Climate and Environmental Sciences Division

BERAC update

October 1-2, 2014

G. Geernaert
BER/CESD
- Warmest southern hemisphere on record
- 4th warmest January northern hemisphere
Land & Ocean Temperature Percentiles Jun 2014
NOAA's National Climatic Data Center
Data Source: GHCN-M version 3.2.2 & ERSST version 3b
Management Update: Recent and projected FOA’s

<table>
<thead>
<tr>
<th>Funds</th>
<th>Program lead</th>
<th>Participating programs</th>
<th>Issued</th>
<th>Preapps</th>
<th>Proposals</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY14</td>
<td>ESM</td>
<td>ESM, RGCM</td>
<td>Nov 20, 2013</td>
<td>293</td>
<td>138</td>
<td>10 (panel 4/21)</td>
</tr>
<tr>
<td>FY15</td>
<td>SBR</td>
<td>ASCR</td>
<td>May 22, 2014</td>
<td>2</td>
<td>2</td>
<td>1 (Panel July 21)</td>
</tr>
<tr>
<td>FY15</td>
<td>ASR</td>
<td>ASR (ENA; NSA)</td>
<td>May 27, 2014</td>
<td>5</td>
<td>5</td>
<td>1 tbd (Nov 7)</td>
</tr>
<tr>
<td>FY15</td>
<td>TES</td>
<td>ESS (TES, SBR)</td>
<td>July 31, 2014</td>
<td>183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>ASR</td>
<td>ASR (open)</td>
<td>Aug 5, 2014</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY15</td>
<td>SBR</td>
<td>SBR</td>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Management updates: 2014 SFA and Facility reviews

<table>
<thead>
<tr>
<th>Lab</th>
<th>Program</th>
<th>Type</th>
<th>Notification</th>
<th>Review date</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLNL, multi-lab</td>
<td>ACME SFA</td>
<td>New</td>
<td>Aug 1, 2013</td>
<td>March 4-6</td>
<td>A – Jun 27</td>
</tr>
<tr>
<td>LBNL</td>
<td>ASR SFA</td>
<td>Renewal</td>
<td>Oct 2, 2013</td>
<td>April 8-9</td>
<td>Conversion to project - May 2</td>
</tr>
<tr>
<td>LBNL</td>
<td>TES SFA</td>
<td>Renewal</td>
<td>Jan 18, 2013</td>
<td>April 8-9</td>
<td>A – April 17; vision</td>
</tr>
<tr>
<td>PNNNL, multi-lab</td>
<td>ARM facility</td>
<td>Review</td>
<td>Oct 30, 2013</td>
<td>April 14-17</td>
<td>A - April 28; vision</td>
</tr>
<tr>
<td>SLAC</td>
<td>SBR SFA</td>
<td>Renewal</td>
<td>Oct 3, 2013</td>
<td>May 5</td>
<td>A - June 26</td>
</tr>
<tr>
<td>ORNL, multi-lab</td>
<td>RGCM SFA</td>
<td>New</td>
<td>Oct 11, 2013</td>
<td>May 16</td>
<td>A – July 8</td>
</tr>
<tr>
<td>PNNL</td>
<td>EMSL facility</td>
<td>Review</td>
<td>Feb 11, 2014</td>
<td>Sept 23-24</td>
<td></td>
</tr>
<tr>
<td>LANL</td>
<td>RGCM SFA</td>
<td>Renewal</td>
<td>Oct 11, 2013</td>
<td>Nov 13-14</td>
<td></td>
</tr>
</tbody>
</table>
Management updates: 2015 SFA and Facility reviews

