

Biological and Environmental Research Workshop

Molecular Science Challenges

May 27-29, 2014

Co-organizers

James Liao

Judy D. Wall

University of California, Los Angeles

University of Missouri, Columbia

OBER Liaisons

Paul Bayer Climate and Environmental Science Division

Roland Hirsch

Biological Systems Science Division

U.S. DEPARTMENT OF ENERGY

Office of Science

Office of Biological and Environmental Research

Workshop Charge

- Understand the molecular systems and processes that underpin BER program goals.
- □ Integrate across breadth of spatial and temporal scales of the BER research areas.
- □ Take advantage of resources of the DOE National Labs and Facilities.
- □ Identify challenges and opportunities.
- Describe research pathways to overcome barriers in BERrelevant molecular science.

□ Plan for a time horizon from *2014 through 2024*.

Workshop Agenda

May 27-29, 2014	One and one-half days
Tuesday: Wednesday:	Arrival and organizing dinner Welcome
	Sharlene Weatherwax, Assoc. Director of Science for BER Todd Anderson, BSSD Director Gary Geernaert, CESD Director Keynote Address Jon Chorover
Thursday:	Breakout sessions 1 and 2 and verbal reports Breakout session 3 and final verbal report Writing session Concluding remarks.

Keynote Address Carbon and Contaminants in the Critical Zone Jon Chorover (and multiple collaborators) Department of Soil, Water and Environmental Science

University of Arizona

Hinckley et al., 2014 EOS of AGU

Molecular Science Challenges Workshop

Breakout Groups						
A) Atmosphere-Land Surface Interact	B) Near Surface and Below-Surface Interactions					
Vicki GrassianDiscussion LeadScott BridghamRapporteurKarl BookshRick FlaganMary GillesSean McSweeneyTheresa WindusImage: State of the state of th	Michael ThomashowDiscussion LeadJohn BargarRapporteurKirsten HofmockelJoel KostkaJoel KostkaJim KubickiAl ValocchiJudy Wall					

C) Synthetic Science and Engineering

Cross-cutting Themes

□ Skilled workforce training needed

□ Iterative interactions with modeling community

Computational power- more accessible

Expansion in observation capabilities

Every scale shows heterogeneity

Guidelines for parameterization of heterogeneous variables for predictive models

Atmosphere-Land Surface Interactions Involving Molecular Science Decadal Vision

Determine how to meet the increasing need for energy without causing harm to the Earth's climate and environment.

Focus issues:

- Exchange processes between land and atmosphere
- Aerosol links to radiative balance, cloud formation and precipitation
- Terrestrial ecosystem impacts from transfer of water, gases, organics and particles to and from the atmosphere

Atmosphere-Land Surface Interactions Involving Molecular Science

• Exchange processes

Molecular Scale Data: Integrate molecular scale data into macro- and global-scale modeling to elucidate atmospheric impacts

Biogenic and Anthropogenic

Emissions: Identify and quantify the chemical and particulate emissions and depositions between land and atmosphere.

Scale Interfaces: Are there unidentified phenomena operating across interfaces

http://www.metoffice.gov.uk/research/are as/chemistry-ecosystems/chemistry

Atmosphere-Land Surface Interactions Involving Molecular Science Thrusts

Atmospheric aerosols

- Modeling: Obtain a global-level predictive ability a) for cloud formation and lifetime, b) for anthropogenic and biogenic emissions (gases and particles) and c) for the effects of clouds and emissions on the Earth's radiative balance.
- □ Water Interactions: Develop a theoretical understanding of water interactions with different types of aerosols
- Biogenic Emissions: Determine the mechanisms and rates of release of biogenic emissions from soil, natural waters, plant surfaces, and other sources through the action of microbes and other biological sources.

Terrestrial Ecosystem Impacts

- Minerals and Organics: Elucidate the molecular mechanisms of chemical and biological cycling of minerals and transformations of organic compounds.
- □ Land Use Changes: Ascertain the effects of land surface use changes on energy, particulate emissions and water transfers with the atmosphere.

