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”Math advances are essential for the exponential performance increases that will drive

scientific discovery through computations” — David Brown (Presentation for ASCR Advisory

Committee, Washington D.C. February 27, 2007)
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What are mimetic methods ?

Methods that mimic important properties of underlying
geometrical, mathematical and physical models.

• Geometry (material interfaces)
• Conservation Laws (modeling flows with strong shocks)
• Symmetry Preservation (inertial confinement fusion program)
• Positivity and Monotonicity Preservation (density, pressure, concentration)
• Asymptotic Preserving (radiation hydrodynamics), Long-Time Integration
• Duality Properties of Differential Operators (Solvers)
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History of the Project

• Discrete Vector and Tensor Analysis - Discrete Calculus

– Discrete scalar, vector and tensor functions on wide class of
grids

– Discrete analogs of differential operators like div, grad, and
curl

– Discrete analogs of the theorems of the vector analysis:
Gauss’, Stokes’, orthogonal decomposition (Hodge).

– Most of PDE’s are formulated in terms of divergence,
gradient and curl.

– Given discrete analogs of these operators one can discretize
wide class of PDE’s ( many continuous results hold in
discrete case. )
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History of the Project

• Properties of the Mimetic Discretizations for Diffusion Equations
– Complex Three-Dimensional Geometry
– Arbitrary Coordinate Systems (Cylindrical, Spherical)
– Strongly Discontinuous Tensor Conductivity
– Non-Smooth Structured and Unstructured (General Polyhedra), and AMR

Meshes
– Symmetric Positive-Definite Linear Systems — Effective Solvers
– Second-order Convergence (New Theory), Accurate Fluxes
– Applications
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History of the Project

• Mimetic Discretizations for Maxwell’s Equations

– Complex Three-Dimensional Geometry
– Strongly Discontinuous Tensor Permitivity and

Permeability.
– Non-Smooth Structured and Unstructured Grids
– Free of Spurious Solutions, Divergence-Free

Conditions are Satisfied Exactly
– Stable, Second-Order Convergence, Accurate

Electric and Magnetic Fields
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Optimization of the gravity-pour casting processes

The computational domain and grid (200K tets); the blue region is the graphite
cylinder, and the red region is free space - left.

The average of the Joule heat in the graphite cylinder over a cycle of the
external field; this is the effective heat source that is used to model the heat
conduction - right.
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History of the Project

• Lagrangian, Free-Lagrangian and Arbitrary
Lagrangian-Eulerian Hydrodynamics

– Conservative finite-difference methods in 3D and on
unstructured grids

– New advanced artificial viscosity for multi-dimensional
shock-wave computations

– Elimination of unphysical grid motions (hourglass, artificial
vorticity) due to Artificial Null Spaces of the discrete
operators

DIVA = 0 6↔ A = CURLB , GRAD p = 0 6↔ p = const

– Symmetry (geometrical) preserving methods
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Lagrangian Hydrodynamics — Spatial Symmetries and
Curvilinear Meshes — (r, z) Geometry
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Lagrangian Hydrodynamics — Artificial Viscosity
Artificial Viscosity is Required for Simulations of Shocks

Mesh for Noh Problem at t = 0.6

Initial Polar Mesh

Edge Viscosity

Initial Square Mesh

Edge Viscosity

Initial Square Mesh

Mimetic Tensor Viscosity
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Arbitrary Lagrangian-Eulerian (ALE) Methods
ALE Methods – grid movement is arbitrary and can be used to
improve robustness and accuracy

Three Main Stages: Lagrangian, Rezone, Remap

Interaction of Shock with heavy obstacle - ALE INC.(ubator)

11



Arbitrary Lagrangian-Eulerian Methods
Examples of ALE INC. Calculations

Shock Refraction Problem
polygonal meshes Rayleigh-Taylor Instability
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Free-Lagrangian Methods

• Media is represented by set of points, with fixed in time mass.
• Points (Particles) are moving with material
• Connectivity between these points is not fixed, but varies with time —

Voronoi tessellation
• Stencil used in discretization is defined by connectivity.
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Current Research Highlights

• Mimetic Finite Difference Method - Diffusion Equation -
Generalized (Curved Faces) Polyhedral Meshes

• Discrete Maximum Principle

• Multimaterial Arbitrary Lagrangian-Eulerian Methods
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Mimetic Finite Difference Method - Diffusion
Equation - Generalized Polyhedral Meshes

DIVu
h

= Q
h
, u

h
= −GRADp

h
.

