Improving our understanding of carbon cycle, drought and fire dynamics during the 21st century (and beyond!)

James Randerson Chancellor's Professor Earth System Science UC Irvine

28 October 2015

U.S. Dept. of Energy Biological and Environmental Research Advisory Committee Meeting

Two types of carbon feedback loops influence the temporal evolution of atmospheric CO₂

Science questions:

- How are ocean and land contributions to the climatecarbon feedback likely to evolve over time?
- How can we use isotope observations to reduce uncertainties in future projections of the soil carbon sink?
- How will climate change influence drought and fire dynamics?

What are important climate-carbon processes and feedbacks?

Processes in CESM1(BGC):

- Ocean:
 - Increasing stratification with warming
 - Dissolved inorganic carbon sensitivity to temperature
 - Biological pump responses to stratification
- Land:
 - Drought & temperature effects on primary production
 - Soil decomposition increases in response to temperature
 - Response of fires to changes in fuels and drought
 - Land use change

Not yet in most CMIP ESMs:

- Species range shifts
- Phosphorus limits on land carbon uptake (integration underway into ACME)
- Permafrost dynamics (now in CLM4.5)
- Peatlands
- Fires
- Insect-driven mortality
- Drought effects on tree mortality
- Climate effects on land use change

http://www.globalfiredata.org/_plots/updates/emissions.pdf

Experimental design: All three simulations have prescribed atm. CO₂ from RCP8.5

The Global Carbon Project, 2014

CESM1(BGC) experimental design

Simulation	Short name	Description
Fully coupled	Full	CO ₂ and other atmospheric anthropogenic drivers influence radiative transfer, biogeochemistry responds to CO ₂ increases
No CO ₂ radiative forcing	No CO ₂ forcing	Non-CO ₂ anthropogenic drivers influence radiative transfer, biogeochemistry responds to CO ₂ increases
No anthropogenic radiative forcing from greenhouse gases or aerosols	No anthro. forcing	No atmospheric anthropogenic climate change, biogeochemistry responds to CO ₂ increases

Validation:

Lindsay et al. (2014), Moore et al. (2013), Long et al. (2013), Keppel-Aleks et al. (2013)

CESM1(BGC) experimental design

Simulation	Short name	Description
Fully coupled	Full	CO ₂ and other atmospheric anthropogenic drivers force radiative forcing, biogeochemistry responds to CO ₂ increases
No CO ₂ radiative forcing	No CO ₂ forcing	Non-CO ₂ anthropogenic drivers influence radiative forcing, biogeochemistry responds to CO ₂ increases
No anthropogenic radiative forcing from greenhouse gases or aerosols	No anthro. forcing	No atmospheric anthropogenic climate change, biogeochemistry responds to CO ₂ increases

Lindsay et al. (2014), Keppel-Aleks et al. (2013), Moore et al. (2013), Long et al. (2013)

CESM1(BGC) experimental design

Simulation	Short name	Description
Fully coupled	Full	CO ₂ and other atmospheric anthropogenic drivers force radiative forcing, biogeochemistry responds to CO ₂ increases
No CO ₂ radiative forcing	No CO ₂ forcing	Non-CO ₂ anthropogenic drivers influence radiative forcing, biogeochemistry responds to CO ₂ increases
No anthropogenic radiative forcing from greenhouse gases or aerosols	No anthro. forcing	No atmospheric anthropogenic climate change, biogeochemistry responds to CO ₂ increases

Lindsay et al. (2014), Keppel-Aleks et al. (2013), Moore et al. (2013), Long et al. (2013)

Validation of carbon cycle processes in CESM with the International Land Model Benchmarking System

Process and number of variables	CESM 1	CESM 1.2
Carbon cycle and ecosystems (9)	0.54	0.61
Hydrological cycle (3)	0.66	0.77
Radiation and energy (7)	0.80	0.80
Forcing variables (4)	0.83	0.84
Variable to variable relationships (10)	0.67	0.71
Overall score:	0.65	0.69

Mu et al., Lawrence et al. in prep.

