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Linear Solvers

Theme song:

Everything is linear,
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...in its own way
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Linear Solvers

Theme song:

Everything is linear,
...in its own way

Take a simple Newton step,
and iterate from 1 to k.

Sung to the tune of "Everything is Beautiful" by Ray Stevens
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Linear Solvers: Preconditioned Polynomial Methods

Krylov Methods ⇔ Polynomial Methods

Ax = b

x
0

initial guess

xi iterate

ei = x − xi error

ri = b − Axi residual
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Linear Solvers: Preconditioned Polynomial Methods

Krylov Methods ⇔ Polynomial Methods

Ax = b

x
0

initial guess

xi iterate

ei = x − xi error

ri = b − Axi residual

Error Equation: pi(0) = 1.0

ei = pi(A)e0

ri = pi(A)r0
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Polynomial Methods: Error Bounds

Jordan Decomposition
A = SJS−1

Error Bound
‖ei‖ ≤ ‖S‖‖S−1‖‖pi(J)‖
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Polynomial Methods: Error Bounds

Jordan Decomposition
A = SJS−1

Error Bound
‖ei‖ ≤ ‖S‖‖S−1‖‖pi(J)‖

Σ (p (A))
k

1.0

−1.0

ba
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Polynomial Methods: Error Bounds

Jordan Decomposition
A = SJS−1

Error Bound
‖ei‖ ≤ ‖S‖‖S−1‖‖pi(J)‖

Σ (p (A))
k

1.0

−1.0

ba

If condition of A is large, it is hard

to make a polynomial small on all

of the eigenvalues and still have

pi(0) = 1.
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Preconditioning

CAx = Cb C – Any linear process

Choose C so that system with CA is easier to solve in some sense

For example, condition of CA is much smaller than that of A
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Preconditioning
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C = ((D̂ + L)D̂−1(D̂ + U))−1 Incomplete Factorization
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Preconditioning

CAx = Cb C – Any linear process

Examples: A = L + D + U

C = D−1, Jacobi Preconditioning

C = (D + L)−1 Gauss/Seidel

C = ((D + L)D−1(D + U))−1 Symmetric Gauss/Seidel

C = ((D̂ + L)D̂−1(D̂ + U))−1 Incomplete Factorization

C = A∗ Normal Equations

C = Multigrid V-cycle PCG-MG
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Preconditoned Polynomial Methods

Preconditioning ⇔ Matrix Splitting
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Preconditioning ⇔ Matrix Splitting

Any matrix splitting can be used as a preconditioning

Any linear process, C, can be used as a preconditioning
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Preconditoned Polynomial Methods

Preconditioning ⇔ Matrix Splitting

Any matrix splitting can be used as a preconditioning

Any linear process, C, can be used as a preconditioning

Any preconditioning can accelerated by a polynomial method
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Numerical PDEs

In general, if A comes from a PDE, optimal preconditioning
requires a Multilevel algorithm

− Optimal ⇒ condition of CA is independent of the mesh
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Numerical PDEs

In general, if A comes from a PDE, optimal preconditioning
requires a Multilevel algorithm

− Optimal ⇒ condition of CA is independent of the mesh

− Optimal ⇒ work grows linearly with the problem size

If you want to solve a problem with billions of unknowns on
128, 000 processors, you will need a multilevel algorithm
somewhere.
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Recent Developments

A lot of recent activity in multilevel algorithms
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Multigrid

Basic Components

Simple relaxation or smoothing

− Usually a matrix splitting or simple preconditioned one-step
like damped Jacobi, Gauss/Sedel or block Gauss/Seidel

− Resolves error in direction of eigenvectors with large
eigenvalues

Coarse-grid correction

− Lower dimensional or simpler problem

− Resolves error left by relaxation

Recursion

− Coarse-grid problem is solved by multigrid
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Multigrid: example

Example: discrete forms of second-order elliptic operators

−∇ · A∇u + cu = f

Large eigenvalues are associated with high frequency
eigenvectors

Simple iterative methods leave error geometrically smooth

Coarse grid problem is a version of fine grid problem

Recent Advances in System Solvers – p. 11



Multigrid: example

Given Error
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Multigrid: example

Given Error

Relax
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Multigrid: example

Given Error

Relax

Coarsen
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Multigrid: example

Given Error

Relax

Coarsen

Solve

Correct
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Multigrid: example

Given Error

Recurse

Relax

Coarsen
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Basic Components (again)

