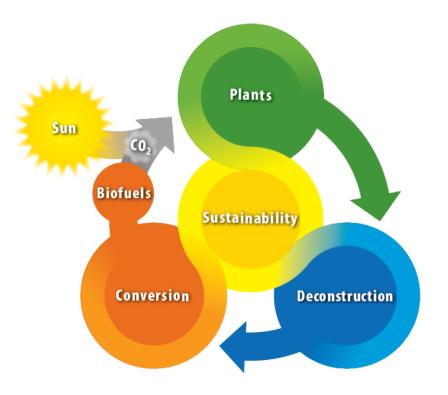


BER Advisory Committee Meeting


Timothy Donohue Director, Great Lakes Bioenergy Professor of Bacteriology University of Wisconsin-Madison

October 15, 2012

1

Great Lakes Bioenergy

Goals

- × Improve relevant plant traits & sustainable agronomic systems
- Improve energy conversion of cellulosic biofuels production

Our Members

- X International team of 10 universities, two national labs & one company
- × UW-Madison (lead), MSU (major partner)
- × ~400 scientists, students & staff, including
 - 78 Faculty
 - 65 Graduate Students
 - 64 Post Docs
 - 46 Scientists
 - 80 Technicians
 - 76 Undergraduates
 - 45 Support Staff

2012 GLBRC Retreat

Great Lakes Bioenergy Collaborators

BER (projects, workshops, scientific advisory board)

DOE Bioenergy

Research Centers

DOE Systems Biology Knowledgebase

Host Institutions (farm to bench to combustion)

External (DOE, USDA)

Products of Research Integration

Biofuel synthesis from corn stover hydrolysates

Cropping Systems

Site/Soil Type Crop/Seed/Row Plant/Harvest Date Fertilizer/Herbicide Season/Weather

DOE Bioenergy

Research Centers

Pretreated Biomass

Cellulose Hemicelluloses Lignin Plant Cell Residue Hydrolysate

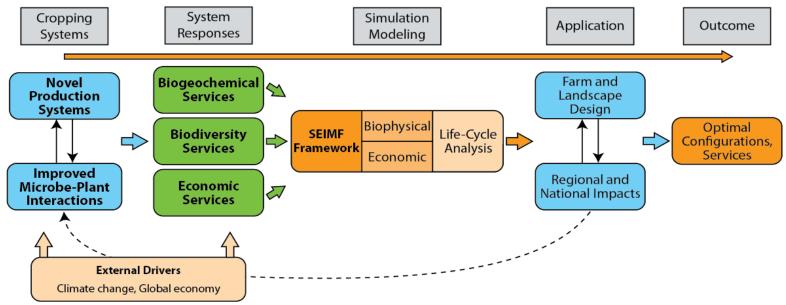
Total CHO C-5 & C-6 Sugars Amino Acids Organic Acids/Amides Ammonia/Phosphate ~30 Metals/Inorganic Ions **Biofuels**

Hydrolysate Inputs Transcripts Targeted Metabolites Excreted Products Fuel Input/Output COD Microbial Growth

Data Management

Sustainability

Goals:


- Discoveries to design sustainable biofuel production systems
- Model alternative biofuel systems at field to regional scales

Objectives:

- **Economic** basis for farmer, refiner & policy makers decisions about what to plant where & when
- Environmental climate mitigation, water, nitrogen conservation & delivery of biodiversity services
- × Social energy and food security

Sustainability research roadmap

X Cropping Systems

Productivity & rhizosphere communities of a range of cropping systems

X System-Level Responses to Potential Crops

- C, N, water balances & impacts on pest suppression & pollination
- Predict factors that will impact farmers' acceptance

× LCA Simulation Modeling & Integration

- Parameterizing and testing local models
- Begin spatially explicit extrapolations to regional & national scales