<table>
<thead>
<tr>
<th>Lab</th>
<th>Program</th>
<th>Type</th>
<th>Notification</th>
<th>Review date</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGEE (LBNL+)</td>
<td>ESS</td>
<td>Project new</td>
<td>Sept 2, 2014</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>CDIAC (ORNL)</td>
<td>Data, ESS</td>
<td>Project renewal</td>
<td>Aug 18, 2014</td>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>ORNL</td>
<td>TES</td>
<td>SFA</td>
<td>Jan 16, 2014</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ORNL</td>
<td>SBR</td>
<td>SFA</td>
<td>Sept 16, 2014</td>
<td>April</td>
<td></td>
</tr>
<tr>
<td>ANL</td>
<td>SBR</td>
<td>SFA</td>
<td>Sept 15, 2014</td>
<td>April</td>
<td></td>
</tr>
<tr>
<td>LLNL</td>
<td>SBR</td>
<td>SFA</td>
<td>Sept 15, 2014</td>
<td>April</td>
<td></td>
</tr>
<tr>
<td>LLNL</td>
<td>RGCM, ASR</td>
<td>SFA</td>
<td>Sept 4, 2014</td>
<td>July-Aug</td>
<td></td>
</tr>
<tr>
<td>PNNL</td>
<td>RGCM, ASR</td>
<td>SFA</td>
<td>Aug 20, 2014</td>
<td>Spring-Summer</td>
<td></td>
</tr>
<tr>
<td>PNNL</td>
<td>IA</td>
<td>SFA</td>
<td></td>
<td>Spring-Summer</td>
<td></td>
</tr>
</tbody>
</table>
Management updates: 2014 - PI meetings, workshops

<table>
<thead>
<tr>
<th>Title</th>
<th>Program(s)</th>
<th>Location</th>
<th>Date in 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR PI meeting</td>
<td>ASR</td>
<td>Bolger</td>
<td>March 10-12</td>
</tr>
<tr>
<td>Mechanistic modeling of Terrestrial environments</td>
<td>SBR, TES, ESM</td>
<td>DOE/GTN</td>
<td>March 26-27</td>
</tr>
<tr>
<td>Ameriflux PI meeting</td>
<td>TES</td>
<td>Bolger</td>
<td>May 4-5</td>
</tr>
<tr>
<td>ESS PI meeting</td>
<td>TES, SBR</td>
<td>Bolger</td>
<td>May 6-7</td>
</tr>
<tr>
<td>Modeling PI meeting</td>
<td>ESM, RGCM, IA</td>
<td>Bolger</td>
<td>May 12-15</td>
</tr>
<tr>
<td>ARM LES workshop</td>
<td>ARM, ASR</td>
<td>Rockville</td>
<td>May 19-20</td>
</tr>
<tr>
<td>Molecular Sciences Workshop</td>
<td>BER-wide</td>
<td>DOE/GTN</td>
<td>May 27-29</td>
</tr>
<tr>
<td>Population dynamics workshop</td>
<td>IA / USGCRP</td>
<td>Rockville</td>
<td>June 23-24</td>
</tr>
<tr>
<td>Land Use Land Cover Workshop</td>
<td>IA / USGCRP</td>
<td>Rockville</td>
<td>June 25-27</td>
</tr>
<tr>
<td>ARM North Slope Alaska Workshop</td>
<td>ARM, ASR</td>
<td>Gaithersb.</td>
<td>Sept 10-11</td>
</tr>
<tr>
<td>Climate-energy model interdependencies Workshop– Part 1</td>
<td>ESM, IA</td>
<td>Rockville</td>
<td>Oct 28-30</td>
</tr>
<tr>
<td>ASR Fall PI meeting</td>
<td>ASR</td>
<td>Bethesda</td>
<td>Nov 17-20</td>
</tr>
</tbody>
</table>
Management updates: 2015 - PI meetings, workshops

<table>
<thead>
<tr>
<th>Title</th>
<th>Program(s)</th>
<th>Location</th>
<th>Date in 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACP workshop and Ameriflux PI meeting</td>
<td>TES</td>
<td>Wash DC</td>
<td>Jan 26-30</td>
</tr>
<tr>
<td>Climate-energy model interdependencies Workshop– Part 2</td>
<td>ESM, IA</td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>Climate-energy model interdependencies Workshop– Part 3</td>
<td>ESM, IA</td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>ARM AAF strategy workshop</td>
<td>ARM, (ASR, ESS)</td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td>ESS PI meeting</td>
<td>TES, SBR</td>
<td>Bolger</td>
<td>April 28-29</td>
</tr>
<tr>
<td>ARM/ASR Facility PI meeting</td>
<td>ARM, ASR</td>
<td>Tysons</td>
<td>March 16-20</td>
</tr>
</tbody>
</table>
CESD Retreat – July 8, 2014

Goals:

* Division-wide team building
* Multi-program CESD future priorities
CESD retreat

