The microbial ecology of soil carbon across scales

Bruce Hungate, Rebecca Mau, Egbert Schwartz, Greg Caporaso, Paul Dijkstra, Natasja van Gestel, Benjamin J Koch, Cindy Liu, Theresa McHugh, Jane Marks, Ember Morrissey, Lance Price, Kees Jan van Groenigen

Northern Arizona University, Flagstaff AZ, USA

Funding from the US Department of Energy, Genomic Sciences, Regional and Climate Modeling, Terrestrial Ecosystem Sciences
Florida CO$_2$ experiment
\[\uparrow \text{CO}_2 \rightarrow \uparrow \text{C storage?} \]
Ambient CO₂ Elevated CO₂

- aboveground litter
- fine root
- coarse root
- soil

Hungate et al., New Phytologist, 2013
$\uparrow \text{CO}_2 \rightarrow \uparrow \text{C storage?}$
Ambient CO₂ Elevated CO₂

aboveground litter
fine root
coarse root

soil

Hungate et al., New Phytologist, 2013
Soil Carbon, Light fraction, g C m⁻²

Ambient CO₂ → soil carbon

Carney, Hungate, Drake & Megonigal,
PNAS, 2007; Hungate et al. New Phytologist, 2013b
Soil organic matter → CO₂ → soil organic matter
Soil organic matter
$^{13}\text{C}\text{-glucose}$
13C-glucose

13C-methane

13C-carbon dioxide

18O-H$_2$O
low GC \rightarrow high GC

low \rightarrow high

density
uses glucose for growth
grows, but not with glucose
Mau et al., 2015, ISME
↑sugar \rightarrow ↑Priming

Microbial biodiversity
Mau et al., in review, ISME
Proportion of 16S gene copy number

Arthrobacter

- 16O-H_2O
- 18O-H_2O

Values:
- 16O-H_2O: 1.68
18O-H_2O: 1.70

Graph shows the proportion of 16S gene copy number with data points at 1.68 and 1.70 for 16O-H_2O and 18O-H_2O respectively.
For each density fraction, k, estimate abundance of taxon, i, for each sample, j, as the product of relative abundance of i in total assemblage, f

$$y_{ijk} = p_{ijk} \cdot f_{jk}$$

Sum across density fractions for each taxon, i

$$y_{ij} = \sum_{k=1}^{K} y_{ijk}$$

Calculate the weighted average density for each taxon

$$W_{ij} = \sum_{k=1}^{K} x_{jk} \cdot \left(\frac{y_{ijk}}{y_{ij}} \right)$$

Increase in weighted average density with isotope uptake \sim increase in molecular weight of the labeled DNA (M_{LABi})

$$M_{LABi} = \left(\frac{Z_i}{W_{LIGHTi}} + 1 \right) \cdot M_{LIGHTi}$$

Calculate atom fraction excess isotope composition, A, for each taxon, i

$$A_{OXYGENi} = \frac{M_{LABi} - M_{LIGHTi}}{M_{HEAVYMAXi} - M_{LIGHTi}} \cdot (1 - 0.002000429)$$
Week 1
Slope = 1.71
r = 0.84

Week 6
Slope = 0.85
r = 0.76

Dominant Phyla
- Acidobacteria
- Actinobacteria
- Chloroflexi
- Firmicutes
- Gemmatimonadetes
- Proteobacteria
- TM7

Relative Abundance
- 0.02
- 0.04
- 0.06

Morrissey et al., in review
Equation

\[
N_{\text{TOTAL}i} = N_{\text{LIGHT}i} + N_{\text{HEAVY}i}
\]

\[
N_{\text{LIGHT}i} = N_{\text{TOTAL}i} \left(\frac{M_{\text{HEAVY}i} - M_{\text{LAB}i}}{M_{\text{HEAVY}i} - M_{\text{LIGHT}i}} \right)
\]

\[
d_i = \ln \left(\frac{N_{\text{LIGHT}i}}{N_{\text{LIGHT}i0}} \right) \cdot \frac{1}{t}
\]

\[
b_i = \ln \left(\frac{N_{\text{TOTAL}i}}{N_{\text{LIGHT}i}} \right) \cdot \frac{1}{t}
\]

\[
d_i + b_i = r_i
\]

Translation

- **Total organisms =** labeled organisms plus unlabeled organisms
- **Unlabeled organisms =** total organisms x proportion unlabeled
- **Mortality is how fast unlabeled organisms disappear**
- **Birth or reproduction is how fast new labeled organisms appear**
- **birth + death = net growth (r)**

Ben Koch et al., in prep
Normal distribution of growth rate

Growth Rate, \(r \), (day\(^{-1} \))

Net growth rate rank (by genera)

Ben Koch et al. in prep
Organic Carbon

CO₂
Organic Carbon

Biosynthesis

CO$_2$
pyruvate
Pyruvate dehydrogenase catalyzes the conversion of pyruvate into Acetyl coenzyme A (Acetyl CoA), which then enters the Krebs cycle. The reaction is as follows:

\[\text{Pyruvate} \rightarrow \text{Acetyl CoA} \]

