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Drier

Motivation

* Water is the single most important natural
resource

e 1/5 of the world’s population live where water
is scarce

e Climate models project unprecedented
drought risk and increased aridity

* Are changes in drought behavior becoming

Unprecedented 21st century drought risk in the increasingly driven by human forcing?

American SW (Cook et al. 2015)
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Improve our understanding of the nature and causes of past/future droughts



Anamaly (kgim’)

ENSO: primary source of drought variability in many regions of the globe
Other factors are also expected to affect drought in a warming world
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Influences on droughts

Moisture supply:

e L Evaporative demand
Precipitation P

#1. Discernable human-induced
Gradual change in changes in the observed rainfall

mean patterns
Marvel and Bonfils 2013

Gradual change in
variance



How do we identify a human influence on global precipitation?

Observed Precipitation Change
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#1 Natural and Human Influences on Changing Zonal-Mean Precipitation

Cool, dry air
descends

Zonal-Mean winter Precipitation

@ Equstorial tropical peak
& Midlatitude storm tracks
@ Subtropical dry zones

@ Inflaction points

Thermal -
equator:
warm, moist g
air rises 5

Smoothed precipitation, milimeters per day

Theories and climate projections predict a latitudinal
intensification and poleward shifts of global precipitation



Latitude

#1 Natural and Human Influences on Changing Zonal-Mean Precipitation
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#1 Natural and Human Influences on Changing Zonal-Mean Precipitation

Equatorial tropical peak

@ Equatorial tropical peak
® Midlatitude storm tracks
@ subtropical dry zones

@ Inflection points
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#1 Natural and Human Influences on Changing Zonal-Mean Precipitation

2. Measure the similarity between observations and fingerprint
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#1 We detected a human influence on changing zonal-mean precipitation

Probability Density
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Detection: The observed
intensification + poleward
expansion of zonal P cannot be
explained by climate noise alone.

Attribution: The fingerprint
matches predictions from

simulations with combined
natural and human forcings

Marvel K and C Bonfils 2013: Identifying External Influences on Global Precipitation. PNAS




Influences on droughts

Moisture supply:

e L Evaporative demand
Precipitation P

Gradual change in
mean

Marvel and Bonfils 2013

#2. Increase in ENSO-driven
precipitation variability
Bonfils et al. 2015

Gradual change in
variance



#2 In the 215t century, ENSO-driven precipitation variability is intensified

Goal

ENSO is the main trigger of precipitation variability
* Models do not agree on how ENSO will evolve in the future

Unclear whether the precipitation response to ENSO will change in the future, even if ENSO remains
unchanged

* Non-uniform warming in tropical Pacific Ocean

e Atmospheric circulation change

* Moister atmosphere

El Nifo
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Bonfils C, B Santer, T Phillips, K Marvel, R Leung, C Doutriaux, A Capotondi, 2015. J. Clim




Influence on droughts

Moisture supply:

e - Evaporative demand
Precipitation P

#3. Most regions where

Gradual change in Marvel and Bonfils 2013 aridity/moistening is
mean currently regulated by
ENSO variability will
become more arid in the
future
Gradual change in Bonfils et al. 2015 Bonfils et al. 2016
variance

Unprecedented 215t century drought risk in the American SW (Cook et al. 2015)
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#3 Influence of anthropogenic climate change on regional aridity

Objectives

Investigate the contributions from: ) )
Use different sets of experiments to assess the

. e . impact of:
* changes in precipitation vs. evaporative demand

*  Changes in mean aridity vs. ENSO variability
1) Ocean warming (+Warming, mean=4K)

omE;
a N
\
Y

Approach

* |dentify regions where aridity is historically
sensitive to ENSO

* Find regions where the future changes in
mean aridity exceeds the range of ENSO
variability

3) “fast” radiative forcing from enhanced CO2 (+RAD)

- 6 measures of terrestrial aridity



#3 Influence of anthropogenic climate change on regional aridity
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Results

* Future aridity predicted in ~67-72% of the regions where aridity is currently driven by ENSO variability



#3 Influence of anthropogenic climate change on regional aridity

H Always wetter
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Results

* Future aridity predicted in ~67-72% of the regions where aridity is currently driven by ENSO variability
* |treaches ~75-78% when the vegetation and radiative effects are included

e This prediction is much weaker when total soil moisture is considered (41%): stomatal closure
prevents soil desiccation

Bonfils, C., G. Anderson, B. Santer, T. Phillips, K. Taylor, M. Cuntz, M. Zelinka, K. Marvel, B. Cook, I. Cvijanovic, P. Durack, 2017. J. Clim




Other drought mechanisms?