Initial conditions

• CESD strategic plan: observations / data analytics / process models / system predictability
• DOE uniqueness: HPC; big data; infrastructure; mission
• Mapping to USGCRP priorities: Modeling, Arctic, Drought, ..
• Recognize ongoing multi-disciplinary and/or multi-program success stories, e.g.,
 - NGEE; GOAMAZON; joint facility FOA (EMSL; JGI)
• Collaborations with other agencies

• Retreat outcomes: Priorities require multiple program commitments
CESD retreat outcomes

Topics to pursue
• Urban processes and regional climate
• Land-atmosphere interaction
• Polar environments
• Terrestrial-aquatic interfaces

Assets and issues
• Facilities and instrumentation
• Scale-aware processes, interdependencies
• Multi-scale, high-res process modeling, data assimilation
• Data: mining, storage, analytics, visualization, automation

Setting CESD priorities and investment agenda
• Existing model sensitivity and uncertainty quantification
• Discovery: missing or inadequate in prediction systems
• DOE uniqueness, agency partnerships
Intermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges

T. Jiang, K.J. Evans, Y. Deng, X. Dong

Objectives

- Evaluate the representation of atmospheric rivers (AR) within a high resolution Community Atmosphere Model (CAM4) with spectral dycore (T341 1/3 degree)
- Determine the link between AR and large scale East Asian cold surges
- Determine how well the high-resolution model captures the scale interaction of dynamical anomalies

Impact

Accomplishments

- Finer scale moisture anomalies responsible for extreme precipitation over the West Coast US can be resolved well with 1/3 degree atmosphere models
- A higher resolution global atmosphere model can capture remotely connected and differing scales of dynamical anomalies
- T341 shows the correct attribution of AR modulation by cold air outbreaks over Asia as mostly due to intermediate frequency eddies

Computational Advances:

- A present-day T341 CAM4 simulation provides a wealth of high resolution data from which to compare large and small scale dynamical anomalies
- Illustrates utility of global high-res atmospheric simulations to enable an analysis of scale interaction

Predictability of “climate change hiatus” using initialized versus uninitialized climate models

Objective
• Determine if climate models initialized with observations can improve predictability of the 1970s warming and the early 2000s hiatus, compared to uninitialized climate models.

Approach
• Using 16 CMIP models, Compare predictions for 2016-2035 from the CMIP5 initialized models with the CMIP5 uninitialized climate models. Initialize with 10 yr; then 30 yr.

Results
• Routinely (re-)initialized climate models show a 16% reduction of near-term global warming compared to the traditional uninitialized climate model projections.
• They also show increased capability in simulating past climate shifts, the early-2000s hiatus.

Globally averaged surface air temperature anomalies:
(a) 10 year initialized simulations (red) show greater warming for the 1970s shift and less warming for the early-2000s hiatus than uninitialized (green);
(b) less warming for a 30 year initialized prediction (red dashed) for 2016-2035 compared to free-running uninitialized projections (dashed blue), for the CMIP5 models.

Sea ice volume and age: Sensitivity to physical parameterizations and thickness resolution in the CICE sea ice model

Objective
- To combine age and volume analysis to understand the effects of parameterizations that are not easily distinguished in terms of ice area or volume alone.

Approach
- Combine age and volume analysis with observations to determine the impacts of parameterizations.
- Evaluate different thickness categories (anisotropic representation) to see if they resolve ITD feedback processes.
- Identify dynamic-thermodynamic feedback processes that can have counter-intuitive impacts on ice volume and age.

Impact

<table>
<thead>
<tr>
<th>Thickness Category</th>
<th>Observations</th>
<th>CICE, using the variable form drag parameterization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hunke, E. C. Sea ice volume and age: Sensitivity to physical parameterizations and resolution in the CICE sea ice model. Ocean Modelling, DOI: 10.1016/j.ocemod.2014.08.001. LA-UR-14-21531
Modeling of Arctic mixed-phase clouds depends strongly on ice crystal size distribution assumptions

Objective

- Improve model representation of processes controlling the evolution and lifetime of Arctic mixed-phase clouds.

Approach

- Compare 11 large-eddy simulation (LES) models using an Arctic mixed-phase cloud case from the ARM Indirect and Semi-Direct Aerosol Campaign (ISDAC).
- Hold ice properties and radiation constant across the models, but vary the amount of ice and how the ice crystal size distribution is represented.

Results

- Realistic representation of both ice crystal size distribution and ice amount is necessary to accurately partition liquid water and ice in mixed-phase clouds.
- Explicit bin size distribution schemes performed better than simpler bulk size distributions.

