


Recognized Diversity of Life
1,423,000 Formally Described Species

Algae
< 26,900

Insects
751,000
Higher Plants
248,400
Protozoa
30,800

Other Animals

Fungi
281
69,000 81,000

Adapted from E.O. Wilson, The Diversity of Life



Recognized Diversity of Life

16,054 described species of Archaea & Bacteria
(as of March 2018)

Adapted from E.O. Wilson, The Diversity of Life



Poor representation of microbial diversity in culture collections
Failure to Develop a Natural History of Microorganisms

« They are very small (intimate strangers)
« Direct microscopic observations are not informative

/ 1::
The simple shapes of bacteria conceal
their remarkable diversity

« Culture-based descriptions are highly biased

Most microorganisms fail to grow using conventional cultivation methods

* Physiological descriptions failed to resolve phylogenetic relationships



Development of a phylogenetic framework for microbes
University of lllinois
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Methanogen Biochemistry

Developed a method for “I had set up a program to determine a universal phylogenetic
hybridization of RNA to DNA framework, using molecular sequence comparisons (16S rRNAs). At
immobilized on membrane the time, no one really knew what these relationships were, especially
supports. Demonstrated high among the bacteria. The Archaea emerged as the program unfolded.”
sequence conservation of the Woese, The Crafoord Lecture 2003

ribosomal RNASs.

Hall, B.D. & S. Spiegelman. 1961. Fox, G.E. [ ...] Woese, C.R. 1980. The Phylogeny of Prokaryotes. Science 209: 457-463

Sequence complementarity of T2-DNA
and T2-specific RNA. Proc. Nat.
Acad. Sci. USA 47: 137-46.



Partial sequencing of the 16S rRNA (sequence catalog)
using a “primitive” paper chromatographic method




RNase T, Fingerprint
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The Foundation for a Natural History of Microorganisms

Archaea Eucarya

Bacteria . 14 15

C.R. Woese 1990

Gene sequences recovered directly from environmental samples could now
be related to known (cultured) organisms and other yet-to-be cultured
organisms. Six bacterial “phyla” initially described.



Most recent census of diversity within the bacterial domain
99 phyla recently described, based on 95,000 bacterial (meta)genomes

OPhylum QClass O Order

Parks, Chuvochina, Waite, Rinke, Skarshewski, Chaumeil, Hugenholtz. BioRxiv 2018



Status

Microbial Species Diversity?

 Still counting — global species estimates range from millions to
trillions...

So... 0.1 -0.0000001% of microbial species diversity is now formally
described

Consequences?

» Very sparse understanding of relationships between microbial
diversity, physiology and biogeochemistry



In pursuit of the organisms



Stepping back 26 years

. Natl. Acad. Sci.
LETTERS VCopiat Aced: Sci USA. 1o
Nature 356, 148-149, March 1992 Ecology

Novel major archaebacterial group Archaea in coastal marine environments

from marine plankton (archaebacteria/phylogeny /bacterioplankton /molecular ecology)
Jed A. Fuhrman, Kirk McCallum* & Alison A. Davis EDWARD F. DELONG*
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Mesophilic Group | “Crenarchaeota”

Cold (4°C) oxic seawater (16S rRNA gene PCR)
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Marine Group 1 “Crenarchaeota”

Account for nearly 20% of all oceanic bacterioplankton (~1028 cells), of
presumptive biogeochemical significance [Karner et al., 2001]

Isotopic analyses and tracer experiments suggested autotrophy
[Pearson et al., 2001; Wuchter et al. 2003]

No cultivated representatives for 23 years following discovery

Abundance of Marine Crenarchaeota at the Hawaii Ocean Time Series (HOTS)
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Karner, DeLong & Karl (2001), Nature 409:507-10




Plum Island Sound Estuarine System
NSF Long Term Ecological Research Site
NSF Microbial Observatory




Controls of nitrification in this estuary
With focus on ammonia oxidizing bacteria (AOB)




Sergei Nikolaievich Winogradsky

Nitrification thought solely a bacterial process for over a century

Published in 1890 his research on nitrifying bacteria established the
principal of chemolithoautotrophy, the use an inorganic electron donor
(here, either ammonia or nitrite) for energy and the reduction of CO, to
organic carbon.

