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Multiphase MHD: Schematic

Phases:

» Compressible fluid or gas

« Conducting liquids or weakly ionized plasma

* Fully ionized plasma

Material interfaces:
 Discontinuity of density and
physics properties (electrical
conductivity)

» Governed by the Riemann
problem for MHD equations or
phase transition equations

BRI External magnetic field

External sources:
* Intense particle beams
» Laser pulses



Motivation
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Neutrino Factory / Muon Collider target
has been proposed as a free mercury jet
Tokamak applications interacting with an intensive proton pulse in
* Pellet fueling of tokamaks a 20Tesla magnetic field

o Striation instabilities

 Laser driven pellet acceleration

» Gyrotron driven pellet acceleration

« “Killer-pellets” for plasma disruption mitigation
* Liquid jet for plasma disruption mitigation
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Models and Numerical Algorithms (talk outline)

« Numerical algorithms for coupled the hyperbolic - elliptic system in
domains with moving, geometrically complex boundaries

 Front tracking method for material interfaces
* Phase transition models (vaporization and ablation)

» Validation of the MHD code

« Simulation of accelerator targets and pellet fueling of tokamaks



MHD equations and approximations

Full system of MHD equations Low magnetic Re approximation
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FronTier-MHD numerical scheme

Elliptic step

Hyperbolic step
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Point Shift (top) or Embedded Boundary (bottom .
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(solve Riemann solvers o electromagnetic
problem for contact » Update interior L fields
or phase transition hydro states — - * Update front and
equations)  Generate finite element grid interior states
* Untangle interface * Perform mixed finite element discretization
* Update interface or
states  Perform finite volume discretization

* Solve linear system using fast Poisson solvers



Normal propagation of interface points
Contact discontinuity (no phase transition)
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Phase boundary problem

Interface jJump conditions Balance equations
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Temperature and pressure at the interface
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Most close work: Y. Matsumoto, F. Takemura, JSME Int. J., 37, 288-
296, 1994.




Phase transition algorithm

« Standard contact discontinuity propagation: prediction step (Riemann problem) and
the correction step (method of characteristics)

» There is no prediction step in the phase boundary problem: the solution structure is
not known.
» Method of characteristics step moves boundary points and updates boundary
states

» The phase boundary algorithms consist of a hydro iteration and thermal iteration
* In the hydro iteration, characteristics equations are solved to find the pressure
and velocity
dp N du de dT 1
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* In the thermal iteration, interface temperature and mass flux are found
» Thin thermal layer near the interface. Subgrid model for temperature:
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Embedded Boundary Elliptic Solver

Main ldeas
 Based on the finite volume discretization

 Domain boundary is embedded in the
rectangular Cartesian grid, and the
solution is treated as a cell-centered
guantity

» The discretized operator is centered in
centroids of partial cells

» Using finite difference for full cell and
linear interpolation for cut cell flux
calculation
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MHD code validation: entrance of a mercury jetin a
transverse magnetic field
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Muon Collider target: jet entrance in magnetic field
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» Under the original design (0.1 rad entrance) the jet would transform

Into a fluid sheet
» Greatly reduced cross-section with the proton pulse -> low
particle production rate
e Our studies led to the change of design parameters of the future
CERN experiment called MERIT
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Muon Collider target: jet - proton pulse interaction ===

m Simulation of the mercury jet target interacting with a proton pulse in a
magnetic field

 Studies of surface instabilities, jet breakup, and cavitation
 MHD forces reduce both jet expansion, instabilities, and cavitation
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® Incident acoustic or shock wave

50
]

Validation of Front Tracking method for small void
fraction flows (bubbly and cavitating fluids)

Tracked surface bubbles==_ )

Liguid
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DNS of sound waves in bubbly
liquids at extremely small void
fractions: 0.02 %

Attenuation of sound waves

o (dB/em)

0 1 1 1 1 1 1 1
0 50 100 180 200 250 300 360 400



Pellet Ablation for Tokamak Fueling: Main Models

Pellet velocity

A

Cloud rotation

Schematic of processes
in the ablation cloud
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 Kinetic model for the interaction of hot electrons with the ablated gas
« Surface ablation model

e Equation of state with atomic processes

 Cloud charging and rotation models

* New conductivity model (ionization by electron impact)

Magnetic field lines



Spherically symmetric problem -
benchmark of the pellet ablation model

i}

— Polytropic EOS Plasma EOS

b

L ™,
: ;

TIT 2%
o

Normalized variables
(]

Normalized variables
3

—

1 1 2 hadi. i - L 1 1 1 1 L L
2 25 3 35 4 45 5 o 05 1 15 2 25 3 a5 4 45 5

. 4 = ®
Normalized radius, r/ir Normalized radius, rir

Normalized ablation gas profiles at 10 microseconds
» Excellent agreement with TF model

Poly EOS | Plasma EOS and Ishizaki.