New Insights into Ice Formation in Clouds enabled by EMSL, ARM and ASR Collaboration

Challenge:
- Understand how ice crystals form from aerosol particles.

Approach and Results:
- Multi-institutional team obtained samples of particles that act as ice nuclei from central California (CARES campaign).
- Used micro-spectroscopy and chemical imaging methods to characterize the physical and chemical properties of individual particles.
- Results demonstrate that ice-nucleating particles are not distinct from other particles, and they do not represent a “needle in a haystack” challenge.
- Factors such as particle abundance and surface area may govern the ice nucleation rate and ice formation processes.

Significance and Impact:
- Disproves the traditional view that there are very few but exceptional particles in the atmosphere that can become ice nuclei.
- Cloud models should therefore account for properties of the entire particle population as well as individual ice-nucleating particles.

Participants: Stony Brook University, EMSL, Advanced Light Source at LBNL and University of the Pacific

The unseen iceberg: Plant roots in arctic tundra - NGEE

New Science

- A new publication by scientists on the NGEE-Arctic team synthesized available literature on tundra roots, and their representation in Terrestrial Biosphere Models.
- The publication highlighted several key themes:
 1. Tundra root distribution and dynamics differ in many ways from those observed in other biomes.
 2. There are strong linkages between belowground and aboveground tundra plant traits.
 3. Edaphic and environmental conditions exert important controls over tundra root distribution and dynamics.
 4. There are clear priorities for future research on fine roots in tundra ecosystems (e.g., species-specific root function and root dynamics under changing environmental conditions).

Significance

- Plant roots play a critical role in ecosystem function in arctic tundra. NGEE-Arctic facilitates a strong, iterative relationship between measurements and models to improve our understanding of the important role that roots will play in the response of tundra ecosystems to an uncertain future.

Increased carbon uptake through warming induced changes in temperate phenology

Goal
- Link ground observations of tree phenology, canopy-scale carbon fluxes (7 AmeriFlux sites), and MODIS remote sensing of phenology at a regional scale

Results
- Strong evidence for earlier onset of the growing season over the last 10-20 yr at all observation scales with rising temperatures diving earlier spring response.
- Earlier spring onset is associated with more forest uptake of C which over 20 yr resulted in the uptake of 28 million metric tones of C across the eastern deciduous forest

Conclusions
- By enhancing forest C uptake at a regional scale, shifts in phenology are a small but important negative feedback to climate change

The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP

Objective
- Construct a modeling framework with P dynamics that will improve representation of C–nutrient interactions in tropical ecosystems
- Identify the important tropical processes involving P dynamics and C–P interactions that significantly affect the C–climate feedbacks but need better understanding and quantification

New Science
- Model simulations at sites along the Hawaii chronosequence show that the introduction of P limitation greatly improved model performance at the P limited site.
- The model simulations of the Amazonian forest sites show that CLM-CNP is capable of capturing the overall trend in NPP along the P availability gradient.
- Our model experiments highlighted the importance of two insufficiently understood pathways (biochemical mineralization of organic P and desorption of secondary mineral P) that can significantly affect P availability and determine the extent of P limitation in tropical forests

Significance
- This study represents an important step forward in representing C–nutrient interactions in earth system models.
- This study identifies current knowledge gaps related to processes controlling soil P availability in tropical forests, providing guidance for future field observations of carbon and nutrient cycling.

Stimulating Bacteria to Immobilize Chromium in Groundwater

Challenge:
- Understand the interactions of iron-reducing bacteria with clay minerals to create ferrous iron, which can indirectly immobilize chromium.

Approach and Results:
- Clay-rich samples from the Hanford Site and specimen clays were bioreduced by *Geobacter sulfurreducens*, and the resulting ferrous iron was found to reduce aqueous hexavalent chromium under several temperature treatments.
- Samples were analyzed using several EMSL chemical imaging capabilities.
- Nutrient addition significantly stimulated the bacteria to reduce ferric iron; chromium was reduced as the temperature was increased.
- Reaction kinetics were determined.

Significance and Impact:
- New insights into ways to reduce the hexavalent chromium transport in groundwater.
- The kinetic parameters can not be incorporated into models used to predict the transport of hexavalent chromium.