~,;Ai

1856-1953

|. Ammonia-Oxidizing Bacteria (e.g., Nitrosomonas, Nitrosococcus)

NH,*+ 20, + NADH —— NO," + 2H,0 + NAD* + H*

ll. Nitrite-Oxidizing Bacteria (e.g., Nitrobacter, Nitrococcus)

Ill. Comammox (some Nitrospira spp.)
NH,*+ 20, — NO; + H,0 +2H*

Winogradsky, S. 1890. Recherches sur les organismes de
Daims et al./van Kessel et al. 2015. Nature la nitrification. Annales de l'Institut Pasteur, 4, 257-275.



Study sites of varying salinity
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Sample collection - Plum Island Spartina tidal flats
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Relative abundance

Ammonia-oxidizing bacteria (AOB) diversity
decreased with increasing salinity

As evaluated by bacterial ammonia monooxygenase gene (amoA)

Low salinity Mid salinity High salinity

97 128 197 279 315 336 343 405 465 97 128 197 279 315 336 343 405 465 97 128 197 279 315 336 343 405 465

Reduced bacterial amoA amplicon diversity >

Bernhard et al. 2005. Environ. Microbiol.



With increasing salinity
ammonia oxidation rate per bacterial amoA gene decreased

g

Low salinity > High salinity

o
3

o
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2

m P22 (low), r= 0.81
A P14 (mid), r = 0.84
e RSC (high), r = 0.96
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Potential nitrification rate (nmol N gdw-1 day-1)
g

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
amoA copies (x 107) (gdw sediment)-1

Bernhard et al.



Most AOB in Plum Island not closely related to cultivated AOB

as inferred from phylogeny of amoA
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Enrichment cultures of representative ammonia oxidizers
Enlisted the assistance of John Waterbury and Freddy Valois
Woods Hole Oceanographic Institution
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Absence of the bacterial amoA in actively nitrifying enrichments



Similar observations made earlier at the Shedd Aquarium
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Absence of AOB in active nitrifying marine biofiltration systems
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Group | archaea abundant in aquaria nitrifying reactors

Shedd Aquarium
6000 — (Sea Horse Tank)

4000 - 9% Group | archaea

2000 — J]
1 T

Seattle Aquarium
2500 - .
(Tropical Tank)
2000 -
_ 7% Group | archaea
1500 - "4

1000 ‘_-DU LUI |

1 I | I 1 | I 1 I

Universal 16S rRNA gene T-RFLP Analysis




Highly enriched in nitrifying enrichment cultures from Plumb Island

Plum Island Sound Sediment
1500
1000 0.9% Group | archaea
NG G P
| ' ' ; T
1600 — Plum Island Sound Enrichment
1400 W 20% Group | archaea
1200 -
1000 -
800 - lL
E T : ' ' I
Universal 16S rRNA gene T-RFLP Analysis




Contribution of Archaea to ammonia oxidation

Established in 2005 with isolation of the first ammonia-oxidizing archaeon (AOA)

Nitrosopumilus maritimus (dwarf nitrifier of the sea)

« Isolated from tropical tank (24° C) at the Seattle Aquarium
» Closely related to Archaea abundant in the marine and terrestrial environments
« Chemoautotrophic growth by oxidation of ammonia to nitrite
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Koenneke, Bernhard, de la Torre, et al. Nature 2005
Martens-Habbena et al., Nature 2009



Geothermal Microbiology: Field work in Yellowstone National Park

Martin Koenneke




Heart Lake 1
70-80° C

pH 8.3

NHa4* 95 uM
NO2 3 uM
NO3z 174 uM

e = - &% e e




Archaeal amoA widely distributed in the Park
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Nymph Creek

pH~ 3.0
30°C 10 uM NH,*




Nitrification in geothermal systems
Novel clade of archaeal amoA genes widely distributed in geothermal springs

100
100

sera T MamSp.E03
197/95_|-MamSp.D02
91/10088] L MamSp.B09
Thermal spring clone OT2 (AM260489)
Thermal spring clone F2 (AM233905)