Atmosphere-Land Surface Interactions Involving Molecular Science Decadal Needs

Environmental Sensors:

Networks of sensors to probe the length and time scales that govern transport and reactions between air, soil, and water, and elucidate their effects on the development and growth of plants and microbes.

Sensor networks tunable to different resolutions to detect physical or chemical events.

Sensors low cost and long duration.

Analytical tools:

Analysis of natural samples at ultralow concentrations and low sample volumes

Computatiional power:

High speed distributive data archives

Workforce:

Multi-disciplinary training – DOE National Labs positioned well

Near-Surface and Below-Surface Interactions

Decadal Vision

CH₄, N₂O, CO₂

Quantitatively understand biogeochemical *processes* and their *interdependences* at *molecular to ecosystem* scales under changing climate and land use patterns.

Must address:

- Genes, plants, microorganisms, enzymes, sediments, soils, and water
- Molecular, pore, and meter scales
- Hot spots and hot moments

Provides ability to predict:

- **Contemport of a set of a set**
- Ecosystem sustainability and tipping points

Near-Surface and Below-Surface Interactions Major Thrusts

• Predict phenotype from genotype

Develop sensitive, non-invasive, high throughput technologies and methodologies to link genes with phenotypes in microorganisms and plants.

Predict changes in microbial and plant population composition and structure caused by dynamic changes in the environment

• Plant-microbe and microbe-microbe interaction mechanisms

Predict microbe-microbe and microbe-plant community interactions at molecular to millimeter scales.

• Biogeochemistry in pores.

Determine the influence of pore size, bacterial, and mineral surfaces on the properties of water and aqueous reactions

Establish electron shuttling/transfer mechanisms in complex natural systems

Define enzyme functions at pore, ecosystem levels

• Link subsystems and processes across scales to describe ecosystem behavior.

Develop techniques to detect, characterize, and monitor below-ground hot spots/moments

Establish paradigms to scale molecular- and pore-scale processes to ecosystem, landscape scales

Near-Surface and Below-Surface Interactions 10-year Needs

- **Imaging** nm resolution, element speciation, ppm sensitivity, real time.
- Spectroscopy Ultra-low volumes/masses (µg and µl), ultra-sensitive (sub-ppm, surfaces of minerals and microbial cells), high throughput, structure/composition, focus on pore scale: metals, organics, minerals, colloids, real time
- **Phenotype** Non-invasive, high throughput, sensitive techniques for probing physiological responses.
- **Sensors** Detect and monitor *in-situ* subsurface processes in real time at length scales of microns to meters (e.g., hot spots, hot moments, carbon content, solutes, functional genes)
- **Computational** Expandable molecular modeling tools, more computational power
- **Thermodynamic/kinetic** Constants needed for critical species

Synthetic Science and Engineering Involving Molecular Science Decadal Vision

Newtonian Rules for Biology

Newton took on the challenge of formulating the fundamental laws of motion and converted the descriptive science to predictive physics. Currently the biological field can benefit from the discovery of "Newtonian-like" rules that underlie the interaction and evolution of biomolecules and processes.

D = electron donor, A = electron acceptor

Known and unknown principles of energy conversion

Synthetic Science and Engineering Involving Molecular Science Thrusts

Electronomics Principles

- Management of energy transduction by cells engineered to produce a nonnative function
- Impact of bifurcation of electrons on biofuel production

Multi-scale Three-dimensional View of Cell

- Three-dimensional time-resolved observation of biological cellular events to identify key players.
- Visualize, conceptualize and test molecular networks in time scale of relevance
- Observe and measure the impact of these molecular systems at successively linked system scales

Synthetic Science and Engineering Involving Molecular Science 10-year Needs

Knowledge needed to advance Newtonian biology

Multi-scale Three-dimensional View of Cell

Visualization tools for macromolecular structure and dynamics of the cell, positions of sub-cellular structures and distribution of metabolites and ions

Experimental and computational techniques capable of identifying individual macromolecular and small-molecule species in the cell

Time dependent three-dimensional view of the cell to follow evolution of systems

Molecular level computer simulation methods development

Computational methods to simulate, at the molecular level, the mechanisms of enzyme functions and macromolecular machines.

