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”’Math advances are essential for the exponential performance increases that will drive

scientific discovery through computations” — David Brown (Presentation for ASCR Advisory
Committee, Washington D.C. February 27, 2007)
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e Mimetic Finite Difference Methods
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— Discrete Calculus
— Diffusion Equation, Maxwell’s Equations
— Lagrangian, Free-Lagrangian and Arbitrary Lagrangian-Eulerian
Hydrodynamics
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— Closure Models for Multimaterial ALE Methods

e Outreach
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What are mimetic methods ?

Methods that mimic important properties of underlying
geometrical, mathematical and physical models.

Geometry (material interfaces)

Conservation Laws (modeling flows with strong shocks)

Symmetry Preservation (inertial confinement fusion program)

Positivity and Monotonicity Preservation (density, pressure, concentration)
Asymptotic Preserving (radiation hydrodynamics), Long-Time Integration
Duality Properties of Differential Operators (Solvers)
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History of the Project

e Discrete Vector and Tensor Analysis - Discrete Calculus

— Discrete scalar, vector and tensor functions on wide class of
grids

— Discrete analogs of differential operators like div, grad, and
curl

— Discrete analogs of the theorems of the vector analysis:
Gauss’, Stokes’, orthogonal decomposition (Hodge).

— Most of PDE’s are formulated in terms of divergence,
gradient and curl.

— Given discrete analogs of these operators one can discretize
wide class of PDE’s ( many continuous results hold in
discrete case. )
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History of the Project

Properties of the Mimetic Discretizations for Diffusion Equations

Complex Three-Dimensional Geometry

Arbitrary Coordinate Systems (Cylindrical, Spherical)

Strongly Discontinuous Tensor Conductivity

Non-Smooth Structured and Unstructured (General Polyhedra), and AMR
Meshes

Symmetric Positive-Definite Linear Systems — Effective Solvers
Second-order Convergence (New Theory), Accurate Fluxes

Applications

» Los Alamos
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History of the Project

e Mimetic Discretizations for Maxwell’s Equations

— Complex Three-Dimensional Geometry

— Strongly Discontinuous Tensor Permitivity and
Permeability.

— Non-Smooth Structured and Unstructured Grids

— Free of Spurious Solutions, Divergence-Free
Conditions are Satisfied Exactly

— Stable, Second-Order Convergence, Accurate
Electric and Magnetic Fields

2 .‘g Z AaAsC > Los Alamos




Optimization of the gravity-pour casting processes

The computational domain and grid (200K tets); the blue region is the graphite
cylinder, and the red region is free space - left.

The average of the Joule heat in the graphite cylinder over a cycle of the
external field; this is the effective heat source that is used to model the heat
conduction - right.
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History of the Project

e Lagrangian, Free-Lagrangian and Arbitrary
Lagrangian-Eulerian Hydrodynamics

— Conservative finite-difference methods in 3D and on

unstructured grids
— New advanced artificial viscosity for multi-dimensional

shock-wave computations
— Elimination of unphysical grid motions (hourglass, artificial
vorticity) due to Artificial Null Spaces of the discrete

operators
DIVA=0s4 A=CURLB, GRADp=0+% p=const

— Symmetry (geometrical) preserving methods

\
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Lagrangian Hydrodynamics — Spatial Symmetries and
Curvilinear Meshes — (r, z) Geometry
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Lagrangian Hydrodynamics — Artificial Viscosity
Artificial Viscosity is Required for Simulations of Shocks
Mesh for Noh Problem at ¢t = 0.6
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Arbitrary Lagrangian-Eulerian (ALE) Methods

ALE Methods — grid movement is arbitrary and can be used to
improve robustness and accuracy

Three Main Stages: Lagrangian, Rezone, Remap

ALE.INC. code results - ALE20 - 81x81 mesh
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Arbitrary Lagrangian-Eulerian Methods
Examples of ALE INC. Calculations

ALE.INC. - Dukowicz Pb - ALE20 Density
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Free-Lagrangian Methods

Media is represented by set of points, with fixed in time mass.
Points (Particles) are moving with material
Connectivity between these points is not fixed, but varies with time —

Voronoi tessellation
Stencil used in discretization is defined by connectivity.

