Biological Systems Science Division
Update

Todd Anderson, Ph.D.
Director, Biological Systems Science Division,
Department of Energy, Office of Biological &
Environmental Research

October 28, 2013
Update Outline

- Programmatic Actions – update
 - Reviews
 - Notices
 - Awards
- Significant activities
 - Workshop
 - KBase update
 - BRC status
- Science highlights
Programmatic Activities

Annual Bioenergy Research Center Reviews – Ongoing

(Reconfigured to online reviews)

- BioEnergy Science Center (BESC) – Oct 23-24 – completed last week
- Great Lakes Bioenergy Research Center (GLBRC) – Nov 12-13
- Joint BioEnergy Institute (JBEI) – Dec 11-12

Upcoming Activities, Meetings and Reviews of DOE National Laboratory programs

- SBIR Notice – tied to Bioenergy Research Center (BRC) intellectual property
- Genomic Science Program PI Meeting (Feb 10-12, Hyatt Crystal City, VA)
- Biofuels Science Focus Area (SFA) review (immediately after PI meeting)
- Lawrence Berkeley National Laboratory (Foundational Genomics SFA)

FY 2014 Notices

- Genomic Science Program
- Plant Feedstocks for Bioenergy

Difficult to project funding resources
Completed Programmatic Activities Cont’d

Plant Feedstocks Genomics for Bioenergy: A Joint Research Funding Opportunity Announcement USDA, DOE (DE-FOA-0000770)

Seven New Awards

- Functional Manipulation of Root Endophyte Populations for Feedstock Improvement
- Unraveling the Genetics of Two Key Biomass Traits that Differentiate Upland and Lowland Tetraploid Switchgrass Ecotypes, Colonization by Mycorrhizal Fungi and Frost Tolerance
- Genetic Control of Flowering in Switchgrass
- Pyramiding Genes and Alleles for Improving Energy Cane Biomass Yield
- Global Analysis of Epigenetic Regulation of Gene Expression in Response to Drought Stress in Sorghum

- Accelerated Development of Optimal Pine Feedstocks for Bioenergy and Renewable Chemicals Using Genome-Wide Selection
- Structural Polymorphisms as Causes of Heterosis in Populus

A joint DOE-USDA press release is in preparation
Completed Programmatic Activities Cont’d

Systems Biology Enabled Research on the Role of Microbial Communities in Carbon Cycling (DE-FOA-0000866)

Ten New Awards

M. Firestone (UC-Berk) Mapping soil carbon from cradle to grave: drafting the molecular blueprint for C transformation from roots to stabilized soil organic C

V. Orphan (Cal-Tech) Systems level dissection of anaerobic methane cycling: quantitative measurements of single cell ecophysiology, genetic mechanisms, and microbial interactions

B. Hungate (NArizSt) Multiple element isotope probes, nano-SIMS, and the functional genomics of microbial carbon cycling in soils in response to chronic climatic change

J. Banfield (UC-Berk) Multi-‘omic’ analyses of the dynamics, mechanisms, and pathways for carbon turnover in grassland soil under two climate regimes

B. Saleska (UAriz) Pathways to liberation: a systems approach to understanding carbon transformations and losses from thawing permafrost regions…..

M. Lidstrom (UWash) Systems level insights into alternate methane cycling…

K. Hofmockel (IowaSt) Microbial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming

D. Buckley (Cornell) Cross-system analysis of carbon assimilation dynamics in soil microbial communities:…

J. Zhou (U Okla) Metagenomics-Enabled Predictive Understanding of Soil Microbial Communities

D. Zak (UMich) Atmospheric Nitrogen Deposition and Microbial Mechanisms Enhancing Soil Carbon Storage

Several proposals in each Notice with linkages to KBase
Significant Activities

Joint Call for Exploratory Collaborations

New awards in Carbon Cycling and Biofuels Research

H. Kistler, (USDA ARS) Organelles promoting high level terpenoid biosynthesis in filamentous fungi. {Biofuel Production}

P. Weyman, (JCVI) Functional genomics of moss-cyanobacteria interactions in boreal forest ecosystems {Carbon Cycling}

K. Hofmockel, (Iowa State) Development of novel approaches to target microbial drivers of C cycling in soil aggregates {Carbon Cycling}

M. Hess, (Washington State) FECB: A Functional Encyclopedia of Cyanobacteria - Building the knowledge framework for an enhanced understanding of carbon and nitrogen cycling {Carbon Cycling}

S. Harris, (University of Nebraska) Engineering morphology and secretion to enhance the productivity of fungal fermentations {Biofuel Production}