Multiscale computer simulation methods will lead to systems-level, prediction of the effects of molecular-level engineering

Appendix 3: MSCW Participants

Name	Institution	Phone	E-Mail	Website
Adams, Michael	Univ of Georgia	706-542-2060	adams@bmb.uga.edu	http://www.bmb.uga.edu/directory/michael- adams
Bargar, John	SLAC	650-926-4949	bargar@slac.stanford.edu	https://www- ssrl.slac.stanford.edu/mes/people.html
Booksh, Karl	Univ of Delaware	302-831-2561	kbooksh@udel.edu	http://www.udel.edu/chem/booksh/booksh.html
Brandizzi, Federica	MSU-DOE PSL	517-353-7872	fb@msu.edu	http://www.prl.msu.edu/faculty/brandizzi_federic a
Bridgham, Scott	Univ of Oregon	541-346-1466	bridgham@uoregon.edu	http://ie2.uoregon.edu/people/bridgham
Chorover, Jon	Univ of Arizona	520-626-5635	$\frac{\text{chorover@cals.arizona.ed}}{\underline{u}}$	http://www.environment.arizona.edu/jon- chorover
Crowley, Michael	NREL	303-384-6345	michael.crowley@nrel.go	http://www.nrel.gov/energysciences/biosciences/s taff/michael_crowley
Dovichi, Norm	Univ of Notre Dame	574-631-2778	ndovichi@nd.edu	http://chemistry.nd.edu/people/norman-dovichi/
Flagan, Rick	Cal Tech	626-395-4383	flagan@cheme.caltech.ed \underline{u}	http://www.che.caltech.edu/faculty/flagan_r/inde x.html
Gilles, Mary	Berkeley Lab	510-486-2775	mkgilles@lbl.gov	http://www.cchem.berkeley.edu/leonegrp/group.h tml
Grassian, Vicki	Univ of Iowa	319-335-1392	vicki- grassian@uiowa.edu	http://www.chem.uiowa.edu/people/vicki-h- grassian

Hofmockel, Kirsten	Iowa State	515-294-2589	khof@iastate.edu	http://www.ensci.iastate.edu/grad/faculty/hofmoc kel.html
Kostka, Joel	Georgia Tech	404-385-3325	joel.kostka@biology.gate ch.edu	http://www.biology.gatech.edu/people/joel-kostka
Kubicki, Jim	Penn State	814-865-3951	jdk7@psu.edu	http://www.geosc.psu.edu/academic- faculty/kubicki-james
Liao, Jim	UCLA	310-825-1656	liaoj@ucla.edu	http://www.chemeng.ucla.edu/people/faculty/jam es-c-liao
Long, Steve	UIUC	217-333-2487	slong@illinois.edu	http://www.life.illinois.edu/plantbio/People/Facul ty/Long.htm
McSweeny, Sean	Brookhaven	631-344-4506	smcsweeney@bnl.gov	http://staff.ps.bnl.gov/staff.aspx?id=85811
Smith, Jeremy	ORNL & UT- Knoxville	865-574-9635	smithjc@ornl.gov	http://www.bio.utk.edu/bcmb/faculty/Individual_ Faculty_Pages/Smith_Jeremy/Smith_Jeremy.html
Sriram, Ganesh	University of Maryland Clark School of Engineering	301-405-1261	gsriram@umd.edu	http://openwetware.org/wiki/Sriram_Lab
Thomashow, Michael	Michigan State	517-355-2299	thomash6@msu.edu	http://www.prl.msu.edu/faculty/thomashow_mich ael
Valocchi, Albert	UIUC	217-333-3176	valocchi@illinois.edu	http://cee.illinois.edu/faculty/albertvalocchi
Wall, Judy	Univ of Missouri	573-882-8726	wallj@missouri.edu	http://biochem.missouri.edu/faculty/faculty- members/wallj/index.php
Windus, Theresa	Iowa State	515-294-6134	twindus@iastate.edu	http://www.chem.iastate.edu/faculty/Theresa_Win dus