Time: 8.0

NS

National Nuclear Security Administration

Rayleigh-Taylor results using difference method.
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Current Research Highlights

e Mimetic Finite Difference Method - Diffusion Equation -
Generalized (Curved Faces) Polyhedral Meshes

e Discrete Maximum Principle

e Multimaterial Arbitrary Lagrangian-Eulerian Methods

\
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Mimetic Finite Difference Method - Diffusion

Equation - Generalized Polyhedral Meshes
DIV = Q"

e The MFD method is locally conservative, 2nd-order accurate for p" and at
least 1st-order accurate for u” on generalized (curvilinear faces) polyhedral
meshes (including AMR meshes). Its practical implementation is

surprisingly simple.
{"E‘-“-Qt .>—
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Key elements of new methodology

e The patch test for element £ with faces f;:
(KVpH", GME = / p'(DIV G") pdV — / p'G" - 7dS
E oF

where p! is a linear function and

# faces
[F" GMp= ) Mgy FfG}

1,7=1

e The matrix My is easily computed from geometric
parameters of £ and is not unique.
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MFD method: generalized polyhedral meshes
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e The mixed FE method does not converge on randomly perturbed meshes.
e The new MFD method has the optimal convergence rate.
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MFD method: theoretical results

Our theoretical results include:

1. For generalized polyhedral meshes we proved the optimal error estimates in
mesh dependent L,-norms:

H‘pexact . ph”' S C h2, |||uewact . uhHl S C h.

2. We developed a posteriori error estimates for generalized polyhedral meshes.

3. We found and described a rich family of the MFD methods (e.g., a
6-parameter family for hexahedral meshes).

4. For simplicial meshes, we proved convergence of an explicit flux version of
the MFD method. It results in a cell-centered discretization.

\
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Monotone finite volume method

1
Zug-ne:/de, u’;:—/uds.
T |€| e
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Nonlinear two-point flux formula:
h h h h h h h
U, Ne = A(pv17 pv2) pxl_B(pvl’ pv2) p:Jc2

To compute p; and p, , we use
either

e linear interpolation or
e inverse weighting interpolation,

—1
h h |wT o 'U1|
Py, = prTwT’ wr = — v
>4 Tlgjl |mT/ 'Ul|
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Monotone FV method: comparison

MFE method MPFA method nonlinear FV method

,,,,,, 3 s}
HHHHHHH Q(Zﬂ,y) — 1 8 < IE,.’y < ]
> <F<§j<]> 0 otherwise.

[“"sz P XA XXX XY

Location of negative values of ph

e The diffusion tensor is anisotropic (ratio of eigenvalues is 200:1) and varies smoothly in space. The maximum
principle implies that the continuum solution is positive.
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Monotone FV method: results

1. We proved monotonicity of the nonlinear FV method for stationary diffusion problems.

6=-n/6 6 =16

S
2. We improved stability of ey
the method for problems with T
sharp gradients. ﬁl e Z = e

k=1 K=1

3. We developed a new monotone non-linear FV method for shape-regular polygonal meshes and
isotropic diffusion tensors.

kl/k’2 =10
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Discrete Maximum Principle
Constrained Quadratic Optimization Approach

divAgradu =0 inQ, u =+, iNn9Q2 — max~vy < u < min
8 K 897_ _897

Dirichlet functional
D(u) = /Q(A - gradu, gradu)dV m&n D(u)

Triangular mesh, nodal discretization (piece-wise linear finite elements)

Discrete gradient

(U1 +U2)(y2 —y1) + (Ug + U3)(y3 — y2) + (U3 + Up)(y1 — vy3)
2V

GRAD(U) =

(U1 +Ug)(wg — 1) + (Ug + Uz)(wg — x2) + (Ug + Uy )(x1 — x3)
2V

GRADI(U) =

Discrete Dirichlet functional - y .
DI0] = 3 [(awxGRADF(U) + azyGRADY(U)) GRADF(U)+
T