Multigrid algorithm is determined by

Relaxation

Interpolation from coarse grid to fine grid (P )

Restriction from fine grid to coarse grid (R)

Coarse-grid operator (Ac)
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Basic Components (again)

Multigrid algorithm is determined by

Relaxation

Interpolation from coarse grid to fine grid (P )

Restriction from fine grid to coarse grid (R)

Coarse-grid operator (Ac)

In variational MG,

Ac = RAfP
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Multigrid Flavors

Geometric Multigrid (GMG)

Algebraic Multigrid (AMG)
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Multigrid Flavors

Geometric multigrid (GMG)

Coarse-grid problem is geometrically determined

It is usually a smaller version of the fine grid problem

Interpolation and restriction usually determined by the operator
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Multigrid Flavors

Algebraic Multigrid (AMG)

Directly address the matrix A without presumed knowledge of

− Geometry

− Operator
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Multigrid Flavors

Algebraic Multigrid (AMG)

Directly address the matrix A without presumed knowledge of

Assume simple relaxation

− For example, Damped Jacobi, Gauss/Seidel
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Multigrid Flavors

Algebraic Multigrid (AMG)

Directly address the matrix A without presumed knowledge of

Assume simple relaxation

Coarse-grid problem is chosen to resolve the “Algebraicaly
smooth” error

− Defined to be the error that relaxation does not resolve
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Multigrid Flavors

Algebraic Multigrid (AMG)

Directly address the matrix A without presumed knowledge of

Assume simple relaxation

Coarse-grid problem is chosen to resolve the “Algebraicaly
smooth” error

Work focuses on selection of a coarse grid and the intergrid
transfer operators (R and P )
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Multigrid Flavors

Algebraic Multigrid (AMG)

Directly address the matrix A without presumed knowledge of

Assume simple relaxation

Coarse-grid problem is chosen to resolve the “Algebraicaly
smooth” error

Work focuses on selection of a coarse grid and the intergrid
transfer operators (R and P )

The coarse-grid operator is formed variationally (Ac = RAfP )
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Multigrid Flavors

Geometric Multigrid (GMG)

Algebraic Multigrid (AMG)
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Multigrid Flavors

Geometric Multigrid (GMG)

Algebraic Multigrid (AMG)

− AMG

− Smoothed Aggregation (SA)

− Adaptive AMG (αAMG, αSA)
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AMG Principles

AMG is characterized by choice of the Coarse Grid,
Interpolation, P , and Restriction, R.

For simplification, assume A symmetric and R = P t
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AMG Principles

Divide degrees of freedom into the Coarse DOF and Fine DOF

A =

[

Aff Afc

Acf Acc

]
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After relaxation error is algebraically smooth
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error in direction of large eigenvalues has been reduced
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AMG Principles

Divide degrees of freedom into the Coarse DOF and Fine DOF

A =

[

Aff Afc

Acf Acc

]

After relaxation error is algebraically smooth

‖Ae‖ << ‖e‖

error in direction of large eigenvalues has been reduced

[

Aff Afc

Acf Acc

](

ef

ec

)

≃

(

0

0

)
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AMG Principles

[

Aff Afc

Acf Acc

](

ef

ec

)

≃

(

0

0

)

Affef + Afcec = 0
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≃
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0
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)
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AMG Principles

[

Aff Afc

Acf Acc

](

ef

ec

)

≃

(

0

0

)

Affef + Afcec = 0

ef = −A−1

ff Afcec

Perfect Interpolation

(

ef

ec

)

=

[

−A−1

ff Afc

I

]

ec = Pec
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AMG Principles

Perfect Interpolation

(

ef

ec

)

=

[

−A−1

ff Afc

I

]

ec = Pec
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AMG Principles

Perfect Interpolation

(

ef

ec

)

=

[

−A−1

ff Afc

I

]

ec = Pec

After relaxation

APec = r

P tAPec = P tr

Acec = rc
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AMG Principles

Perfect Interpolation

(

ef

ec

)

=

[

−A−1

ff Afc

I

]

ec = Pec

After relaxation

APec = r

P tAPec = P tr

Acec = rc

Ac is the Schur Complement

Ac = Acc − AcfA−1

ff Afc

Ac is Dense
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AMG Principles

Problem: A−1

ff is Dense ⇒ Ac is Dense
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AMG Principles