7

Research Highlights: Sustainability

Land to support biofuel cropping systems

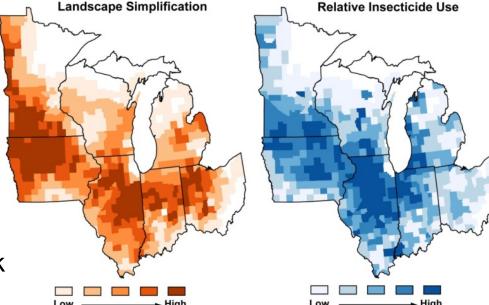
 System responses to land use changes

Carbon debt of converting CRP to crop land

X Cropping system impacts payback time

Value of crop perenniality & diversity

- × C & N benefits of perennial cropping systems
- X Beneficial insects offset ~ \$240 M/yr in chemical pest control



DOE Bioenergy Research Centers

Plants

Goal: develop productive energy crops that can be easily processed into fuels

×Alter lignin to reduce recalcitrance

Increase energy density of biofuel crops

Manipulate hemicelluloses for improved processing & energy yield

Improve crop plant properties for sustainable bioenergy production

Research Highlights: Genomeenabled improvement of plants

10

GREAT LAKES BIOENER

×Gene discovery in model plants

EST deep-sequencing from tissues enriched in desired activity (JGI)

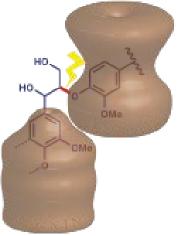
Examples:

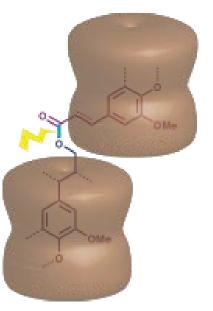
- Lignin Alter composition & lower energy needs for release
- \times Oils Increase energy density of vegetative tissue
- × Hemicelluloses Change $C_5:C_6$ ratio to improve conversion

DOE Bioenergy Research Centers

Altering lignin to decrease recalcitrance

Lignin today: Weakest bonds cleave at ~170°C/alkali or >190°C/acid




Lignin's future: Weakest bonds cleave at <100°C (replace backbone ethers with esters)</p>

Kesult: Less energy to depolymerize

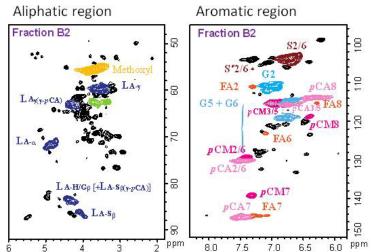
Ferulate monotransferase (FMT): one key to producing "Zip" lignins that cleave easier

Research Highlights: Identifying an FMT Gene

- **Approach:** EST sequencing of Angelica sinensis roots (~2% coniferyl ferulate)
- × FMT candidate genes
- Recombinant proteins
 Expected activity with ferulate (+), *p*-coumarate (-) & other substrates

Produce "Zip" lignin in energy crops

 \times FMT active *in planta* \times Poplar field trials ongoing \times Evaluating in other crops



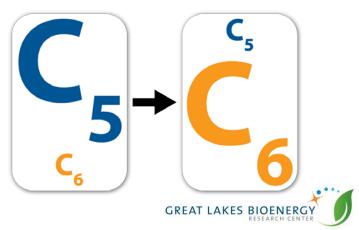
Research Highlights: Improved Plants¹

www.glbrc.org

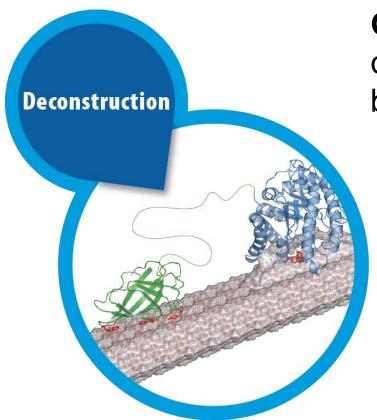
New lignin varieties

- × Rapid/quantitative NMR imaging (ARRA)
- imes Adjust flux to other lignin precursors
- imes Simplify subunit composition
- imes Improve lignin release & valorization

