Climate and Environmental Sciences Division

G. L. Geernaert
Climate and Environmental Sciences: packaging, culture
Platforms for science integration

- Observational Infrastructure
 - AMSL
 - IFRC
 - ARM
 - CDIAC
 - ESG
 - Ameriflux

- Community Models
 - ESG
 - CESM components
 - System integration
 - Computing Numerics Resolution
 - Extremes Thresholds Tipping points

- Community Data Infrastructure
 - PCMDI
Interdisciplinary Science Projects

• NGEE
 – Globally important
 – Climatically sensitive
 – Relatively unstudied

• ARM / modeling
 – Weather/climate/cal-val
 – Extremes events 3D
 – Clouds/aerosols/ppt

• CESM / societal dimensions

May 23: Hook echo at SGP
Management updates – facts/figures

• FOA’s
 – Jan2012: SCIDAC modeling: 9 rec’d; 3 selected
 – Jan2012: TES: 141 rec’d; 11 selected
 – May2012: Ameriflux: 4 rec’d; 1 selected
 – May2012: RGC/ASR: 46 rec’d, 5 selected
 – May2012: EASM proposals due - w/NSF, USDA
 – Jun2012: ASR: 109 Rec’d; 15-20? to be selected
 – Aug2012: TES FOA to be issued
CESD meetings/workshops

PI Meetings:
- ASR: March 12-16, 2012
- TES: April 23-25, 2012
- Subsurface: April 30- May 3, 2012
- EASM PI meeting: July 9-11
- ARM science board meeting: Aug 22-23
- SCIDAC PI meeting: Sept 10-11

Workshops
- Root modeling workshop: March 7-9
- TES Experiment-model fusion workshop: March 19-21
- NGEE tropics: June 4-6
- Integrated water cycle: September 24-26, 2012
- ARM science strategy workshop US/EU: November 13-16
SFA/CA - triennial reviews

SFA triennial reviews this FY:

<table>
<thead>
<tr>
<th>Facility</th>
<th>Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNL climate</td>
<td>Nov 2010</td>
<td>accepted</td>
</tr>
<tr>
<td>PNNL SBR</td>
<td>March 2011</td>
<td>accepted</td>
</tr>
<tr>
<td>LANL modeling</td>
<td>July 2011</td>
<td>accepted</td>
</tr>
<tr>
<td>ORNL TES</td>
<td>April 2012</td>
<td>accept/rev</td>
</tr>
<tr>
<td>ANL SBR</td>
<td>May 2012</td>
<td>accepted</td>
</tr>
<tr>
<td>ORNL SBR</td>
<td>May 2012</td>
<td></td>
</tr>
<tr>
<td>UCAR CA</td>
<td>June 2012</td>
<td></td>
</tr>
<tr>
<td>LLNL SBR</td>
<td>June 2012</td>
<td></td>
</tr>
<tr>
<td>PNNL ASR/model</td>
<td>Aug 2012</td>
<td></td>
</tr>
<tr>
<td>LLNL modeling/ASR/IA</td>
<td>Sept 2012</td>
<td></td>
</tr>
</tbody>
</table>
Science Highlights

- ARM, aerosols, and CAM5
- Snow albedo
- Ocean warming and sea level rise with RCP’s
- Dynamic ecology
- Subsurface sciences
ARM campaigns

- Permanent
 - Azores install

- Mobile
 - 3: Oliktok FY12-15+
 - 1: TCAP FY12
 - 2: MAGIC FY13
 - 1: GOAMAZON FY14
Aerosol First Indirect Effects on Non-Precipitating Low-Level Liquid Clouds

CAM5 passes tests at ARM Sites

Chuanfeng Zhao (LLNL), Stephen A. Klein (LLNL), Shaocheng Xie (LLNL), Xiaohong Liu (PNNL), James S. Boyle (LLNL), and Yuying Zhang (LLNL)

Hypothesis and approach

More aerosols lead to higher cloud albedo

- Quantify Aerosol First Indirect Effect (FIE): aerosol amount vs cloud liquid effective radius
- CAM5 CAPT forecasts, using 2008-2010 data

Results

Fig. 1 Droplet size decreases with particle number. FIE at NSA lies between 0.10 and 0.25, within the range calculated from numerous observation studies.