Thermal spring clone B2 (AM260487)
Waste water clone DI-22 (DQ278529)
Nitrosopumilus maritimus
Cenarchaeum symbiosum
Sargasso Sea seq (AACY01435967)
Thermal spring clone F5 (AM260488)
MamSp.HO01
Soil clone R60-70_253 (DQ534864)

Soil fosmid 54d9 (AJ627422)
Soil clone Alpine1 (DQ534697)

OPF.G08

97| NyCr.F03
97t Candidatus 'Nitrosocaldus yellowstonii'

LHL1.A12
— SHO7.D08
- O1a.F11

- HL3.A08

| NyCr.Fo7

HL3.H08
OPF.H10

CS.E07
[HL1.A06
L HL4.G09
}HL3.E08
OPF.G01 o
L 01a.E01

Marine clade

Soil clade

~HL4.E11 I

&= Inculture (~ 75°C)

De la Torre et al. 2008. Environ. Microbiol.



Current appreciation of AOA species diversity & habitat range

Candidatus Nitrosopumilus salaria BD31
Candidatus Nitrosopumilus sp. ST1
Candidatus Nitrosopumilus zosterae NM25
Nitrosopumilus ureiphilus PS0
Candidatus Nitrosopumilus sp. HMK29
Candidatus Nitrosopumilus adriaticus NF5
Candidatus Nitrosopumilus sediminis AR2

Nitrosopumilus oxyclinae HCE1
Nitrosopumilus cobalaminigenes HCA1
Candidatus Nitrosomarinus catalina SPOT01

Candidatus Nitrosopumilus piranensis D3C Ocean/LakeS
Candidatus Nitrosopumilus sp. HMK28
Candidatus Nitrosopumilus koreensis AR1
Nitrosopumilus maritimus SCM1
Candidatus Nitrosoarchaeum limnia SFB1
Candidatus Nitrosoarchaeum limnia BG20
Candidatus Nitrosoarchaeum koreensis MY 1
Candidatus Nitrosoarchaeum sp. ST3

Candidatus Nitrosoarchaeum sp. ST2
Candidatus Cenarchaeum symbiosum

Candidatus Nitrosopelagicus brevis CN25

Candidatus Nitrosotenuis chungbukensis MY2
4'_7': Candidatus Nitrosotenuis uzonensis N4
Candidatus Nitrosotenuis cloacae SAT1

— Candidatus Nitrosotalea devanaterra Nd1
L— candidatus Nitrosotalea koreensis NCS1

Nitrososphaera viennensis EN76 .
{E Candidatus Nitrososphaera evergladensis SR1 SO| |/SU bSU I‘face
Candidatus Nitrososphaera gargensis Ga9.2 pH range- _~ 4 _
———— Candidatus Nitrosocosmicus oleophilus MY3 8

L Candidatus Nitrosocosmicus exaquare G61
Candidatus Nitrosocaldus islandicus 3F
Geothermal

{Candidatus Nitrosocaldus cavascurensis SCU2
Candidatus Nitrosocaldus sp. US01 "'75-80 oC

Candidatus Nitrosocaldus yellowstonensis HL72

0.1

Qin et al. unpublished



Archaeal ammonia oxidizers solely comprise the recently described

Thaumarchaeota phylum
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Brochier-Armanet et al. 2008. Nature Rev. Microbiol

Parks et al. 2017. Nature Microbiol



Archaeal ammonia oxidizers dominant in most environments

AOA /AOB >100 in most terrestrial and marine systems



Current understanding of supporting biochemistry
Framework provided by the N. maritimus genome (1.62 Mbp) & physiology
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Biochemistry — as inferred from genome & proteome

Pathway for ammonia oxidation

« Adistant variant of ammonia monooxygenase the only homolog to the
well characterized bacterial system

« Many copper proteins, including variants of nitrite reductase
NO,+1e —> NO

Pathway CO, fixation

» Evidence for variant of hydroxypropionate/hydroxybutyrate pathway



An essential role for nitric oxide in archaeal ammonia oxidation

Nitric oxide — an intermediate or reactant in AOA ammonia oxidation

+ Scavengers of NO (PTIO) immediately suppress ammonia oxidation
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Ammonia monooxygenase
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Martens-Habbena et al. 2015. Environ. Microbiol.



