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> What is Predictive Capability
' In Science and Engineering?

* |s it the speed of the computer?
¢ |s it the number of finite elements we have in a simulation?
* s it the number of atoms/molecules we have in a simulation?

* From a science perspective, predictive capability could be
viewed as the ability to generate new knowledge

* From an engineering perspective, | contend that predictive
capability should be viewed by how well we answer the
guestions posed by Kaplan and Garrick (1981):

— What can go wrong?
— How likely is it to go wrong?
— What are the consequences of going wrong?
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"% Approaches to Uncertainty Quantification

* Risk assessment approach taken in:

— Nuclear reactor safety

— Underground storage of nuclear waste (Waste Isolation Pilot Plant
and Yucca Mountain Project)

* Key steps in quantitative risk assessment (QRA):
— Identify initiating events, fault trees, and event trees
— Characterize all sources of uncertainty according to aleatory and
epistemic
— Propagate uncertainties through the computational model

— Characterize system responses according to aleatory and
epistemic uncertainty

— Conduct sensitivity analysis to determine major sources of
uncertainty in system responses
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Aleatory and Epistemic Uncertainty

* Aleatory uncertainty is an inherent variation associated with the
physical system or the environment

— Also referred to as variability, irreducible uncertainty, and stochastic
uncertainty, random uncertainty

* Examples:
— Variation in weather conditions
— Variation in manufacturing and assembly of systems

* Epistemic uncertainty is an uncertainty that is due to a lack of
knowledge of quantities or processes of the system or the
environment

— Also referred to as subjective uncertainty, reducible uncertainty, and
model form uncertainty

* Examples:
— Lack of experimental data to characterize new materials and processes
— Poor understanding of physics phenomena
— Lack of experimental data/testing for complete systems
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Propagation of Uncertainties

Propagation of uncertainties

through the model
Scenarios
Physics parameters =g System response
) quantities of interest
Geometry — System of PDE’s I——

i g and sub-models
/ Initial conditions =% (Model form uncertainty)

Boundary conditions =i

Environments

The propagation of uncertain input quantities through a
mathematical model to obtain outputs can be written as

y — f('i?a, '_x’e)
— Vis a system response quantity of interest

— f is the mathematical model of the physical process of interest
= X, X,,"°" X, IS the vector of all aleatory uncertainties
=X Am+25" "X, is the vector of all epistemic uncertainties
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A

> ..’ Approaches to Representation
' of Aleatory and Epistemic Uncertainties

* Second-order probabilistic analysis:

— Use atwo step process separating epistemic and aleatory
uncertainties

— Treat the range all epistemic uncertainties as possible realizations

with no probability associated with realizations from sampling
— Treat aleatory uncertainties as random variables

* Robust Bayesian inference:

— Investigate the effect of different assumptions of prior distributions

— Investigate the effect of partitioning the available data

* Evidence theory:

— Can represent aleatory and epistemic uncertainties within one
framework

— Early criticism misdirected at Dempster’s rule of aggregation of
evidence

— Early applications have been very successful
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f.& Mathematical Structure
of Evidence Theory

* Let the universal set (or sample space) be defined as
S = {x:xis a possible value of the uncertain quantity}

* Based on the information available concerning uncertain quantities, a basic
probability assignment (BPA) can be defined as

m(&)20 for& c
Y m(&)=1
Scct”

* Then the plausibility function can be defined as
PI(&E)= ), m(@)
UNE#D
e And the belief function can be defined as

Bel(£)= Y m(%)

wcE
* Plausibility and belief are super-additive and sub-additive, respectively
PI(&)+ PI(E) =1 Bel(&)+ Bel(5°)<1
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Characterization of
System Response Quantity

Complementary Cumulative Plausibility and Belief over system response

1.0
< 0.9F - * [t can be shown that
% 0.8F 1 CCBF(%))<CCDF(%)< CCPF(%¥)
o | - : : :
5 0.7 * Given the epistemic
= 0.6 . uncertainties, the
% 05k _ probability of a given
° o4l i system response value
| : can only be given as an
; 0.3 g interval-valued probability
A - - -
= 0.2 * Second-order probability
0.1 7 yields an ensemble of
0.0 — - I - CCDFs
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Bayesian Approach to
Uncertainty Quantification

i;,

* Key steps in Bayesian approach:

— Assume prior distributions for uncertain parameters in the
model

— Update the prior distributions for uncertain parameters using
available experimental data and Bayes formula

— Use the updated parameters in the model to make predictions
for the application of interest
— Disadvantages:
 Assumes the key issue is calibrating parameter distributions
« Assumes the model form is accurate
* Is computational very expensive
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Typical Application of
Bayesian Inference: Interpolation
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Key Area of Concern:
arge Extrapolation in a Model Parameter

>
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> Key Area of Concern:

Extrapolation of a Validation Metric Result

e \What is a validation metric?

* A quantitative measure of the mismatch between the CDFs
from the computational model and the experimental data

* A “distance” between the CDFs measured in terms of
dimensional units of the system response guantity

* The primary purpose of the validation metric is measure the
predictive accuracy of the physics model, not calibration of
the model

* If experimental data is limited, the validation metric results
can either:

— Increase
— Remain the same and decrease the confidence in the validation

metric result
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Typical Method of Comparison
of Computation and Experimental Data
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Compare the Simulation and Data
Using the Cumulative Distribution Function

1~  Time =1000 sec

> 1 Area Simulation
= Metric B
5 - T
(qe] Measurements~, Define the metric = Area
8 | (average horizontal distance)
— between the empirical
al distribution and the
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Validation Metric Reflects the

Difference Between the Full Distributions

Probability

Probability

Probability

Matches in mean

Both mean and variance

Matches well overall
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Prediction with Extrapolation
of Aleatory and Epistemic Uncertainties

Exceedance probability

O
b

0.0-

* The model form
uncertainty is
represented as the
magnitude of the

validation metric d

°*d is treated as an

epistemic uncertainty

700

800 900 1000
Surface temperature, T,_q =190 (°C)

17

1100

mh

Sandia
National
Laboratories



> Key Area of Concern:

No Experimental Data on Coupled Physics

* No experimental data, and no validation metric result, is
available for:

— Physics that exist at the same level in the validation hierarchy as
where other physics models can be evaluated

— Coupled physics that only exists at higher levels in the
validation hierarchy

* Sandia experience for both of these situations has shown
that model accuracy is commonly poor

* This is a model form inaccuracy due to coupled physics

* Possible approaches to estimate this epistemic uncertainty:
— Alternate physics modeling approaches
— Hierarchical physics models
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V '
} Example of Extrapolation Within a

Validation Hierarchy (Weapon in a Fire)

Deployed System

Full System

Components

Separable
Effects
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Concluding Remarks

* Predictive capability in engineering decision making relies on
a clear representation of aleatory and epistemic uncertainties

* Improvements needed in evidence theory:
— Understanding of dependence between epistemic uncertainties
— Understanding of sensitivity analysis for epistemic uncertainties

* Improvements needed in Bayesian inference:

— Develop better methods to separate parameter estimation and
model bias error identification

— Develop methods to better estimate uncertainty in predictions

* Improvements needed in uncertainty quantification due to:
— Extrapolation of a validation metric result
— No experimental data for coupled physics
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