Conclusions

- CAM5 simulates aerosol FIE as observed.
- FIE is sensitive to aerosol and LWC.
- The overestimation of aerosol cloud effects in CAM5 found by other studies may be a problem from 2nd or semi indirect effect rather than FIE.

EMSL Capabilities Help ASR-Funded Scientists Understand the Formation, Growth and Longevity of Secondary Organic Aerosols

- **Objective:**
 Determine if Secondary Organic Aerosols (SOA) form and grow in accordance with the assumptions of current atmospheric models

- **Approach:**
 Using Single Particle Laser Ablation Mass Spectrometer II (SPLAT II), the team examined particles and reactions produced by oxidation of alpha pinene by O₃ and NO₃ radicals

- **Results/Impacts:**
 Particles became seed particles that lead to the formation of SOAs
 Resulting SOAs are quasi-solids that persist in the atmosphere
 Aerosol models might to be reformulated to account for longer lifetimes

Snow Albedo Reduction by Black Carbon

Objective:
• Black carbon significantly increases snow melting?

Approach:
• Laboratory: BC-laden snow
• Measure albedo, BC loading, snow grain size
• Compare with field observations
• CESM / SNICAR (Snow Ice and Aerosol Radiative model)

Results/Impacts:
• Snow albedo reduction is comparable with SNICAR predictions
• Larger snow grains cause greater BC-induced albedo reduction is greater for larger snow grains, indicating positive feedback as snow ages

Spectrally weighted snow albedo for three snow grain sizes. Dots = experimental results; Shaded bands = range from SNICAR model
Human induced global ocean warming on multi-decadal timescales

Objective

- Examine the possible causes of observed ocean warming (since 1960) in light of recent bias corrections to historical in-situ temperature measurements (surface to 700 meters)
- Explore the impacts of key uncertainties on the detection and attribution (D&A) of upper ocean warming

Approach

- Collaboration with three leading observational teams (NOAA, Australian, and Japanese), each of which treat observational uncertainty very differently
- Using well-established D&A techniques, the warming pattern or “fingerprint” of the CMIP3 multi-model ensemble is compared to observations and estimates of natural variability
- Systematically test how model and data uncertainties impact D&A conclusions, including incomplete observational coverage, simulation drift removal strategies and technical choices in the application of the D&A method

Impact

- Evidence of human induced ocean warming is substantially strengthened by the comprehensive nature of this study

Relative outcomes of climate change mitigation related to global temperature versus sea level rise

Objective
- Perception is that climate mitigation significantly reduces rate of sea level rise.
- The objective is to quantify sea level rise rate due to mitigation problem.

Approach
- Analyze RCP scenarios run with CCSM4 from 2006 to 2300
- Calculate full ocean heat content and relate to the thermal expansion contribution to sea level rise
- Calculate total sea level rise due to thermal expansion and contributions from glaciers and ice sheets

Impact
- Assume stabilized global temperatures
- Sea level rise continues for next few hundred years, but it can be slowed down.

Thermal expansion (red line); Total SLR level two methods (green, orange lines) rise from two methods (green line and orange shading)

Including photoperiod improves model representation of global carbon cycle

Objective:
Understand the competing roles of temperature and photoperiod on photosynthetic activity in a changing climate

Approach:
Grew 23 tree species under nursery conditions with controlled temperature and photoperiod. Used CLM-4.0 to evaluate the impact of declining photoperiod

Results/Impacts:
• Warming climate is projected to extend growing season and primary productivity
• This study finds that declining photoperiod (i.e., autumn) reduces photosynthesis even as leaves remain viable
• Including photoperiod seasonality of photosynthesis in CLM reduces modeled global gross primary production by 2.5%

Management – next 6-12 months

• Increasing the science value of SFA’s wrto community models
• Advancing a DOE community of climate science users
• Building a community of agencies for our community platforms
Thank you!

Gary Geernaert
Gerald.Geernaert@science.doe.gov
http://science.energy.gov/ber/research/cesd/