Climate-carbon gain computed from compatible fossil fuel emissions (E) from fully coupled and no CO_2 forcing simulations

$$g = \frac{E_{noCO_2} - E_{FC}}{E_{noCO_2}}$$

Climate-carbon feedback parameters

Daramatar	Time Period			
Parameter	1850-1999	1850-2100	1850-2200	1850-2300
α (K/ppm)	0.0080	0.0048	0.0037	0.0041
$eta_{\!\scriptscriptstyle L}$ (Pg C/ppm)	-0.65	-0.18	-0.02	0.01
eta_o (Pg C/ppm)	1.15	0.77	0.65	0.79
γ_L (Pg C/°C)	-2.9	-8.5	-16.4	-28.1
γ ₀ (Pg C/°C)	-1.5	-10.1	-24.4	-36.7
Gain (g)	0.013	0.034	0.056	0.091

$$g = \alpha(\gamma_0 + \gamma_L)/(m + \beta_0 + \beta_L)$$

Ocean contributions to the climate-carbon feedback overtake land after 2100

Blue = FC – no CO₂; Red = FC – no anthro.; grey= no CO_2 – no anthro.

Shutdown in Atlantic Meridional Overturning Reduces Carbon Uptake in CESM

(a) T_{AS}: 2100-1850

(b) T_{AS}: 2300-1850

Tropical ocean anoxia reverses after 2100

Vulnerability of Central America and northern South America to changing drought

Precipitation changes for Representative Concentration Pathway 8.5 (2081-2100) – (1986-2005)

CMIP5 multi-model mean, IPCC AR1 TS Precipitation OFFICIATION OFFIC

 $(mm day^{-1})$

0

0.2 0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2

mm/day Hydrological cycle changes are not uniform across tropical land, with most models drying more in South America than in Africa or Asia

-1.6

-2.0

-1.2

-0.8

-0.4

0.0

mm/day

0.4

0.8

1.2

1.6

2.0

UNIVERSITY OF CALIFORNIA

Precipitation reductions in neotropical forests driven equally by radiative and physiological effects of CO₂

Forests in Central and South America exhibit a high degree of vulnerability to climate change-induced carbon loss

(f) land carbon: 2300-1850

Amazon broadleaf forest burned area from the fully coupled simulation

Toward the development of a global early warning system for fires

Chen, Randerson, et al. In prep.

A conceptual model for fire predictability in the Amazon is based on a forest soils capacitor mechanism

Chen et al. (2013) JGR

Capturing fire-mediated feedbacks in ESMs may require representing species-level effects

The presence of a single species in North America (black spruce) may cause fires to burn hotter and have greater long-term climate cooling effects

Rogers, Soja, Goulden, and Randerson. 2015. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geosciences. DOI: 10.1038/NGEO2352.

Conclusions

- Our understanding of Earth system dynamics, including processes that may contribute to ecosystem collapse, is woefully incomplete beyond 2100
- Ocean contribution to the climate-carbon feedback increases considerably over time for a "business as usual" scenario, and exceeds contributions from land after 2100
 - Land feedback likely reduced from land use change
 - Ocean feedback strength closely related to ocean heat content and AMOC shutdown
- Forcing from non-CO₂ agents for the RCP8.5 scenario is almost enough to surpass the 2 °C dangerous interference limit
- Tropical forests in Central and South America have a higher vulnerability to climate change than other tropical regions
- A better understanding and representation of fire processes in ESMs is essential for accurately predicting carbon cycle dynamics in drought-prone areas

James Randerson

Department of Earth System Science, UC Irvine

jranders@uci.edu

http://sites.uci.edu/randersonlab/

Funding support from DOE Office of Science Biological and Environmental Research to the Biogeochemical Cycles Feedbacks Project, the National Science Foundation, NASA, and the Gordon and Betty Moore Foundation