Sonic radius 0.66 cm 0.45 cm * Verified scaling laws of the TF model

Temperature 5.51 eV 1.07 eV G~ r;”s

Pressure 20.0 bar 26.9 bar 5 7
Ablation rate 112 g/s 106 g/s M, = \E =1.8898 (for y= gj



Axially Symmetric Hydrodynamic Problem

rrrrr

Temperature, eV Pressure, bar Mach number

Distributions of temperature, pressure, and Mach number of the ablation flow near
the pellet at 20 microseconds.

* We explained the factor of 2.2 reduction of the ablation rate
* In the literature, it was incorrectly attributed to the directional heating
» We showed that the directional heating reduces the ablation rate by 18%
» The 2.2 factor was caused by Maxwellian electron heat flux vs. monoenergetic



Axially symmetric MHD simulation (2.5D model)
(First MHD simulation of detailed pellet ablation physics)
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Velocity distribution of the ablation flow near the pellet in 6 Tesla magnetic

field. Warm up time is 20 microseconds.



Mach number distribution of the ablation flow near the pellet in 6
Tesla magnetic field. Warm up time is 20 microseconds.
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Rotation of the ablation channel (2.5D model)

Rotational Mach number
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» Supersonic rotation of the channel layers due to the ExB force
» Density re-disrtibution (pipe-like)



Formation of the ablation channel in the pedestal

Critical observation: "
 Formation of the ablation channel strongly
depends on the pedestal properties
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 Channel radius depends on the warm-up time %2

(pedestal width/pellet velocity) &l

« Ablation rate strongly depends on the channel radius £ = -

* In ITER, fast pellets in narrow pedestal region will 2 -
result in narrow channels and small ablation rate ; Ty
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Current work: 3D pellet ablation simulation

* Full 3D model employs physics models similar to 2.5D model
* More complex algorithms for the potential distribution

» Expected to shed light on the nature of striation instabilities

Striation instabilities:
Experimental observation
(Courtesy MIT Fusion Group)




Future Plans: Adding Fully lonized Plasma Domain

/Fully lonized plasma \

Weakly ionized gas

A /

In overlapping region, both solutions are assumed to
be approximately valid; weighted sum of two solutions

» Coupling of FronTier-MHD as a subgrid model with PPPL plasma code
* Heterogeneous multiscale coupling
» Address mathematical/numerical issues of the coupling (numerical
stability and error)



Previous Studies: Global Models (examples)

« Simulations using MH3D code, H. Strauss & W. Park, 1998
* Finite element version of the MH3D full MHD code
 Details of the ablation are not considered
 Pellet is given as a density perturbation of initial conditions
« Smaller values of density and larger pellet radius (numerical constraints)

» Simulations using MHD code based on CHOMBO AMR package, R. Samtaney,
S. Jardin, P. Colella, D. Martin, 2004

» Analytical model for the pellet ablation: moving density source

» 8-wave upwinding unsplit method for MHD

 AMR package — significant improvement of numerical resolution




Future Needs of the ITER Fueling Simulation

» Coupling is requires by the next level of ITER fueling simulations

 Neither plasma MHD code nor FronTier are capable of performing refined
ITER fueling simulation alone:

* Plasma MHD code is not accurate in calculating thermodynamic states in the
ablation channel and not capable of calculating the ablation rate

* FronTier is not suitable for the entire tokamak study

* FronTier ablation model uses several model parameters which are presently
not calculated self-consistently

A coupled simulation will resolve all current problems:

* Self consistent calculation of all current model parameters

» Resolution of detailed physics of the ablation channel in real tokamak
« Simulation of the ablation channel evolution

* Pellet ablation induced plasma instabilities



Conclusions

» Developed and validated a front tracking based algorithm for free surface
MHD flows in the low magnetic Re approximation

» Developed phase transition algorithm for compressible fluids
» Validated front tracking based DNS of bubbly fluids at small void fractions

» Developed numerical models specific to the pellet ablation problem
» Kinetic models for the electron heat deposition and hot currents
« Equation of state in the presence of atomic processes
« Surface ablation model
« Model for the cloud potential

« Performed simulations of accelerator targets and pellet ablation in
tokamaks



