

Repurposing the Yeast Peroxisome for Compartmentalized Metabolic Pathways

John Dueber, Dept. of Bioengineering, U.C. Berkeley

Metabolic Engineering Motivation

Insulating Engineered Pathways

Short-term goals:

Pathway insulation to prevent cross-talk and/or toxicity

Long-term goals:

Alter chemical environment

Organelles are Specialized Compartments

low pH, large volume in some growth conditions, import of toxic metabolites

DeLoache. 2013. NBT. Perspective.

Why the Peroxisome?

Not Required by *S. cerevisiae*

Wild-type

Protein Import

Mutant

Why the Peroxisome?

Not Required by *S. cerevisiae*

Wild-type

Protein Import

Mutant

Organelle size varies greatly across fungi

S. cerevisiae

P. pastoris

H. polymorpha

Purdue, P.E. & Lazarow, P.B. Annu Rev Cell Dev Biol 17, 701–752 (2001). Liu, H., et al., J Biol Chem 270, 10940–10951 (1995). Gellissen, G. et al. FEMS Yeast Research 5, 1079–1096 (2005).

Why the Peroxisome?

Not Required by *S. cerevisiae*

Wild-type

Protein Import

Mutant

Organelle size varies greatly across fungi

Purdue, P.E. & Lazarow, P.B. Annu Rev Cell Dev Biol 17, 701–752 (2001). Liu, H., et al., J Biol Chem 270, 10940–10951 (1995). Gellissen, G. et al. FEMS Yeast Research 5, 1079–1096 (2005).

Peroxisome has been Naturally Specialized

glycosome (glycolysis)

T. brucei

glyoxysome (fat to sugar)

pencillin (2 enzymes)

plants and filamentous fungi

P. chrysogenum

Control of Folded Protein Transport

Metabolic Enzyme Sequestration Assay

Linker Mutagenesis Assay for an Enhanced PTS1 Tag

Linker Library Yielded Varying Import Efficiencies

Peroxisomes Naturally have High Capacity

Express constant amount of VioE-ePTS1 and vary levels of RFP-ePTS1

Improved Cargo Import Rate

Pex5 Induction of Cargo Sequestration

Growth Assay with Induced Pex5

The Enhanced Peroxisome Targeting Tag Appears to be Modular

Peroxisome Membrane Permeability: a 50-Year Debate

Camp 1: Peroxisomes are permeable up to ~700 Da (cutoff just below NADH cofactors that have transport shuttles)

Camp 2: Camp 1 unintentionally lyses their peroxisomes during the purification process.

Peroxisome Membrane Appears to have a Permeability Size Cutoff

Further Evidence for a Size Limit to Membrane Permeability

PDV Pathway Enzymes Can be Functionally Compartmentalized

Compartmentalization of VioE-limited Pathway May Substrate Channel

Early Career Award – Multiplier Effect

Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways

William C. DeLoache^{1,2,*}, Zachary N. Russ^{1,2,*} & John E. Dueber²

An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose

William C DeLoache¹, Zachary N Russ¹, Lauren Narcross^{2,3}, Andrew M Gonzales¹, Vincent J J Martin^{2,3} & John E Dueber^{1*}