M. Firestone, (UC-Berkeley) Mapping soil carbon from cradle to grave: using comparative transcriptomics, proteomics and metabolite analysis to identify the microbial blueprint for root-enhanced decomposition of organic matter. {Carbon Cycling}

M. O'Malley, (UC-Santa Barbara) Identification and Regulation of Cellulases within Novel Anaerobic Gut Fungi {Biofuel Production}

C. Hansel, (WHOI) Genome-enabled Investigations of the Role of Secreted Proteins and Reactive Metabolites in Carbon Degradation by Pure and Mixed Ascomycete Fungal Communities {Carbon Cycling}
Resolving Biological Systems at Multiple Scales

Understanding & Model development facilitates science across larger scales relevant to BER Science

- Creates opportunities for interdivisional collaboration where programs meet.

Genome Sequence

Significant Activities

Research for Sustainable Bioenergy

DOE Germantown (A-410)
October 2-3, 2013

Co-Chairs
Dr. Phil Robertson (Michigan State University)
Dr. Michael Udvardi (Noble Foundation)
Dr. Jennifer Pett-Ridge (Lawrence Livermore National Laboratory)

To understand the influence of biotic, abiotic and genetic variables and combinations of variables on long-term plant feedstock performance and the delivery of ecosystem services.

Goals:
- To identify research gaps to better understand the interconnections between sustainable bioenergy feedstocks and ecosystem services such as climate mitigation, water and nutrient conservation, biodiversity amenities, and pest regulation.
- To identify paths for developing models that can accurately predict the impact of plants, microbes, and environmental attributes on the sustainability of feedstock production and ecosystem services at appropriate geographic scales.
- To identify novel ways to link genomes and ecosystems using the tools of systems biology, genomics, and ecosystem science.
Key additions to KBase’s scientific functionality include:

- Metabolic and regulatory reconstructions for 5534 prokaryotic and 161 archaeal genomes
- Phylogenetic framework for analyzing annotated metagenomes with species trees for taxonomic abundance
- Genotype-to-Phenotype service that discovers genetic variations in plant populations and maps these to complex organismal traits

Data sets include: 925 data types

- 13085 genomes, 46,593,756 protein features
- 6202 growth curves, 521 media
- 3958 gene expression data sets, 4985 metabolic models
- 33,773 reactions, 63,479 protein-protein interactions
- 731 gene expression experiments in Arabidopsis and Poplar
- 11,000 metagenomes (>21 TBp)

Nearly 400 users registered on kbase.us

Featured webinar on KBase YouTube Channel: Variation Service: Learn to identify and visualize variants in a next-gen re-sequencing project.

Outreach: In FY13 there were 67 KBase presentations, 9 KBase workshops including BRCs, and 8 KBase Developer Bootcamps.
The DOE Bioenergy Research Centers
FY 2014 Milestones

BioEnergy Science Center (Oak Ridge National Lab)
- Validate key genes in target consolidated bioprocessing microbes and enzymes and initiate modifications to achieve improved conversion and product synthesis
- Complete sampling of poplar and switchgrass common gardens
- Initiate testing of potential thermophilic microbes in biomass conversion

Great Lakes Bioenergy Research Center (University of Wisconsin, Michigan State University)
- Begin studies of cropping systems and land use scenarios on marginal lands
- Begin translation of fundamental research on grasses to dedicated bioenergy crops
- Increase emphasis on NextGen fuels
- Evaluate lignin valorization

Joint BioEnergy Institute (Lawrence Berkeley National Lab)
- Validate function of genes for biomass traits in model plants and in biofuels production processes
- Develop tools that enable enzyme cocktail optimization for biomass deconstruction
- Engineer central metabolism in target microbial hosts to facilitate fuels synthesis
New gene discovery clarifies lignin biosynthesis pathway

Objective:
Identify the enzymatic steps in lignin biosynthesis and clarify the pathway(s).

Approach:
Use publically available gene expression databases for genes of unknown function that co-express with known lignin biosynthesis genes.