• The MFD method is locally conservative, 2nd-order accurate for ph and at
least 1st-order accurate for uh on generalized (curvilinear faces) polyhedral
meshes (including AMR meshes). Its practical implementation is
surprisingly simple.
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Key elements of new methodology

• The patch test for element E with faces fi:

[(K∇p1)h, Gh]E ≡
∫

E

p1(DIV Gh)EdV −
∫

∂E

p1Gh · ~n dS

where p1 is a linear function and

[Fh, Gh]E =
#faces∑
i,j=1

ME,ij Fh
fi

Gh
fj

• The matrix ME is easily computed from geometric
parameters of E and is not unique.
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MFD method: generalized polyhedral meshes
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• The mixed FE method does not converge on randomly perturbed meshes.

• The new MFD method has the optimal convergence rate.

17



MFD method: theoretical results

Our theoretical results include:

1. For generalized polyhedral meshes we proved the optimal error estimates in
mesh dependent L2-norms:

‖|pexact − p
h‖| ≤ C h

2
, ‖|uexact − u

h‖| ≤ C h.

2. We developed a posteriori error estimates for generalized polyhedral meshes.

3. We found and described a rich family of the MFD methods (e.g., a
6-parameter family for hexahedral meshes).

4. For simplicial meshes, we proved convergence of an explicit flux version of
the MFD method. It results in a cell-centered discretization.
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Monotone finite volume method

X
e∈∂T

u
h
e · ne =

Z
T

Q dx, u
h
e =

1

|e|

Z
e

u ds.

v

v

v
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x

x

1

2

ne

x1 =
3X

i=1

viλi, λi =
|nα(i)|D

3P
j=1

|nα(j)|D

Nonlinear two-point flux formula:

u
h
e ·ne = A(p

h
v1

, p
h
v2

) p
h
x1
−B(p

h
v1

, p
h
v2

) p
h
x2

To compute ph
v1

and ph
v2

, we use

either

• linear interpolation or
• inverse weighting interpolation,

p
h
v1

=
X

T3v1

p
h
xT

wT , wT =
|xT − v1|−1P

T ′3v1

|xT ′ − v1|−1
.
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Monotone FV method: comparison

MFE method MPFA method nonlinear FV method

ph
min = −0.02 ph

min = −0.08 ph
min = 0

Q(x, y) =

(
1 3

8 ≤ x, y ≤ 5
8,

0 otherwise.

Location of negative values of ph

• The diffusion tensor is anisotropic (ratio of eigenvalues is 200:1) and varies smoothly in space. The maximum
principle implies that the continuum solution is positive.
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Monotone FV method: results

1. We proved monotonicity of the nonlinear FV method for stationary diffusion problems.

2. We improved stability of
the method for problems with
sharp gradients.
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3. We developed a new monotone non-linear FV method for shape-regular polygonal meshes and
isotropic diffusion tensors.
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Discrete Maximum Principle
Constrained Quadratic Optimization Approach

div A gradu = 0 in Ω , u = γ, in ∂Ω → max
∂Ω

γ ≤ u ≤ min
∂Ω

γ

Dirichlet functional
D(u) =

Z
Ω

(A · gradu, gradu)dV , min
u

D(u)

Triangular mesh, nodal discretization (piece-wise linear finite elements)
Discrete gradient

GRAD
x
T (U) =

(U1 + U2)(y2 − y1) + (U2 + U3)(y3 − y2) + (U3 + U1)(y1 − y3)