Served for development of thaumarchaeal and bacterial-specific
inhibitors of ammonia oxidation

Selective inhibition of AOA

z—Q

NG N
>—©—R + NO = ¥ R+ 'NO,
N N

&

PTIO (2-phenyl-4,4,5,5, tetramethylimidazoline-1-oxyl 3-oxide), an NO scavenger

Selective inhibition AOB

CH

H3C\/\/\///

Octyn, mechanism-based irreversible inactivation of bacterial ammonia monooxygenase

Martens-Habbena et al. 2015. Environ. Microbiol.; Taylor et al. 2015. Appl. Environ. Microbiol.



CO, fixation via a highly efficient modification of HP/HB cycle
most efficient among characterized aerobic pathways

CoASm/
[4] [6] -
HCO3 ,\p.p
CoAS i Pathway ~P per
CoAS O ATP CoAS 0 Variant g biomass
NADH+H+ \n/\n/ CoASH aCEtyI-CDA 0 OH NADPH"’H"
NAD\)' acetoacetyl CoA malonyl-CoA %NADP++COASH AOA HP/HP 0.09
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O OH $ -
O OH . Calvin-Benson  0.12
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OH SCoA
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\\ -
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M. Kdnneke et.al. 2014. PNAS 111: 8239-8244

B,, (cobalamin) dependent mutase



Extremely high cellular quotas of cobalamin in Nitrosopumilus strains

Molecules of cobalamin

oer cell nmole cobalamin

analog per mole
Phylum Strain n OH- Me- Ado- carbon

Proteobacteria V. fischerii 3 nd nd nd 0
Sulfitobacter sp. SA11 3 3+0.1 4+04 7+3 1-10
R. pomeryoi DSS-3 3 520 + 290 120 + 100 1,200 + 320 240-260
Thaumarchaeota Nitrosopumilus sp. HCE1 3 420 + 19 52+ 17 1,600 + 140  4,200-5,300
Nitrosopumilus sp. HCA1 3 1,860+ 14 366 +55 2,252 +210 9,300-11,600
Nitrosopumilus sp. PSO 3 508 +65 139+20 1,548 + 177  4,700-5,900
3

N. maritimus SCM1 670 + 52 13+4 680 + 130  2,800-3,500

Heal et al. 2017. PNAS 114:364



AOA can contribute to more than half the B,, pool in North Pacific
In the surface ocean most eukaryotic algae are cobalamin auxotrophs

2013 Cruise track of the RV Kilo Moana Fluorescence (RFU) oo Fluorescence (RFU)
O.|O IJ 8 1 6 214 | i | |
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Heal et al. 2017. PNAS



Physiological basis for the remarkable environmental success of AOA

exceptionally high affinities for ammonia and oxygen

1.0
—— Nitrosopumilus spp.
0.8 Nc. oceani
— Nm. oligotropha
=, AOA (K,,~ 100 nM) 7
o 0.6 - P
E \/
&=
E 0.4 + AOB
o
1) | K., 20-200 uM
02 n |
|
I
0.0 - . | . . : .

0.001 0.01 01 1 10 100 1000 10000
NH, + NH," [uM]

Martens-Habbena et al. 2009 Nature; Qin et al. 2017 Env. Microbiol. Rep.



Active growth at low nM concentrations of ammonia

Cell number (cells/mL)

2.0x 108

1.8x108 |
1.6x108 |
1.4x108 |
12x108 1
8.0x107 1
6.0x107 |
40x107 |

2.0x 107
10x10°

0 5 10
Time (day)

Nakagawa & Stahl. 2013. Appl. Environ. Microbiol.



Coastal marine distribution, abundance, and activity
Hood Canal fleld S|tes
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Sampling sites and water chemistry in Hood Canal

Spatial structure of O, and NH,* (summer)

Oxygen [mg/L] August 21, 1996
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AOA dominate in
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numbers and process in these coastal waters

Coastal waters in situ
ammonia oxidation kinetics

—

K,, ~ 100 nM
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Novel ammonia oxidation system integrated with protein surface layer (S-layer)
Modeling shows that charged S-layer facilitates ammonia acquisition & oxidation
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Ocean Methane Paradox

The surface ocean is supersaturated in CH, with respect to the atmosphere.
Methanogenesis occurs only under strict anoxic conditions, so its occurrence
and apparent production in oxic waters to an extent that produces methane
supersaturation is termed the “Ocean Methane Paradox”. W. S. Reeburgh.
2007. Oceanic Methane Biogeochemistry. Chem. Rev.107: 486-513.