Problem: A−1

ff is Dense ⇒ Ac is Dense

Solution: Sparse Approximation of A−1

ff

A−1

ff → D−1

ff Diagonal of Aff

A−1

ff → D̂−1

ff Lumped Diagonal of Aff

A−1

ff → Cff Sparse approximate inverse of Aff
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AMG Principles

Problem: A−1

ff is Dense ⇒ Ac is Dense

Solution: Sparse Approximation of A−1

ff

A−1

ff → D−1

ff Diagonal of Aff

A−1

ff → D̂−1

ff Lumped Diagonal of Aff

A−1

ff → Cff Sparse approximate inverse of Aff

For example: simple iteration on Aff = Dff − Bff

A−1

ff → (I + D−1

ff Bff )D−1

ff

Iterated Interpolation, Long Range Interpolation, Compatible Relaxation
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AMG Principles

Problem: A−1

ff is Dense ⇒ Ac is Dense

Solution: Sparse Approximation of A−1

ff

A−1

ff → D−1

ff Diagonal of Aff

A−1

ff → D̂−1

ff Lumped Diagonal of Aff

A−1

ff → Cff Sparse approximate inverse of Aff

Are any of these any good?
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Weak Approximation Property

Interpolation must approximate an eigenvector up to the
same accuracy as the size of the corresponding eigenvalue

Recent Advances in System Solvers – p. 20



Weak Approximation Property

Interpolation must approximate an eigenvector up to the
same accuracy as the size of the corresponding eigenvalue

Weak approximation property: there exists constant C

M(P, u) := min
v

‖u − Pv‖2

〈Au, u〉
≤

C

‖A‖
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Weak Approximation Property

Interpolation must approximate an eigenvector up to the
same accuracy as the size of the corresponding eigenvalue

Weak approximation property: there exists constant C

M(P, u) := min
v

‖u − Pv‖2

〈Au, u〉
≤

C

‖A‖

Two-grid Convergence Factor

ρ ≤ 1 − O(
1

C
)

Measure can be enforced locally
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Strength of Connection

Attempt to identify connections between unknowns that are
important
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Strength of Connection

Attempt to identify connections between unknowns that are
important

Strength of Connection: Original definition: i is strongly depends on the set

Si := {j : |aij | ≥ θ max
k 6=i

|aik|}

for some parameter θ. (e.g. θ = .25)
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Strength of Connection

Attempt to identify connections between unknowns that are
important

Strength of Connection: Original definition: i is strongly depends on the set

Si := {j : |aij | ≥ θ max
k 6=i

|aik|}

for some parameter θ. (e.g. θ = .25)

New, more general, definitions of strength derived from local

approximation of A−1
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Strength of Connection

Attempt to identify connections between unknowns that are
important

Strength of Connection: Original definition: i is strongly depends on the set

Si := {j : |aij | ≥ θ max
k 6=i

|aik|}

for some parameter θ. (e.g. θ = .25)

Strength of connection fundamental in choosing the coarse
grid
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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Cassical AMG

Classical or RS - AMG (84)
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Cassical AMG

Classical or RS - AMG (84)

− Developed by Brandt/McCormick/Ruge (84)

− Implemented by Ruge/Stuben (85)
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Cassical AMG

Classical or RS - AMG (84)

Workhorse in many applications
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Cassical AMG

Classical or RS - AMG (84)

Workhorse in many applications

Implemented as BoomerAMG in HYPRE

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces
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Cassical AMG

Classical or RS - AMG (84)

Workhorse in many applications

Implemented as BoomerAMG in HYPRE

Weaknesses:

− Systems of PDEs

− Singularities

− Operator complexity in 3D
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Cassical AMG

Classical or RS - AMG (84)

Workhorse in many applications

Implemented as BoomerAMG in HYPRE

Weaknesses:

− Systems of PDEs

− Singularities

− Operator complexity in 3D

Based on M-matrix principles
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptie AMG (06)

αAMGr adaptive AMGr (06)
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Smoothed Aggregation

Smoothed Aggregation (SA) Brezina, Mandel, Vanek (96)
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Smoothed Aggregation

Smoothed Aggregation (SA) Brezina, Mandel, Vanek (96)

Requires knowledge of one (or more) global (near) null-space
vector(s), vj .
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Smoothed Aggregation
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Divide the Graph of A into disjoint aggregates, {Ai}
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Smoothed Aggregation

Smoothed Aggregation (SA) Brezina, Mandel, Vanek (96)

Requires knowledge of one (or more) global (near) null-space
vector(s), vj .