2VT

GRAD
y
T

(U) = −
(U1 + U2)(x2 − x1) + (U2 + U3)(x3 − x2) + (U3 + U1)(x1 − x3)

2VT

Discrete Dirichlet functional
D[U ] =

X
T

h“
axxGRAD

x
T (U) + axyGRAD

y
T

(U)
”

GRAD
x
T (U)+

“
ayxGRAD

x
T (U) + ayyGRAD

y
T

(U)
”

GRAD
y
T

(U)
i

VT ,

Constrained Quadratic Optimization
min
Up

D[u] , max
∂Ω

γ ≤ Up ≤ min
∂Ω

γ
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Maximum Principle - Optimization
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Closure Models for Multimaterial Arbitrary
Lagrangian-Eulerian Methods (ALE)

• Lagrangian stage — Solving Lagrangian equations
• Rezone stage — Changing the mesh
• Remap stage — Conservative interpolation from

Lagrangian to rezoned mesh

• Material interfaces may not coincide with mesh faces
• Mixed cells - cells which contain more than one

material

24



Multimaterial Lagrangian Hydro - Closure Models
• Single velocity for all materials - one velocity per node
• Each material has its own mass (density) and may have its own internal

energy and pressure
• Each cell (including mixed cells) has to produce force to its vertices - one

pressure to be used in momentum equation
• Closure model - how to produce this pressure and advance in time internal

energy and density for each material
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Mixed Zone Models - Classes of Models
Two Classes of Models

• Pressure Equilibrium — Pressure Relaxation (Explicitly enforced)
• Modeling Sub-Cell Dynamics

Mixed Zone Models - Design Principles

• If all materials in mixed cell initially have the same pressure — it is
supposed to stay this way — preservation of contact

• Pressure Equilibrium — Pressure Relaxation
(after some transition time pressures in mixed cells have to equilibrate)

• Conservation of Total Energy

26



Mixed Zone Pressure Equilibrium (Relaxation) Models
Pressure relaxation model :

p
n+1

2
i +R

n+1
2

i = p
n+1

2 , R
n+1

2
i relaxation term, i−material index , n−time index

Tipton’s model (R. Tipton (LLNL) - unpublished notes, 1989)
Assumption — Isentropic

dSi/dt = 0 → dPi/dt = (∂Pi/∂ρi)Si
dρi/dt = −ρi c

2
i (dVi/dt)/Vi

p
n+1

2
i = p

n
i + (δt/2) dPi/dt → p

n+1
2

i = p
n
i − ρ

n
i (c

n
i )

2
δV

n+1
2

i /V
n

i

Relaxation Term Resembles Viscosity
Ri = −li ρi ci (divu)i , (divu)i = (1/Vi) (dVi/dt)

R
n+1

2
i = −ρ

n
i c

n
i (L

n
/δt) (1/V

n
i ) δV

n+1
i , L

n − characteristic length
Closure Model

p
n
i − ρ

n
i (c

n
i )

2
[1 + L

n
/(c

n
i δt)] δV

n+1
2

i /V
n

i = p
n+1

2 ,
X

i

δV
n+1

2
i = δV

n+1
2
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Sub-cell Dynamics Approach to Closure Models
1 2

L Rt
n

I

• Each material can have it is own pressure
• There is no independent velocity of the interface — how to estimate it? uI — interface velocity — acoustic

Riemann solver
uI = [(ρ1 c1) u1 + (ρ2 c2) u2 + (p1 − p2)]/(ρ1 c1 + ρ2 c2)

Different choices for u1, u2 are possible
• How to compute one pressure to be used in momentum equation?
• How to conserve total energy?