22

300

_ 800+
L
=
=
= "
m}
S g0}
-~ 1 VERTEX | .
1200k STATION 1 i 1
1 Tilbrook, B.D. and D.M. Karl. 1995. Methane sources,
i 1 distributions and sinks from California coastal waters to
L |cH, %EH‘lq ..:;9 - the oligotrophic North Pacific gyre. Marine Chemistry
1s00l—b { ] 49: 5 1-64.




Methanogen microniches?

Oremland, 1979

Limnol. Oceanogr., 24(6), 1979, 1136-1141
© 1979, by the American Society of Limnology and Oceanography, Inc.

Methanogenic activity in plankton samples and fish intestines:
A mechanism for in situ methanogenesis
in oceanic surface waters

de Angelis and Lee, 1994

Limnol. Oceanogr., 39(6), 1994, 1298-1308
© 1994, by the American Society of Limnology and Oceanography, Inc.

Methane production during zooplankton grazing on
marine phytoplankton

Ditchfield et al. 2012

AQUATIC MICROBIAL ECOLOGY Published online October 2

Vol. 67: 151-160, 2012
Aquat Microb Ecol

doi: 10.3354/ame01585

Identification of putative methylotrophic and
hydrogenotrophic methanogens within
sedimenting material and copepod faecal pellets



NMR characterization of dissolved organic phosphorous in Central Pacific
DOP is a significant fraction of total P

MARINE ORGANIC PHOSPHORUS CYCLING: NOVEL INSIGHTS
FROM NUCLEAR MAGNETIC RESONANCE

LAUREN LISA CLARK, ELLERY D. INGALIL, and RONALD BENNER

University of Texas at Austin, Marine Science Institute, 750 Channel View Drive,
Port Aransas, Texas 78373
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The phosphonate-methane hypothesis
Karl et al. Nature Geoscience. July 2008

“We hypothesize that methylphosphonate (Mpn) cycling (its coupled production and
decomposition) is a pathway for the aerobic formation of methane in marine ecosystems. The
[...] ‘missing’ source term needed to reconcile the observed methane supersaturations that
sustain a net flux of methane from the ocean to the atmosphere.”

Caveat - However, MPn only available from chemical synthesis.
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Mpn added to seawater is used as a phosphorous source for growth of marine
plankton, and its assimilation correlated with methane production.



Pathway for methylphosphonate synthesis in N. maritimus

Proximity to genes encoding EPS synthesis (e.g., sugar nucleotidyl transferase &
glycosyl transferase) suggests role in surface modification
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Metcalf et al. 2012. Science 337:1104



MPnS widely distributed among abundant marine microorganisms
but, so far only found in marine environments

o Streptomyces viridochromogenes
DSM 40736

b
/ l[ﬂ;’l Hydroxyethylphosphonate dioxygenase (HEPD)
47"

MPnS & HEPD phylogeny

Symbiodinium

microadriaticum
(\// =% CCMP 2467

Nitrosopumilus ;
maritimus —__ g

scM1 @
R
% £ \
= Streptomyces albus
"b /\\\ NRRL B-16041
ST &) S
: g Chi\ S
Sy g . C_andidatus_
Methylphosphonate synthase (MPnS) -

Born et al. 2017. Science 358: 1336



Phosphonates comprise about 20% of P in semi-labile carbohydrate pool
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A few concluding summary points

Today there is an even a greater role for organismal science in environmental
microbiology

As today’s example - identification, isolation and physiological characterization of AOA

«  Established their biogeochemical significance, archaea now recognized to mediate the rate-
controlling step of nitrification in most environments

« Identified a novel phosphonate biochemistry as a plausible source of oceanic surface
methane flux

« Identified a major source of vitamin B,, in the marine environment, essential for most algae
(linking nitrogen and carbon cycles)

«  Served for development of selective inhibitors, of basic and applied utility

However, because of that lifestyle, this important population was long overlooked using
standard cultivation methods (which generally selects for “weedy” species)
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