilis. PNAS. 112: 2222-2226. 

4. McCully and McKinlay. 2016. Disrupting Calvin cycle phosphoribulokinase activity results in proportional increases to both H2 yield and 
specific H2 production rate. Int J H2 Energy. 41: 4143-4149. 

5. LaSarre, McCully, Lennon, McKinlay. 2017. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. 
ISME J. 11:337–348. 

6. Fritts, LaSarre, Stoner, Posto, McKinlay. 2017. A Rhizobiales-specific unipolar polysaccharide adhesin contributes to Rhodopseudomonas 
palustris biofilm formation across diverse photoheterotrophic conditions. Appl Environ Microbiol. 83: doi:10.1128/AEM.03035-16 

7. McCully, LaSarre, McKinlay. 2017. Growth-independent cross-feeding modifies boundaries for coexistence in a bacterial mutualism. Environ 
Microbiol. 19: 3538-3550. 

8. McCully, LaSarre McKinlay. 2017. Recipient-biased competition for an intracellulary generated cross-fed resources is required for 
coexistence in a bacterial mutualism. mBio. 8: e01620-17 

9. McCully, Behringer, Gliessman, Pilipenko, Mazny, Lynch, Drummond, McKinlay. 2018. A nitrogen starvation response is important for E. coli 
to coexist in a mutualistic cross-feeding relationship with Rhodopseudomonas palustris. Appl Environ Microbiol. 84:e00404-18 

2015. McKinlay, JB, TA Kremer, B LaSarre, AL Posto. Culture conditions that allow Zymomonas mobilis to assimilate N2 gas as a nitrogen source 
during bio-ethanol production. (submitted). https://patents.google.com/patent/WO2016109286A1/en 

https://patents.google.com/patent/WO2016109286A1/en


   
   

   

Synthetic microbial communities 
are useful experimental systems… 

… provided that a reasonable level of control can 
be achieved 

Adapted from Momeni et al. 
2011. Cell Mol Life Sci 
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	Synthetic microbial communities are useful experimental systems… … provided that a reasonable level of control can 
	be achieved 
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