J’ \
/' High pressure
4 tendstodivert 2
4 Pacific storms .
around California 2
San Frands Al
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Possible causes for a North Pacific Ridge (causing P deficit in CA) include:

1) Tropical Pacific ocean forcing of natural origin (Seager et al. 2015)
2) Human-induced change in geopotential height (Swain et al. 2016)
3) Arctic sea-ice cover loss (Sewall 2005)



#4 Arctic sea ice loss favors drying in California

Approach

e CESM ensemble of simulations with seasonally ice free
Arctic (by sampling model uncertainty in 3 sea-ice physics
parameters + initial conditions)

 Framework allows coupling between sea-ice, ocean and
atmosphere in an energetically consistent way

Impact
J 2-step teleconnection:
1. Northward shift in ITCZ (Chiang and Bitz 2005)

2. Tropical convection reorganization favors a
persistent ridge over North Pacific coast

A misrepresentation of future sea-ice changes has
implications for the prediction of future drought risks

Cvijanovic et al. 2017
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#5 Quantifying the effect of parameter uncertainties in simulations of
drought in the Western United States

Goal Forcing metric derived from the difference

) in pressure anomalies in tropics
Can we more successfully simulate key features of

observed drought behavior?

ew W.. W'V
Approach B A V o
1317-member perturbed physics ensemble = ___ observation
 Latin Hypercube Sampling to vary the values of 28 . — default run
input parameters (e.g., clouds, P, convection & TE # F A F S S P S S
boundary layer) over allowable ranges year

e Set of metrics that best characterize the drought
and its drivers (tropical forcing, spatial extent of P
and aridity bias)

Forcing metric is most sensitive to deep convection
parameters
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e We perform a sensitivity analysis to identify the key
parameters influencing drought metrics

Feature scores



#5 Quantifying the effect of parameter uncertainties in simulations of
drought in the Western United States

Results Optimal parameter values
e We have identified the key parameters that influence the turn of for all 3 metrics |
century drought 1 o |
* Deep convection parameters account for more than half the | R '
. . . . OB.U o 0.4 0.6 o.8 o
ensemble variance in metrics used to quantify drought 7
*  We can improve upon the default values for those parameters 2=
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Anderson G, D Lucas, and C Bonfils, 2017: Uncertainty Analysis of Simulations of the Turn-of-

the-Century Drought in the Western U.S. JGR-Atm (submitted)




LLNL research on the precursors of droughts is strong
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#6 Can we find a human fingerprint in bioclimatic estimates?

Objectives Approach
* Many mechanisms drive the future changes in For each year over 1979-2015, we calculated:
precipitation 1. The observed & modeled yearly vegetation
* The Kbppen vegetation scheme provides a single distributions
metric that: 2. The latitudinal area occupied by each vegetation
* Summarizes the changes in climate that are type
ecologically relevant 3. The change in the areal extent of bioclimate zones
* |s sensitive to thresholds and features of the every year
seasonal cycle in temperature and precipitation
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#6 YES! We found a human fingerprint in observations

O Detection: The changes in the O Attribution: Results compatible with
repartition (location, extent) of predictions including both natural and
bioclimatic zones driven by human forcings
observed T and P estimates are O Both the changes in temperature and
unlikely to arise purely from precipitation contribute

natural climate variability
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Bonfils et al. 2018 Human-induced vegetation shifts based on bioclimatic estimates In prep.




