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Definition of Extremes:

1. Absolute indices, e.g., hottest or coldest temperature of
a year, maximum 1 day or 5-day precipitation rates

2. Threshold indices, e.g. number of days when a fixed
temperature or precipitation threshold is exceeded

3. Duration indices, e.g., length of wet and dry spells, or
warm and cold spells

4. Percentile-based threshold indices, e.g., exceedance
rates above or below a the 10th or 90th percentile in a

reference base period



Examples Extreme Indices (ETCCD)

Indicator name Abbrev.  Definition

Frost days FD Number of days with Ty, <0 °C

kcing days ID MNumber of days with Ty, < 0°C

Summer days SuU Number of days with Ty =25 °C

Tropical nights TR Number of days with Ty, = 20°C

Cool nights THN10p % of days with T, < the historical 10th percentile value

Warm nights THO0p % of days with T, = the historical 90th percentile value

Cool days TX10p % of days with Ty, < the historical 10th percentile value

Warm days T¥90p % of days with T4 = the historical 90th percentile value

Maximum Ty THx Monthly maximum value of Ty,

Minirmum Tigq TNn Monthly minimum value of T,

Maximum T Txx Monthly maximum value of Ty,

Minimum Ty TXn Monthly minimum value of T,y

Diurnal range DTR Monthly mean difference between daily Ty, and T

Growing season length GsL Number of days between the first 6-day span with daily mean temperature above 5°C and the first span after July 1
(in NH) with daily mean temperature below 5 °C

Warm spell duration index WSDI Annual count of at least six consecutive days with Ty, 4, = the historical 90th percentile value

Cold spell duration index Ccsol Annual count of at least six consecutive days with Ty, < the historical 10th percentile value

Maximum 1-day precipitation RX1day Monthly maximum 1-day precipitation (mm)

Maximum 5-day precipitation RX5day Monthly maximum consecutive 5-day precipitation amount {mm)

Simple daily intensity index sol Mean precipitation amount on wet days (mm)

Number of heavy precipitation events R10 Annual count of days with precipitation = 10 mm

Number of very have precipitation days R20 Annual count of days with precipitation =20 mm

Consecutive dry days coD Maximum number of consecutive days with precipitation =1 mm

Consecutive wet days CWD Maximum number of consecutive days with precipitation = 1 mm

Very wet days RA5p Annual total precipitation derived from days = 95th percentile

Extremely wet days R99p Annual total precipitation derived from days > 99th percentile

Annual total precipitation PRCPTOT Annual total precipitation on all days.

(Schoof et al. 2016)



» Extremes are often driven by interactions of
systems with different temporal and spatial
scales

» Extremes are application-specific

All these require ESM
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Hurricane Harvey

Hurricane Harvey at peak intensi.ty, prior to .

landfall in southern Texas on August 25
Formed August 17, 2017
Dissipated September 3, 2017

(Extratropical after September 1)

Highest winds  1-minute sustained:

130 mph (215 km/h
Lowest pressure 938 mbar (hH Tropical cyclone sci

0.07 0,08 |Fatalities 83 confirmed
Damage = $70 billion (2017 USD)
(Preliminary total; unofficially third-

Up to 0.1 inch
0.1t0 0.25 inches
B 0.25 1o 0.5 inches
W 0.5 to 1.0 inches
= 1.0 to 1.5 inches
1.5to0 2.0 inches
2.0 to 3.0 inches
B 3.0 to 4.0 inches
W 4.0to0 6.0 Inches
B 6.0 to 8.0 inches
B 8.0 to 10.0 inches
R 10.0 to 15.0 inches
N 150 to 20.0 inches
N 20.0 to 30.0 inches
Greater than 30 inches{

costliest tropical cyclone in U.S.
histary)

Areas affected Windward Islands, Suriname,
Guyana, Nicaragua,
Honduras, Belize, Yucatan
Peninsula, Southern and
Eastern United States

[

(especially Texas, Louisiana)
Part of the 2017 Atlantic hurricane season

Maximum rainfall for a 4-day period > 1000 mm

Wettest tropical hurricane brought heavy Rain
and caused catastrophic flooding

(Xia 2017)
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Hurricane Irma
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Hurricane Sandy
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Hurricane Sandy Surface Wind Speed
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Extremes are
application specific

Sewage treatment plant as
an example

(Kenward et al. 2013)



Overflow

Flooding



Multi-scale Interactions as Sources of

Uncertainties



Multi-scale interactions

Mlcrophy5|cal Scale

Cloud scale



An example of multi-scale interactions
The Madden-Julian Oscillation MJO

L s avww MV AL AVUVYA ATWUY VL AV WAL UWUL“UUL’

Courtesy of Adames



(40 days) MJO
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The Discharge-Recharge Mechanism
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Boundary-layer turbulence, shallow convection, and cumulus
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(Benedict and Randall 2007)
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Control Climate Warmer Climate
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(Zhang et al., 2013 JAMES)



Special About the Southern Great Plains
Fronts
Low-level jet
Thunderstorms

Land-atmosphere coupling



Percentage of precipitation associated with fronts
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Strength of land-atmosphere interaction
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A strong precipitation event during the ARM MC3E Field Campaign

00Z I\/Ia“-ll

00Z Ma 2'1 ;
‘#{ \m

o
d

‘i ""
L 2
c

(Wang et al. 2017)



1
A
I' QQ
Q Q ~™ Higher cloud tops
N arm frontal bands ™ Lower cloud tops
Q ~ Precipitation
Rainband
<> Embedded

<= convection

A __A_ Surface cold front
A& Surface warm front
A __a Surface ocdusion
......... Upper PV contour

A . 2\ Upper cold front

(Houze 2014)



NEXRA

L

D Prec

12 UTC May 20

40N

35N~

CF Sonde at 2329 UTC May 19th 2011

(b)

(Xie et al. 2014)




Mesoscale convective systems
Not resolved in current climate models

Cloud top

™~ Cloud base

Radar echo
New cell boundary
—0°C —= Storm motion
1 i - L. B
Region of heavﬂ Oid Matur;\1
stratiform rain cell- scell Gust front
Region of trailing LHegion of heavy
stratiform rain convective showers
~ 100 km
-

(Houze 2014)



Resolution alone is necessary, but not sufficient
Sensitivity of MCS reflectivity on cloud microphysics (An ARM MC3E Event)
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One element of microphysical process: collision-coalescences
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Complexity of cloud microphysics
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Future Projections and

Uncertainties over the SGP



RCPES — Tropical Nights (TR) [days]
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Latitude (°N)

Latitude ("N)

Changes of LLJ and Precipitation

Surface and 850 hPa trends (Apri-June 1979-2014)
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Uncertainties from GCM can be large and systematic
CMIP5 Model biases
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Temperature bias [ K]
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Artistic Schematics of the ARM SGP Facility




Land-atmosphere coupling

Clouds and

Radiation precipitation

LAl, albedo Horizontal transport

/ and convergence

Atmospheric boundary
ver (ABL)

Large-scale
conditions

Entrainment

Soil texture and
moisture

(Wulfmeyer et al., 2016)
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Summary

* Extreme events often arise from a combination of systems on
multiple scales. Simulations of their correct spatial-temporal
relations are needed to capture their combined impact for
specific applications.

* Upscale feedbacks cause large uncertainties in extremes from
unresolved processes of scales ranging from cloud-aerosol
microphysics, shallow convection, and cloud system:s.

* Over the SGP, most current ESMs miss strong convective events,
leading to underestimation of the subsequent shallow
convective clouds and overestimation of downward shortwave
radiation, thus warm and dry biases
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