(anyRADQ_,Q(U)+anyRAD%(U)) GRAD?F(U)] Vo,

Constrained Quadratic Optimization
min D[u] ,maxy < Up < min~y

Up o2 ~ 90
f;‘f‘:’-.‘-; \
| VA [« 3: fé'-"?;h_;:" /"
NS A AsC > Los Alamos
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Maximum Principle - Optimization

bounded conser. unbounded

Convergence study

o \ ﬁ)
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Closure Models for Multimaterial Arbitrary
Lagrangian-Eulerian Methods (ALE)

e Lagrangian stage — Solving Lagrangian equations
e Rezone stage — Changing the mesh

e Remap stage — Conservative interpolation from
Lagrangian to rezoned mesh

e Material interfaces may not coincide with mesh faces

e Mixed cells - cells which contain more than one
material

Security Administration

\
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Multimaterial Lagrangian Hydro - Closure Models

e Single velocity for all materials - one velocity per node

e Each material has its own mass (density) and may have its own internal
energy and pressure

e Each cell (including mixed cells) has to produce force to its vertices - one
pressure to be used in momentum equation

e Closure model - how to produce this pressure and advance in time internal
energy and density for each material

L A
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Mixed Zone Models - Classes of Models

Two Classes of Models

e Pressure Equilibrium — Pressure Relaxation (Explicitly enforced)
e Modeling Sub-Cell Dynamics

Mixed Zone Models - Design Principles

o If all materials in mixed cell initially have the same pressure — it is
supposed to stay this way — preservation of contact

e Pressure Equilibrium — Pressure Relaxation
(after some transition time pressures in mixed cells have to equilibrate)

e Conservation of Total Energy

S E AsC Los Alamos
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Mixed Zone Pressure Equilibrium (Relaxation) Models
Pressure relaxation model :

1 1 1

1
+1 et 1 + . | - L
p, 24+R, 2=p""2, R. 2 relaxation term, i—material index, n—time index

1

Tipton’s model (R. Tipton (LLNL) - unpublished notes, 1989)
Assumption — Isentropic
dS;/dt = 0 — dP;/dt = (OPi/0p:)g, dpi/dt = —p; c; (dV;/dt)/V;

n—l—% n n+% n n ny 2 ”+% n
D, = P; + <5t/2> dpz/dt — D, =P, — P; (Cz) 5‘/1 /‘/z

Relaxation Term Resembles Viscosity
R, = —l; pic; (divu), , (divu), = (1/V;) (dV;/dt)

il
R,L.+2 = —pl' " (L"/56t) (1/V)sV* T L™ — characteristic length
Closure Model

1

n+i 1 n+i n
pr—pl (e L+ L /(s oV, 2 vt =prte, S sy = s

NS EZSL 7 AasC > Los Alamos 27



Sub-cell Dynamics Approach to Closure Models

O

t" Le I e R

e Each material can have it is own pressure

e There is no independent velocity of the interface — how to estimate it? « ; — interface velocity — acoustic
Riemann solver

ur = [(pre1)uyr + (p2c2) ug + (p1 — p2)]/(p1c1 + P2 c2)
Different choices for ., u5 are possible
e How to compute one pressure to be used in momentum equation?
e How to conserve total energy?

Each material has its own ”p dV'” equation
mZ- d&‘i/dt = —p,L' d‘/:L/dt
Conservation of total energy argument is used to derive one pressure in mixed cell:

de

(i) == iy Y 5
\
kf‘“_ g A
F VAT A Z \ .
S& ,g,g:%ﬂ a3 Los Alamos
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Sub-cell Dynamics Approach to Closure Models

Questions:

e How to define dV,;/dV ?
e What to do if AV = 0?
e What to do if some of dV;/dV have different signs?

In this case averaged pressure can be negative even if all p; are positive —
not an average.