Participants: Miami University and EMSL

Recent and Upcoming Activities at EMSL

Strategic Planning
• Draft EMSL Strategic Plan
 • Sub-plans for: Q Wing, Rad Annex, HRMAC
• Multi-scale Modeling workshop (T. Scheibe/J. Smith) – Aug 26th

Proposal Awards for 2015
• Science Theme projects – 58
• EMSL-JGI projects - 12

Science & Capabilities
• HRMAC: magnet at field (21T); spectrometer and data controls on track
• GOAmazon - Aerosol Mass Spec (AMS) deployed for Fall campaign.
• Cascade supercomputer ranked #15 (June).
• NWChem: version 6.5, > two dozen new functionalities (photo-oxidation)

Outreach and User Activities
• Significant update to EMSL web site: http://www.emsl.pnl.gov/emslweb/
• Three recent Molecular Bond issues: team projects, aerosols, subsurface.
• Virtual Tour: http://tour.pnnl.gov/emsl.html
Accelerated Climate Model for Energy

ACME is a new multi-laboratory project to develop a climate prediction model, in support of the Department of Energy’s science mission.

- Fully coupled at 15-25 km resolution, yet have advanced adaptive-mesh to resolve important regions on resolutions well below 10 km.
- Able to utilize next-generation DOE computers.

Science focus areas support energy and societal planning:

a) Improving projections of water availability
b) Projecting changes to ice sheets and sea-level
c) Estimating land-atmosphere exchange of carbon

ACME was formed from 7 multi-Lab projects, and spans 8 Labs and 6 non-Laboratory institutions. It is managed by a Council of 8 Lab scientists.
Goal: “Development of a representative, process-rich ecosystem model, extending from bedrock to the top of the vegetative canopy, in which the evolution and feedbacks of tropical ecosystems in a changing climate can be modeled at the scale/resolution of a high resolution next generation Earth System Model (ESM) grid cell.”

- Improve our understanding of precipitation, temperature, nutrient cycling and disturbance in tropical forests

“NGEE – Tropics” will:

- be a model informed field study that results in iterative refinement of process rich, scalable predictive models.
- be based on field studies in the most climate sensitive tropical geographies that provides a high scientific return on investment.
- utilize a distributed network of focused research sites.

Update:

- Launched in July 2014 with a consortium of labs lead by LBNL (Jeff Chambers and Lara Kueppers, PI)
- Vision & approach whitepaper received and approved (July)
- “Approach to measurements” presentation to BER (August)
- Scoping meeting in Puerto Rico (September)
- Phase I proposal due December 10th
- NGEE activities will be highly multidisciplinary, and provide a framework for collaboration.
A BER Virtual Laboratory

The data grid will become part of large robust work environment

- An environment where data access and computations are coupled.
- It represents the merging of observational, modeled and experimental data.
- Offers a spectrum of compute platforms that can be tailored to specific needs.
- Data fusion, discovery and intelligent search capabilities.
- Data mining and knowledge generation.
- Comprehensive visualization and analytic engines.
- Modular and scalable in design.
Integrated Data Ecosystem

Collection and Data Management
- Sensors, field and lab experiments
- Data Models
- Transport and Communications
- Data Quality and uncertainty
- Storage, provenance and discovery

Data-intensive Computing
- Architectures – persistent data to streams
- Programming environments
- Human Computer Interface

Pattern Discovery
- Descriptive statistics
- Graph analytics
- Machine Learning
- Signal and image processing

Predictive Models
- Statistical prediction, classification, and anomaly detection
- Steering discrete-events and continuous simulations

Decisions and control
- Design optimization
- Policy making (Humans)

Critical Complex Systems
Earth System Grid Federation

Nodes exist both domestically and Internationally (supports more than 40+ projects)
Enabling Integrated Earth System Research

DOE BER Data Infrastructure

Global Climate Modeling
Regional Modeling
Atmos. System Research
Env. Systems Science
EMSL
Others.

Data Center 1.0
Data Center 1.1
Data Center 1.2
Data Center 1.n

API’s and Services

External Data Centers

Virtual Laboratory Infrastructure

An Integrated Cyber-infrastructure leveraging core Office of Science resources to enable discovery, analytics, simulation, and knowledge innovation.
Thank you!

Gary Geernaert
Gerald.Geernaert@science.doe.gov
http://science.energy.gov/ber/research/cesd/