This step is a key point in glycolysis where the three-carbon pyruvate molecule is converted into a two-carbon molecule, allowing for the entry into the citric acid cycle for further energy production.
Isocitrate
\[\text{H}_2\text{C}-\text{COO}^- \]
\[\text{H}-\text{C}-\text{COO}^- \]
\[\text{HO}-\text{C}-\text{COO}^- \]
\[\text{H} \]

Isocitrate dehydrogenase

\[\text{CO}_2 + \]
\[\text{H}_2\text{C}-\text{COO}^- \]
\[\text{H}-\text{C}-\text{H} \]
\[\text{O=O}-\text{C}-\text{COO}^- \]

\(\alpha \)-ketoglutarate

Glycolysis

Krebs cycle
\[\alpha\text{-ketoglutarate} \]
\[\begin{array}{c}
\text{H}_2\text{C}−\text{COO}^− \\
\text{H}−\text{C}−\text{H}
\end{array} \]
\[\text{O=H}−\text{COO}^− \]

\[\text{dehydrogenase} \]

\[\alpha\text{-ketoglutarate} \]
\[\begin{array}{c}
\text{H}_2\text{C}−\text{COO}^− \\
\text{H}−\text{C}−\text{H}
\end{array} \]
\[\text{O=H}−\text{S−CoA} \]

\[\text{CO}_2 + \]

\[\text{succinyl coenzyme-A} \]

Krebs cycle

glycolysis
Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling

Abstract
Carbon use efficiency (CUE) is a fundamental parameter for ecological models based on the physiology of microorganisms. CUE determines energy and material flows to higher trophic levels, conversion of plant-produced carbon into microbial products and rates of ecosystem carbon storage. Thermodynamic calculations support a maximum CUE value of ≈ 0.60 (CUE_{max}). Kinetic and stoichiometric constraints on microbial growth suggest that CUE in multi-resource limited natural systems should approach ≈ 0.3.

maximum CUE 0.6 actual CUE ≈ 0.3
Accelerated microbial turnover but constant growth efficiency with warming in soil

Shannon B. Hagerty¹, Kees Jan van Groenigen¹,², Steven D. Allison³, Bruce A. Hungate¹,², Egbert Schwartz¹, George W. Koch¹,², Randall K. Kolka⁴ and Paul Dijkstra¹,²*
Mycorrhizal association as a primary control of the CO₂ fertilization effect

César Terrer,¹ Sara Vicca,² Bruce A. Hungate,³,⁴ Richard P. Phillips,⁵ I. Colin Prentice¹,⁶
Nitrogen availability
Mycorrhizal Type
\(\otimes \text{CO}_2 \)
Fumigation Technology
Precipitation
Ecosystem Type
Duration of experiment
Temperature
Vegetation Age

Sum of Akaike Weights

Terrer et al., 2016, Science
Arbuscular mycorrhizae
Ecto-mycorrhizae

% bimoass response to elevated CO$_2$

Terrer et al., 2016, Science
Effect of CO$_2$ on Soil C Accumulation (E-A, g C m$^{-2}$ y$^{-1}$)

Hungate et al., Global Change Biology 2009
2-pool model of soil C over time

\[
\text{Input } (I) \quad \xrightarrow{f} \quad \text{Fast C pool } (C_f) \quad \xrightarrow{(1-CUE) \cdot k_{\text{fast}}} \quad \text{CO}_2 \\
\xrightarrow{(1-f)} \quad \text{Slow C pool } (C_s) \quad \xrightarrow{k_{\text{slow}}} \quad \text{CO}_2
\]

Van Gestel et al., in review
\[C_t = C_0 e^{-kt} + \frac{l}{k} (1 - e^{-kt}) \]
\[C_t = C_0 e^{-kt} + \frac{1}{k} (1 - e^{-kt}) \]

van Groenigen, et al., 2014, *Science*
\[C_t = C_0 e^{-kt} + \frac{l}{k} (1 - e^{-kt}) \]

\[C_t = C_0 e^{-k_{\text{old}}t} + \frac{l}{k_{\text{new}}} (1 - e^{-k_{\text{new}}t}) \]
\[C_t = C_0 e^{-k_{\text{old}} t} + \frac{I}{k_{\text{new}}} (1 - e^{-k_{\text{new}} t}) \]

effect of elevated CO₂, %

van Groenigen, et al., 2014, *Science*
Significant changes in the skin microbiome mediated by the sport of roller derby

James F. Meadow, Ashley C. Bateman, Keith M. Herkert, Timothy K. O’Connor, Jessica L. Green

PeerJ 1:e53 https://dx.doi.org/10.7717/peerj.53
Colonization of the human nose by *Staphylococcus aureus*: community predictors

Threshold densities predict *S. aureus* carriage

Liu et al., in review
Male Circumcision Significantly Reduces Prevalence and Load of Genital Anaerobic Bacteria

Circumcision → lower bacterial abundance, especially anaerobes