DOE Bioenergy


Research Centers

NextGen fuels in vegetative tissues


- Increase energy density of plant biomass
- × Plant-derived oils & biodiesel substitutes
- × Moving into energy crops & combustion trials

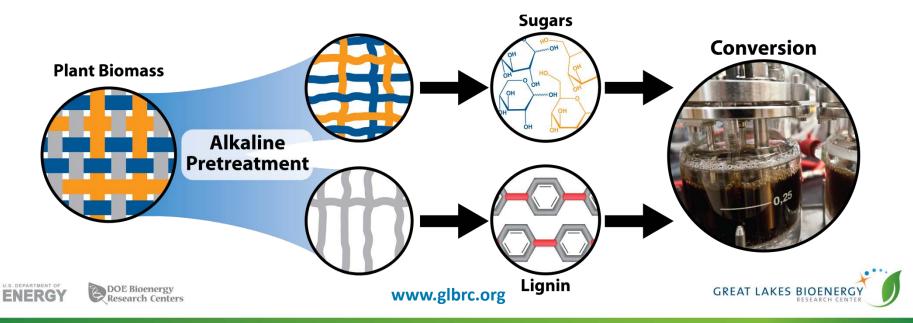
Improved hemicelluloses

Identify genes to increase C₆ content
 Improve deconstruction/conversion efficiency

Deconstruction

Goal: improve release of monomers or short oligomers from lignocellulosic biomass

- Improve alkaline pretreatments to open plant cell wall polymer matrix
- Improve enzyme cocktails to release useful intermediates

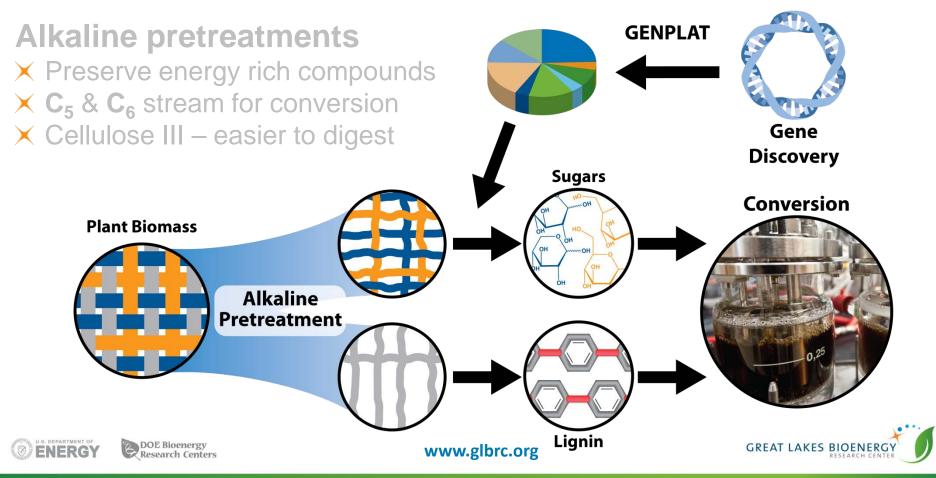


Research Highlights: Pretreament advances

15

Alkaline pretreatments

× Preserve energy rich compounds × $C_5 \& C_6$ stream for conversion × Cellulose III – easier to digest



Research Highlights: Improved enzymes

Improved enzyme mixtures

GENPLAT – HT, higher SA, enzyme sets
 Lower energy & cost of providing enzymes
 D feedeteck, or by drob setal limiting entropy of the setal seta setal setal seta setal seta setal setal