PCMDI SFA — Detection and Attribution Activity :
DE-FOA-0001036: Human influence on the hydrological cycle MlIEStones
LDRD
Task 1: An analysis of drought behavior Task 2: Role of ocean / ENSO

Competitive influences on droughts Bonfils et al 2017 J. Contributions of mean and ENSO variability to future P

Climate changes Bonfils et al. 2015 J Climate
m Human-induced vegetation shifts based on bioclimatic * Role of volcanic activity on climate and tropical ocean
estimates Phillips and Bonfils 2015 ERL - Bonfils et al. in temperatures Santer et al 2014 Nat Geoscience - Santer et al
prep. 2015 GRL - Santer et al 2016 Nat CC - Santer et al 2017 in
review

e Comparing Tropospheric Warming In Climate Models and
Satellite Data Santer et al 2017 J Climate - Santer et al
2017 Scientific Reports - Santer et al 2017 Nat Geoscience

Task 3: A UQ analysis Task 4: Drought-promoting changes in atm. circulation

Effect of parameter uncertainties on drought simulation Human influence on changing zonal-mean precipitation Marvel

Anderson et al JGR in review and Bonfils 2013 PNAS
° Quantify whether responses to different forcings add Arctic sea-ice loss favors dry CA CVijanOViC et al 2017 Nat Comm
linearly in climate models? Marvel et al 2015 ERL * Human fingerprint in zonal-mean cloud Marvel et al 2014 )
Climate

* Include for the first time the “total natural variability” in a
D&A study Santer et al 2013

* D&A on the changes in phase and amplitude of atmospheric

15 articles published / accepted temperature Santer et al in prep
2 manuscripts in review * D&A on changes in precipitation annual cycle Marvel et al 2017
J Climate

3 manuscripts in preparation
* D&A-derived study tracking tropical P Bonfils et al in prep




ECRP: incubator of new ideas

e Multivariate D&A using zonal climate features:
- D&A on cloud trends (GISS/LLNL collaboration)
- Correlated precipitation/cloud behavior

e D&A technique:
- Applied on geopotential height (SFA)

Perform D&A study based on the recent changes in aridity using one or several indices
- D&A in various drought indicators (GISS/LLNL collaboration?)
- Use of the “total natural variability”

Response of tropical P to other forcings and mid-latitudes teleconnections
» D&A-derived technique

» Implication of sea-ice loss

e Endto End D&A in Western U.S. hydrology

Continue to explore new directions motivated by ECRP work
10 proposals submitted [3 LDRDs - 2 FOA - 1 SFA renewal - 2 TechBase - 2 UC Lab-Fees]

D&A research at LLNL has successfully transitioned from looking at mean state changes
to examining aspects of climate change of greater societal relevance



Publications status: | LDRD| ECRP |

9 articles published / accepted:

Bonfils C, , , R Leung, C Doutriaux, A Capotondi, 2015: Relative contributions of mean-state shifts and ENSO-driven
variability to precipitation changes in a warming climate, J. Clim

G Schmidt, D Shindell, C Bonfils, et al. 2015: Do responses to different anthropogenic forcings add linearly in climate models? ERL
, S Solomon, D Ridley, J Fyfe, F Beltran, C Bonfils et al., 2016: Correspondence: Volcanic effects on climate, Nature Clim Ch.

, G Anderson, , | Cvijanovic, et al., 2017: Competing influences of anthropogenic warming, ENSO, and plant
physiology on future terrestrial aridity, J. Clim.

Cvijanovic |, C Bonfils, D Lucas, S. Zimmerman, J Chiang: Seasonally ice free Arctic favors dry California, Nature Comm (accepted) m
, M Biasutti, , 2017: Observed and Projected Changes to the Precipitation Annual Cycle, J. Clim.
, S Solomon, F Wentz, Q Fu, [...], C Bonfils, 2017b: Tropospheric Warming over the past two decades, Scientific Reports
, J Fyfe, [...] C Bonfils, | Cvijanovic, [...] 2017c: Causes of differences in model and satellite tropospheric warming rates, Nature Geosc.
[...], I. Cvijanovic, C Bonfils, 2017a: Comparing Tropospheric Warming in climate models and satellite data, J. Clim
2 manuscripts in review:
[...] D Ridley, C Bonfils et al., 2017b: Correspondence: Climate impact of volcanic forcing uncertainty, Nature Comm
Anderson G, C Bonfils, D Lucas, : Uncertainty Analysis of Simulations of the Turn-of-the-Century Drought in the Western U.S., JGR
3 manuscripts in preparation:
Bonfils C, , Human-induced vegetation shifts based on bioclimatic estimates m