Results/Impact:
- Identified caffeoyl shikimate esterase (CSE)
- Mutants in CSE had reduced lignin with altered component structure
- Knockout mutant had 78% saccharification compared to 18% in wild-type
- New methods to intelligently alter lignin composition

Pectin and Xylan Structures are Covalently Interconnected via Arabinogalactan Proteins

Objective:
- Clarify the covalent linkages among pectin, xylans and cell wall proteins
- Current models suggest these structures are not covalently linked

Approach:
- Isolate and characterize APAP1 and its two glycoforms using proteomics, carbohydrate linkage and structural analysis

Results/Impact:
- The discovery of APAP1 provides evidence contrary to prevailing cell wall models that depict independent protein, pectin and hemicellulose polysaccharide networks
- Pectin, a primary cell wall component, has now been shown to be important in secondary cell wall structure, and thus recalcitrance
- The existence of APAP1 in plant walls has significant consequences for understanding of plant wall architecture and function, and potentially for engineering plant cell walls for improved agronomic and renewable biomaterial uses

Genetically Engineering Yeast to Produce Higher Yields of Advanced Biofuels

Objective:
- Genetically engineer yeast to produce advanced biofuels and overcome feedback inhibition of fatty acid production

Approach:
- Overexpress fatty acid production machinery by replacing native promoters with strong constitutive promoters
- Re-route fatty acyl-CoA away from triacylglycerols and breakdown products to form biofuel-like products with use of an appropriate tailoring enzyme (pink)

Results/Impact:
- Platform strain developed for fatty acid overproduction
- Tailoring provided highest recorded titers of advanced biofuels in yeast: 400 mg/L free fatty acids; 100 mg/L of fatty alcohols; 5 mg/L of fatty acid ethyl esters

Runguphan, W., Keasling, J.D., Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. *Metabol. Eng.* (2013)
A method to fine-tune transcription and translation control in bacteria

Objective:
Accurately predict expression levels of multiple genes introduced in engineered bacteria.

Approach:
Researchers synthesized thousands of combinations of promoters and ribosome binding sites and measured DNA, RNA, and protein levels using next-generation sequencing and fluorescent cell sorting.

Results/Impact:
Most transgenes behaved as predicted but a significant fraction did not. This facile method to measure gene expression controlled by thousands of regulatory sequences will allow precise genome engineering of bacteria for multiple purposes such as the efficient production of biofuels.

Radiochemistry and Imaging

Objective:
Use C-8, C-9 and C-10 dicarboxylic acids labeled with 11C and 14C to test the hypothesis that azelaic acid is mobile in plants.

Approach:
[11C]azelaic acid was applied to a tobacco leaf to examine its short term movement (50 Min) and [14C]azelaic acid was applied to *Arabidopsis* for 24hr distribution.

Results/Impact:
Understanding the chemical mechanisms mediating plant defense is important in developing robust plants for agriculture and biofuel production.

Carbon-11 Labeled Tracers

- **C-8 suberic acid**
- **C-9 azaleic acid**
- **C-10 sebacic acid**

In vivo imaging with [11C]azelaic acid show movement in the leaf in 50 min.

Imaging with [14C]azelaic acid shows movement through the whole plant in 24 hrs.

Collaborative studies with Kachroo et al., (2013) using [14C]azelaic acid from BNL identified an intricate regulatory feedback loop regulating SAR.

Objective:
To identify critical differences between solution and crystal electronic structures of a metallo-protein that help explain its behavior in vivo.

Approach:
Use iron K-edge X-ray absorption spectroscopy (XAS) at beamline 9-3 at the Stanford Synchrotron Radiation Lightsource (SSRL) in combination with density function theory calculations to show that oxyhemoglobin is in a ferric-superoxide form in solution and a ferrous-dioxygen form in crystals.

Results/Impact:
Through this research, XAS is shown to provide valuable information for understanding the behavior of the active site of metalloproteins. Many systems being studied in BER’s biological research involve such proteins and this new capability will help enable progress in areas from biosystem design to biogeochemistry to carbon cycling.

Top: The Fe pre-edge XAS for solution and crystalline oxyhemoglobin and deoxyhemoglobin. Bottom: Schematic showing the electronic change in crystal and solution forms of oxyhemoglobin.

Objective: Characterization of carboxysome proteins from cyanobacteria for detailed structural and functional characterization.

Approach: JGI researchers synthesized bacterial genes from \textit{G. violaceus} and \textit{T. elongatus} carboxysomes enabling the expression, crystallization and determination of crystal structures at Angstrom-scale resolution.

Results/Impact: Demonstration of the use of gene synthesis for structural characterization not only of the native protein but also of deliberately “designed” alterations, vastly enhancing functional analyses.

Selected JGI Publications

31 publications since the last BERAC meeting

JGI Publication Highlights: http://www.jgi.doe.gov/News/pubs.html
Systems science to meet DOE mission needs in bioenergy, climate and the environment.

http://science.energy.gov/ber

Thank you!

http://genomicscience.energy.gov