× ID feedstock- or hydrolysate-limiting catalyst

Research Highlight: Added value from 17 lignocellulose

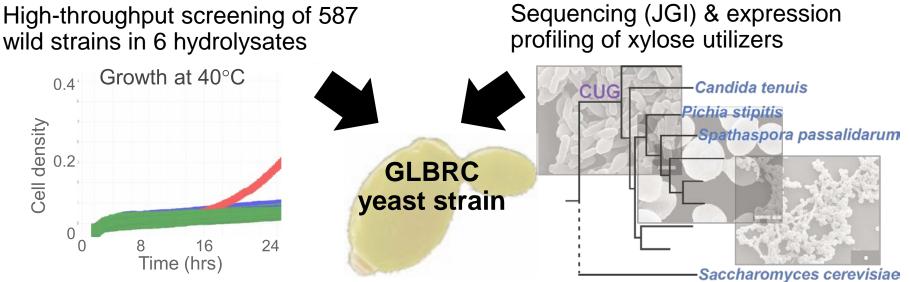
Pre-treatment advance improves energetic/economic sustainability

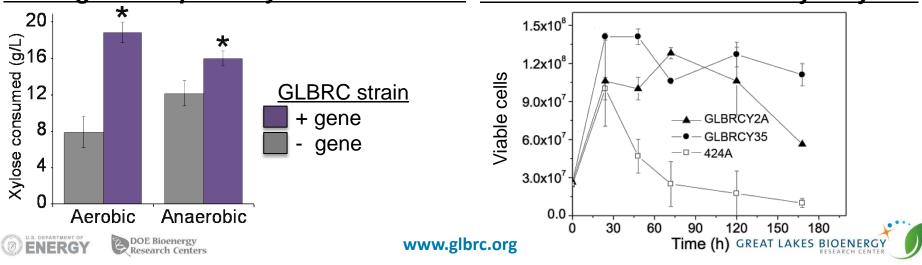
- \times Potential lignin stream for fuel & co-product synthesis
- × Recover additional energy/add value to lignin fraction
- × Evaluating recovery, complexity & conversion strategies

Conversion

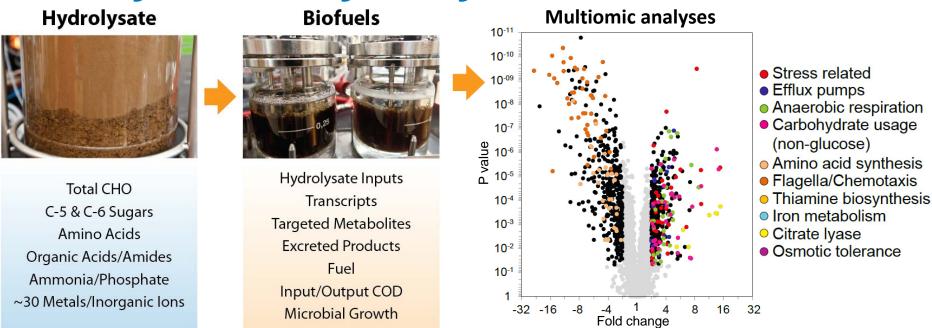
Goal: overcome barriers in converting lignocellulose products into biofuels & valuable co-products

Improve efficiency of biomass-toethanol conversion


×Engineer routes to NextGen biofuels



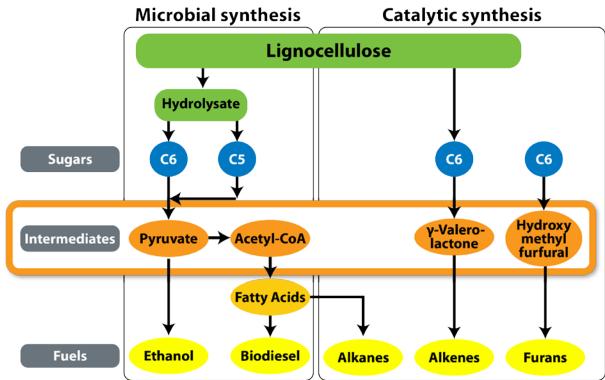
Research Highlights: Genome-enabled yeast improvement