Human influence on the observed changes in the phase and amplitude of atmospheric temperature
Bonfils C, et al D&A-derived technique tracking tropical precipitation

6 articles published before Nov 2015:

, C Bonfils, 2015: Képpen bioclimatic evaluation of CMIP historical climate simulations, ERL

Marvel K, , S Klein, C Bonfils, P Caldwell, , et al. 2015: External influences on modeled and observed cloud trends, J. Clim
, S Solomon, C Bonfils, et al. 2015: Observed multi-variable signals of late 20t and early 215t century volcanic activity, GRL
, C Bonfils, JF Painter, et al., 2014: Volcanic contribution to decadal changes in tropospheric temperature, Nature Geosc

Marvel K, C Bonfils, 2013: Identifying external influences on global precipitation, PNAS

, JF Painter, C Bonfils et al. 2013: Human and natural influences on the changing thermal structure of the atmosphere, PNAS
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PCMDI SFA — Detection and Attribution Activity Milestones
DE-FOA-0001036: Human influence on the hydrological cycle

Volcanic contribution to decadal changes in
tropospheric temperature

Effect of Recent Volcanic Eruptions on Almospheric Temperature
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Tropospheric warming in 2 out of 3 satellite
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Trends are generally additive but nonlinearities

appear in P trends with interactive chemistry Identifying the Human Fingerprint in Observed Cloud Trends
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Kbppen vegetation map after
Ganadesikan and Stouffer (2006)

Ef: Polar Desert
(scant vegetation)

Et: Tundra
(dwarf trees, mosses)

De: Cold Winters/Cool Summers
{evergreen boreal forest)

Dab: Cold Winters/Warm Summers
(deciduous forest)

Cw: Temperate, Wet Summers
(evergreen forest)

Cs: Temperate, Wet Winters
(evergreen broad-leat forest)

Cfe: Temperate, Cool and Moist
(needle-tree forest )

Cfb: Temperate, Warm and Moist
(broad-leaf forest)

Cfa: Temperate, Hot and Moist
{(broad-leaf forest)

BS: Semiarid
(bush or grassland)

BW: Desert

(wasteland, cactus/seasonal Vegetation)

Al Tropical Wet
(tropical evergreen rain forest)

Am: Tropical Moist
(tropical evergreen forest)
Aw: Tropical Dry
(savanna/woodland)

Toe < 0 Celsius (C)

0C<T<10Cand Ty, <-3C

Twin <-3 C and < 4 months warmer than 10 C,
but not types BS or BW

Toin <-3C, Ty = 10 C and =4 months
warmer than 10 C, but not types BS or BW

-3 C< Ty < 18 C and Ppyyy > 10Py, with Py
occurring in summer and P, in winter, but not
types BS or BW

S3C=<Ty,<-18 Cand P,y = 3P , with Py
occurring in winter and Py, in summer, but not
types BS or BW

3C<Ta < 18 and Ty < 22 C, and with
< 4 months warmer than 10 C, but not types BS,
BW, Cs, or Cw

3C< Ty, < 18and Ty, <22 C, and with
> 4 months warmer than 10 C, but not types BS,
BW, Cs, or Cw

3C< To,<18C and Ty, = 22 C, but not
types BS, BW, Cs, or Cw

(T-v: +Pog) < 13'3,,“ur < 2{'[‘“,‘ + Pyl

Pym < (’I‘m+ Pos)
Trin = 18Cand Py, = 6 cm, but not types BS or
BW

Tin = 18C and (250 ecm — Py )25 < Py, < 6 cm,
but not types BS or BW

Tein > 18C and Py, < 6emy, (250 cm— P25,
but not types BS or BW