Design Principles
Find 3, ~ dV;/dV,suchthat1 > 3, > 0and > 3, =1

Having 3;, we define dV; = 3, dV, and therefore

dV; dV dVv
Zdt — dtozﬁizﬂ’ pZZﬁz‘pi

ALV A Pt /\‘
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Example of Rayleigh-Taylor Calculation
LANL ASC Code-FLAG

Cells density

Eulerian=Lagrange+Remap; Interface Reconstruction — Mixed cells

\
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Example of Rayleigh-Taylor Calculation
LANL ASC Code-FLAG

Vorticity and Density
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Outreach

THE IMA VOLUMES IN MA
AND ITS APPLICATIONS THEYATICY

epitors  Douglas N. Arnold
J Pavel B. Bochev
Richard B. Lehoucq
Roy A. Nicolaides
Mikhail Shashkov

Compatible
Spatial
Discretizations

Mikhail Shashkov
Conservative
Finite-Difference
Methods on
General Grids

/ edivAdV + / (4, gradp)dV = %» © (L(, 7)dS
v v Js

@ Springer

IMA  Workshop: Compatible
Chapter 4. Mimetic Finite Spatial Discretizations for PDEs
M. Shashkov Difference Methods for Maxwell’s Supported by DOE and NSF
Book on Support-Operators Equations and Equations of D. Arnold, P. Bochev, R. Lehoucq,
Method Magnetic Diffusion R. Nicolaides, M. Shashkov
(J. Hyman and M. Shashkov) Organizers and Co-editors of

special IMA Volume

»’Eﬁ?t >_
NS A e \ » Los Alamos

A

A K Wi A ‘H 5 : NATIONAL LABORATORY 32



Outreach

Publications: 7 (2002), 5 (2003), 14 (2004), 9 (2005), 10 (2006)

Workshop on Mimetic Discretizations of Continuum Mechanics, 2003, San
Diego State University

IMA “"Hot Topics” Workshop — Compatible Spatial Discretizations for PDEs
May 11-15, 2004, Institute for Mathematics and its Applications, University of
Minnesota

Second Venezuelian Workshop on Mimetic Discretizations, 2004

LACSI (Los Alamos Computer Science Institute) Symposium 2004 —
Mimetic Methods for PDEs and Applications, Santa Fe, NM

A CMA (Centre of Mathematics and Applications) Workshop on Compatible
Discretizations for PDEs — University of Oslo
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How do we train the future workforce?

e Create successful research teams - Numerical Analysis Team (T-7, LANL)

e Collaborative work between academia and Labs - UT Austin, UC Davis,
Pavia, UNM, SDSU, Prague Tech. Univ., Munich Tech. Univ., U. Pittsburg,
SNL,LLNL, AWE, CEA, U. Bordeaux, U. Toulouse, Texas A & M, U. Houston,
Institute of Numerical Mathematics, Moscow.

e Promoting Lab internship for undergrads and grads: The Los Alamos
Mathematical Modeling and Analysis Student Program (Mostly funded by
ASC) * To offer strong scientific guidance and close mentor-student relationships while providing the
students with training and experience in interdisciplinary research in the mathematical sciences. * To bridge
the gap between fundamental research and applied technology and create a program for introducing young
scientists, in the formative stages of their careers, to important problems derived from research in
interdisciplinary applied mathematics. * To provide a strong link for effective collaboration of Los Alamos
scientists with academic centers of excellence in the mathematical sciences.

e UTEP Winter (January 2008) School on Computational Science for graduate
and Ph.D. students from US and abroad (P. Solin — main organizer). In
particular P. Bochev and | will give lectures on compatible and mimetic
discretizations.

\
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Conclusion

e We have created solid mathematical foundation of the Mimetic Finite
Difference Methods

e Mimetic Finite Difference Methods
as Powerful as Finite Volume Methods and Finite Element Methods

e Applications of the Mimetic Finite Difference Methods

— Fluid and solid mechanics — Flow in Porous Media

— Shock physics — Laser Plasma Simulations
— Electromagnetism — Computational Geometry
— Radiation Transport — Image Analysis

— General Relativity — Astrophysics

e Information ?
shashkov@lanl.gov; webpage: cnis.lanl.gov/~ shashkov
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