Each material has its own ”p dV ” equation

mi dεi/dt = −pi dVi/dt

Conservation of total energy argument is used to derive one pressure in mixed cell:

d

dt

“X
mi εi

”
= m

dε

dt
= −

X
pi

dVi
dt

= −p
dV

dt
→ p =

X
pi

dVi
dV
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Sub-cell Dynamics Approach to Closure Models
Questions:

• How to define dVi/dV ?
• What to do if dV = 0?
• What to do if some of dVi/dV have different signs?

In this case averaged pressure can be negative even if all pi are positive —
not an average.

Design Principles

Find βi ∼ dVi/dV , such that 1 ≥ βi ≥ 0 and
P

βi = 1

Having βi, we define dVi = βi dV , and thereforeX dVi

dt
=

dV

dt
·

X
βi =

dV

dt
, p =

X
βi pi
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Example of Rayleigh-Taylor Calculation
LANL ASC Code-FLAG

Eulerian=Lagrange+Remap; Interface Reconstruction — Mixed cells
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Example of Rayleigh-Taylor Calculation
LANL ASC Code-FLAG
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Outreach

M. Shashkov
Book on Support-Operators
Method

Chapter 4. Mimetic Finite
Difference Methods for Maxwell’s
Equations and Equations of
Magnetic Diffusion
(J. Hyman and M. Shashkov)

IMA Workshop: Compatible
Spatial Discretizations for PDEs
Supported by DOE and NSF
D. Arnold, P. Bochev, R. Lehoucq,
R. Nicolaides, M. Shashkov
Organizers and Co-editors of
special IMA Volume
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Outreach

• Publications: 7 (2002), 5 (2003), 14 (2004), 9 (2005), 10 (2006)
• Workshop on Mimetic Discretizations of Continuum Mechanics, 2003, San

Diego State University
• IMA ”Hot Topics” Workshop — Compatible Spatial Discretizations for PDEs

May 11-15, 2004, Institute for Mathematics and its Applications, University of
Minnesota

• Second Venezuelian Workshop on Mimetic Discretizations, 2004
• LACSI (Los Alamos Computer Science Institute) Symposium 2004 —

Mimetic Methods for PDEs and Applications, Santa Fe, NM
• A CMA (Centre of Mathematics and Applications) Workshop on Compatible

Discretizations for PDEs — University of Oslo
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How do we train the future workforce?
• Create successful research teams - Numerical Analysis Team (T-7, LANL)
• Collaborative work between academia and Labs - UT Austin, UC Davis,

Pavia, UNM, SDSU, Prague Tech. Univ., Munich Tech. Univ., U. Pittsburg,
SNL,LLNL, AWE, CEA, U. Bordeaux, U. Toulouse, Texas A & M, U. Houston,
Institute of Numerical Mathematics, Moscow.

• Promoting Lab internship for undergrads and grads: The Los Alamos
Mathematical Modeling and Analysis Student Program (Mostly funded by
ASC) * To offer strong scientific guidance and close mentor-student relationships while providing the

students with training and experience in interdisciplinary research in the mathematical sciences. * To bridge

the gap between fundamental research and applied technology and create a program for introducing young

scientists, in the formative stages of their careers, to important problems derived from research in

interdisciplinary applied mathematics. * To provide a strong link for effective collaboration of Los Alamos

scientists with academic centers of excellence in the mathematical sciences.

• UTEP Winter (January 2008) School on Computational Science for graduate
and Ph.D. students from US and abroad (P. Solin — main organizer). In
particular P. Bochev and I will give lectures on compatible and mimetic
discretizations.
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Conclusion

• We have created solid mathematical foundation of the Mimetic Finite
Difference Methods

• Mimetic Finite Difference Methods
as Powerful as Finite Volume Methods and Finite Element Methods

• Applications of the Mimetic Finite Difference Methods

– Fluid and solid mechanics
– Shock physics
– Electromagnetism
– Radiation Transport
– General Relativity

– Flow in Porous Media
– Laser Plasma Simulations
– Computational Geometry
– Image Analysis
– Astrophysics

• Information ?
shashkov@lanl.gov; webpage: cnls.lanl.gov/∼ shashkov
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