Divide the Graph of A into disjoint aggregates, {Ai}

Associate one (or more) coarse-level DOF with each aggregate
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Smoothed Aggregation

Smoothed Aggregation (SA) Brezina, Mandel, Vanek (96)

Requires knowledge of one (or more) global (near) null-space
vector(s), vj .

Divide the Graph of A into disjoint aggregates, {Ai}

Associate one (or more) coarse-level DOF with each aggregate

Construct a tentative interpolation matrix, P̂ , by chopping up the
near null-space vector(s)
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Smoothed Aggregation: Interpolation

Null-space vector: v = (v1, v2, . . . , vn)t

P̂ =











































v1

...

vnf1

vn2

...

vnf2

vnc

...

vnfc











































Note: v is in Range(P )
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Smoothed Aggregation: Interpolation

Normalize
P̂ tP̂ = I
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Smoothed Aggregation: Interpolation

Normalize
P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂
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Smoothed Aggregation: Interpolation

Normalize
P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂

Construct coarse-grid operator

Ac = P tAP = P̂ t(I − αA)A(I − αA)P̂
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Smoothed Aggregation: Interpolation

Normalize
P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂

Construct coarse-grid operator

Ac = P tAP = P̂ t(I − αA)A(I − αA)P̂

Choose α to reduce the condition of Ac
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Smoothed Aggregation: Interpolation

Normalize
P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂

Construct coarse-grid operator

Ac = P tAP = P̂ t(I − αA)A(I − αA)P̂

Choose α to reduce the condition of Ac

Recurse
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Smoothed Aggregation

Ac = P tAP = P̂ t(I − αA)A(I − αA)P̂

Reduces the condition of Ac

Maintains good approximation of null-space vector, v

− Null-space, v, still in the range of P

− Other near null-space vectors still well approximated by P

Yields aggressive coarsening
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Multiple Null Space Vectors

Accommodate multiple (near) null-space vectors, V = [v
1
, . . . , vk]

Vj =









v1nj
· vknj

...
...

v1nfj
· vknfj









P̂ =









V1

V2

Vnc








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Multiple Null Space Vectors

Accommodate multiple (near) null-space vectors, V = [v
1
, . . . , vk]

Vj =









v1nj
· vknj

...
...

v1nfj
· vknfj









P̂ =









V1

V2

Vnc









Normalize

P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂

Coarse-grid operator

Ac = P tAP

Recurse
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Smoothed Aggregation

Very effective for systems, like linear Elasticity, where

(near) null-space (rigid body motions) is known.
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Smoothed Aggregation

Very effective for systems, like linear Elasticity, where

(near) null-space (rigid body motions) is known.

Effective in the context of irregular meshes

Aggressive coarsening yields good complexity

Amenable to parallel implementation
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Smoothed Aggregation

Very effective for systems, like linear Elasticity, where

(near) null-space (rigid body motions) is known.

Effective in the context of irregular meshes

Aggressive coarsening yields good complexity

Amenable to parallel implementation

Conceptionally straightforward
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SA and AMG

Compare SA to AMG

SA constructs P column by column

AMG constructs P row by row

Both attempt to accurately interpolate algebraically smooth
vectors

Both try to reduce the complexity (number of nonzeros) of the
coarse-grid operator
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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B. Lee
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U. Yang

Delft S. MacLachlan

Davidson College T. Chartier

FIT J. Jones
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J. Xu

L. Zikatanov

SNL J. Hu
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L. Olson
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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AMGe

AMGe Finite element AMG (04)
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AMGe

AMGe Finite element AMG (04)

Uses local stiffness matrices

Aggregates elements like SA

Uses local null-space to deter-
mine local interpolation properties
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AMGe

AMGe Finite element AMG (04)

Uses local stiffness matrices

Aggregates elements like SA

Uses local null-space to deter-
mine local interpolation properties

Effective for

− Anisotropic Problems

− Systems PDEs
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AMGe

AMGe Finite element AMG (04)

Uses local stiffness matrices

Aggregates elements like SA

Uses local null-space to deter-
mine local interpolation properties

AMG AMGe

ρ .98 .26
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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Spectral AMGe

ρAMGe Spectral AMGe (02)
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Spectral AMGe

ρAMGe Spectral AMGe (02)