19

Novel genes improve xylose metabolism Evolve stress tolerance to hydrolysate

Research Highlights: Multi-omic analyses of hydrolysate fermentation

Hydrolysate factors (osmolytes) aid growth


Amino-acid depletion & concomitant ATP demand of multiple stresses arrests *E. coli* growth in corn stover hydrolysate

× Regulatory strategies to improve fermentation performance

20

Research Highlights: Key intermediates for biofuels

Microbial fatty acids yield alkanes by catalytic decarboxylation of biodiesel by biological condensation with alcohols
 γ-valerolactone yields alkenes without exogenous H₂
 Ionic liquids produce sugars (for fermentation) or furans (for fuels)
 Producing high value co-products or fuels from lignin aromatics

U.S. DEPARTMENT OF ENERGY DOE Bioenergy Research Centers

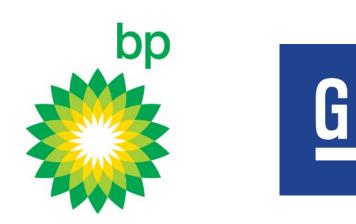
Partners in transferring advances to ²² private sector

Moving GLBRC Discoveries to Products

Patent landscapes (Law students, WARF, MSU Technologies)
 De-risking & economics (MBI, Business & Graduate Schools)
 Sponsored research (non-DOE funds) to improve invention

Technology Transfer (WARF/MSU Technologies)

Evaluate invention disclosure reports (IDR)
 Patent & commercialize (options, licensing, start ups)



Industry perspective on our Scientific Advisory Board

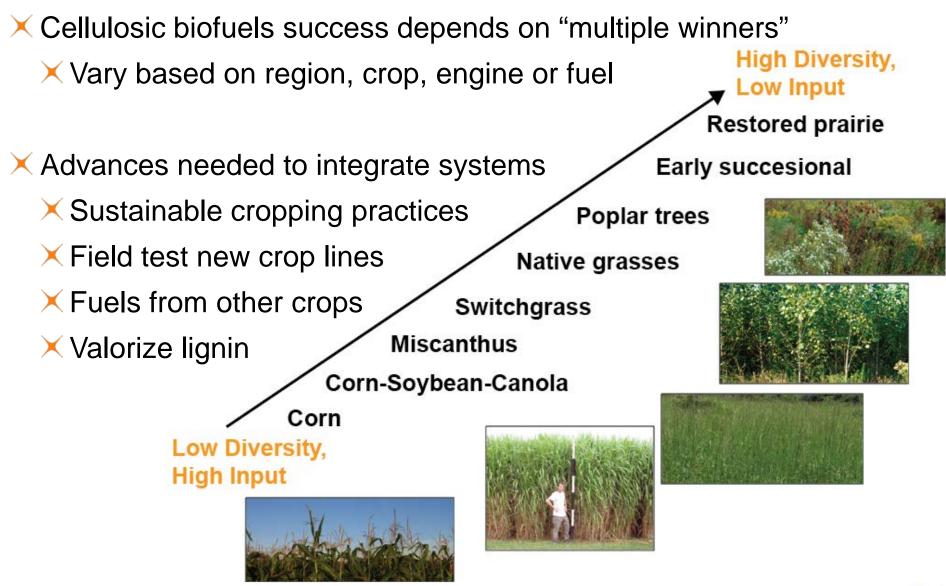
23

Education and Outreach

- ×Bioenergy STEM content
- \times Informing, inspiring & training future leaders
 - Undergraduates

OOE Bioenerg

search Cente


- Graduate students
- Post-docs
- K-12 student & teacher programs
- ×Foster development of energy literacy
- Provide science content for citizens, stakeholders & policy makers

Future Challenges & Opportunities