Based on local stiffness matrices like AMGe

Aggregates elements like SA

Creates local columns in interpolation
matrix based on local null-space
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Spectral AMGe

ρAMGe Spectral AMGe (02)

Based on local stiffness matrices like AMGe

Aggregates elements like SA

Creates local columns in interpolation
matrix based on local null-space

Blends rather than smooths columns of P
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Spectral AMGe

ρAMGe Spectral AMGe (02)

Based on local stiffness matrices like AMGe

Aggregates elements like SA

Creates local columns in interpolation
matrix based on local null-space

Blends rather than smooths columns of P

Effective when global null-space vectors not available, but local
stiffness matrices are available
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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Element free AMGe

AMG 6 e element free AMGe (02)
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Element free AMGe

AMG 6 e element free AMGe (02)

Based on principles of AMGe

Aggregates elements like SA

Creates local stiffness matrices
from neighboring elements
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Element free AMGe

AMG 6 e element free AMGe (02)

Based on principles of AMGe

Aggregates elements like SA

Creates local stiffness matrices
from neighboring elements

Effective when local stiffness matrices are not available
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AMG Alphabet Soup

AMG Classical AMG (84)

SA Soothed Aggregation (96)

AMGe finite element AMG (01)

AMG 6 e element free AMGe (02)

ρAMGe spectral AMGe (03)

Adaptive Algorithms

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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Adaptive AMG

AMG methods employ (relatively) simple relaxation
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Adaptive AMG

AMG methods employ (relatively) simple relaxation

The coarse-grid problem must capture all modes not effectively
reduced by relaxation

AMG basics

by pointwise
relaxation

R
n

to eliminate

algebraically 
smooth 
error

transfer operators, etc..
Choose coarse grids,

error damped
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Adaptive AMG

AMG methods employ (relatively) simple relaxation

The coarse-grid problem must capture all modes not effectively
reduced by relaxation

AMG basics

by pointwise
relaxation

R
n

to eliminate

algebraically 
smooth 
error

transfer operators, etc..
Choose coarse grids,

error damped

Algebraically smooth vectors are not necessarily geometrically
smooth
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Algebraically smooth error can be oscillatory

Error after seven Gauss/Seidel
iterations on
−uxx − ǫuyy = f

 x
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ε=1 ε = .001
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Algebraically smooth error can be oscillatory

Error after seven Gauss/Seidel
iterations on
−uxx − ǫuyy = f

 x
 y
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 y

Adaptive AMG can “follow physics”
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Adpative Principles

Let current method tell you what type of error is not being reduced
effectively
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Adpative Principles

Let current method tell you what type of error is not being reduced
effectively

Adjust AMG components to capture this error
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Adpative Principles

Let current method tell you what type of error is not being reduced
effectively

Adjust AMG components to capture this error

Do no harm: make sure change does not awaken previously
reduced errors
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Adpative Principles

Let current method tell you what type of error is not being reduced
effectively

Adjust AMG components to capture this error

Do no harm: make sure change does not awaken previously
reduced errors

Do as much of the work as possible on the coarser grids
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Adpative Principles

Let current method tell you what type of error is not being reduced
effectively

Adjust AMG components to capture this error

Do no harm: make sure change does not awaken previously
reduced errors

Do as much of the work as possible on the coarser grids

Test the current method and modify as necessary
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Adaptive Smoothed Aggregation

Given A, choose simple relaxation, call it the current method, C
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Adaptive Smoothed Aggregation

Given A, choose simple relaxation, call it the current method, C

Iterate with the current method on CAx = 0

− If it is acceptable, stop
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Adaptive Smoothed Aggregation

Given A, choose simple relaxation, call it the current method, C

Iterate with the current method on CAx = 0

− If it is acceptable, stop

Approximate largest eigenvalue/vector of (I − CA)

− Can be accomplished with a multilevel process
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Adaptive Smoothed Aggregation

Given A, choose simple relaxation, call it the current method, C

Iterate with the current method on CAx = 0

− If it is acceptable, stop

Approximate largest eigenvalue/vector of (I − CA)

− Can be accomplished with a multilevel process

Construct new coarse interpolation, P , and coarse-grid operator,
Ac
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Adaptive Smoothed Aggregation

Current approximation to the Null-space vector: v = (v1, v2, . . . , vn)t

P̂ =











































v1

...

vnf1

vn2

...

vnf2

vnc

...

vnfc











































Normalize

P̂ tP̂ = I

Smooth P̂

P = (I − αA)P̂

Coarse-grid operator

Ac = P tAP

Recurse
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Adaptive Smoothed Aggregation

Recursively construct V -cycle, call it the current method, C

− Don’t come back until your finished!
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Adaptive Smoothed Aggregation

Recursively construct V -cycle, call it the current method, C

− Don’t come back until your finished!

Iterate with the current method on CAx = 0

− If acceptable, stop

− Better approximation to null-space v
1

− Add new column to each aggregate v
1
, v

2
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Adaptive Smoothed Aggregation

Recursively construct V -cycle, call it the current method, C

− Don’t come back until your finished!

Iterate with the current method on CAx = 0

− If acceptable, stop

− Better approximation to null-space v
1

− Add new column to each aggregate v
1
, v

2

Recurse
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Adaptive AMG

Adaptive Flavors

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)
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Adaptive AMG

Adaptive Flavors

AMG adaptive AMG (84)

BAMG Bootstrap AMG (01)

αSA adaptive Soothed Aggregation (04)

CR Compatible Relaxation (04)

αAMG adaptive AMG (06)

αAMGr adaptive AMGr (06)

All depend on determining a local representation of

algebraically smooth vectors

Recent Advances in System Solvers – p. 47



αAMG and αAMGr

Perfect Interpolation

A =

[

Aff Afc

Acf Acc

]

P =

[

−A−1

ff Afc

I

]
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αAMG and αAMGr

Perfect Interpolation

A =

[

Aff Afc

Acf Acc

]

P =

[

−A−1

ff Afc

I

]

Choose diagonal matrix ∆ff

∆ffAfcv1
= A−1

ff Afcv1
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αAMG and αAMGr

Perfect Interpolation

A =

[

Aff Afc

Acf Acc

]

P =

[

−A−1

ff Afc

I

]

Choose diagonal matrix ∆ff

∆ffAfcv1
= A−1

ff Afcv1

Adaptive approximation to smallest eigenvalue/vector(s), v
1
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Compatible Relaxation

CR Livne(04), Brannick(05)

A =

[

Aff Afc

Acf Acc

]

P =

[

−A−1

ff Afc

I

]

Principle: Coarse grid is adequate if Aff is well conditioned
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Compatible Relaxation

CR Livne(04), Brannick(05)

A =

[

Aff Afc

Acf Acc

]

P =

[

−A−1

ff Afc

I

]

Principle: Coarse grid is adequate if Aff is well conditioned

Use simple relaxation on Aff , together with a greedy independent
set algorithm, to choose coarse grid
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Adaptive Algebraic Multigrid

αAMG and αSA surprisingly effective on a wide range of problems

Highly irregular meshes

Strongly anisotropic

Adaptively refined meshes

Discontinuous coefficients (heterogeneous material)

Singularities

Hyperbolic problems

QCD
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Adaptive AMG for Lattice QCD

Quantum Chromodynamics (QCD)
calculations involve huge linear
systems and large-scale (petascale)
computing

Requires solving the complex and
non-hermitian discretized Dirac
operator

Each equation may be solved 1000s of
times

M(U) = D(U) − m0I

=





A − m0I B

−B∗ A − m0I




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QCD: 2D Schwinger Model

The system becomes extremely ill-conditioned for typical choices of m0
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2D Schwinger Model

Form the normal equations and apply αSA

Set-up requires 100s of Work Units

− (WU = matrix vector multiply)

Interpolation requires 8 – 10 columns on each aggregate

For small mass shift, faster than the current method (Diagonally
scaled PCG) on even one right-hand side
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QCD

i ter

2 β
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Real Problem

Real Problem: 4D model – preliminary results promising
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Real Problem

Real Problem: 4D model – preliminary results promising

Real Real Problem: Dirac Equations
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Real Problem

Real Problem: 4D model – preliminary results promising

Real Real Problem: Dirac Equations

αSA allows the QCD community to do problems that they
could not do before
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Conclusions

Linear systems from PDEs require multilevel algorithms

GMG optimal for structured grids

AMG/SA effective for unstructured grids, known (near) null-space

αAMG/SA greatly expand the domain of applicability
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Conclusions

Linear systems from PDEs require multilevel algorithms

GMG optimal for structured grids

AMG/SA effective for unstructured grids, known (near) null-space

αAMG/SA greatly expand the domain of applicability

Adaptive AMG/SA a group effort
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AMG Gang
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