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Complex fluid systems…

Cell membranes

Clay-polymer nanocomposites
(Univ. College London exclaim.org.uk)

Colloidal/Amphiphilic systems
(www.science.duq.edu)

Biofilms
(www.zetacorp.com) Porous Media

(www2.bren.ucsb.edu/~keller/micromodels.html)

Biological Macromolecules
(www.hmi.de/people/kroy/rota.html)

Problem characteristics
Interfacial fluids
Multiple length scales
Phase complexity 



DFT Acronym
Quantum mechanical DFTs (QM-DFTs): 

aka electronic DFTs. 
Related but not discussed today.

Fluid DFTs (F-DFTs): 
aka classical DFTs. 
We focus on this.

Discrete Fourier Transforms (DFTs for F-DFTs):
Possible to use Fourier Transforms to work in frequency space.
FastTram: A version of Fourier Transform version of Tramonto (Mark Sears).
Restricted applicability: BCs, preconditioning.

Real-space approach: Use spatial variables.
We focus on this.
From this point on: DFT means real-space F-DFTs.



DFT for fluid structure



Applications at different scales 

Electronic structure…(1nm)3

Fluid Structure…(10 nm)3

Colloids, polymers, proteins…
(10-1000nm )3

Some apps…
• Self Assembly
• Corrosion
• Surface forces
• Adsorption in porous media
• Ion channel proteins
• Lipid bilayer membranes
• Protein solvation
• Protein-protein interactions
• Protein structure
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DFT for fluids

Ω[ρ(r)] = Fid + Fhs + FvdW + Fc + Fassoc + ρ(r)[V (r) − μ]∫

The free energy functional … (a) The theory is exact, but the 
precise nature of the equations often cannot be derived.   
(b) Approximate functionals have been developed often 
as perturbations to a hard sphere reference system.

Ideal
gas

Hard
sphere

Dispersion
attractions

Associations
(H-bonding)

Coulomb
interactions

Legendre
Transform from
Canonical to 
Grand canonical
ensemble

[Applied field]

δΩ
δρ(r) μ,T

= 0

We seek the the stationary states of the free energy functional with the
understanding that the thermodynamically relevant state should be found
at the global free energy minimum.



Properties of F-DFT systems
DFT - Integral equations of finite range

(matrix density is system size dependent)
PDE - matrix density independent of system size.

DFT- Inter-physics coupling dominates
PDE - Inter-nodal coupling dominates

DFT - Stencils based on physical constants
PDE - Stencils based on nearest neighbors

DFT - May have large numbers of DOF per node
HS (3D) 10+
Polymer (20 beads) 42+
Most DOFs are “constraints” on densities.

PDE - Usually a few DOFs per node



General Segregation Strategy

Observations:
Internodal coupling is weak.
Some DOFs have simple “one-way” dependence.

Idea: 
Organize DOFs physics-first.
Reorder blocks of DOFs to expose one-way dependences.
Apply 2-by-2 block partitioning such that one-way dependencies  
are in A11 block. 
Use Schur complement on A22 block.



General Strategy

Identify and order DOFs in      block so that           easy to apply.
Implicitly (or explicitly in some instances) form Schur complement 
system:

Solve Schur system via preconditioned GMRES.
Solve finally for     .
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Hard Sphere Problems



Hard spheres: Important observation
Frink and Salinger, J. Comp. Phys., 2000

There are two ways to form the matrix problem…

(1) implicit representation of auxillary variables, n(γ) leads to a 
“second order” matrix problem.

J(r,r' ) =
δ(r,r' )

ρ(r)
+

∂ 2Φ
∂n(ε )∂n(γ ) (r'' )

γ∑ε∑∫ ω (γ ) (r − r'' )ω (ε ) (r'−r'' )dr''

(2) explicit representation of auxillary variables, n(γ) leads to a 
“first order” matrix problem.

[ A11][Δρ] = [b]

A11 A12

A21 A22
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⎣ 
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⎦ 
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Δn(γ ) (r)
Δρ(r)
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⎠ 
⎟ =

b1

b2
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⎦ 
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Hard Sphere Formulations
Second 
Order
formulation

First order
Formulation
With nodal
ordering

First order
Formulation 
With physics
Based blocking

Expensive O(N2) fill

Expensive solve
- matrix size
- matrix conditioning

Structure is natural for 
a Schur complement 
based approach. (e.g. 
easily inverted blocks)
Fast fill / Fast solve

S = A22 − A21A11
−1A12

A11      



Results - comparison of formulations

IMP115M15M5MMatrix nonzero cnt

EXP6E21E46E2Condition Number

EXP4,91354,0434,913System Dimension

Both186.9616.9628.3Total Time
(4 Newton Steps)

45

38.4

4.0

10.8

IMP2

EXP12446Linear Solve Iterations

Both145.912.2Solve Time

IMP14.0118.0Matrix Fill

IMP110.8105.4Matrix Preprocessing

IMP2 has 
cost of

IMP1EXPStats \Form
Phase Cost \

EXP(ρ): GMRES: A

IMP1(ρ,n): GMRES: A

IMP2(ρ,n): Schur/GMRES A22  

*note no preconditioner was used for these studies.



Details of Hard Sphere Schur Complement

0A11 = I

X
• S can be applied with just matvec’s.
• Precondition S with A22. (Diagonal scaling)
• Provide option to explicitly compute S.

I

0inv(A11)  =
I

-X I

S = A22 − A21A11
−1A12



Results - parallel scaling (2D)



Results - parallel scaling (3D)

Nanopore in a membrane: (One slice in a 3D domain)



3D Hard Sphere Results
• New solver (NS): 8-4X fewer processors 
compared to old solver (OS).

• NS: Fixed linear solve cost.  
OS: Iteration creap.

• NS: Roughly linear speedup.
OS: (Very) superlinear speedup.

• NS: Storage cost of preconditioner negligible.
OS: Prec storage 3-7 times nnz(global matrix).

• NS: Far more efficient for mesh refinement.
OS: Memory costs constrain problem size.



Second class of Problems: 
Self-assembly of lipid bilayers

8-2-8 Chain



A 2nd Case…CMS-DFT / polymers

ρα (r) =
ρα

b

Nα

Gs(r)Gs
i(r)

e−βUα (r)
s=1

Nα

∑

Uα (r) = Vext (r) − cαγ (r − r')[ργ (r') − ργ
b ]∫

γ
∑ dr'

Gs(r) = e−βUα ,s w(r − r')Gs−1(r')dr'∫
Gs

i(r) = e−βUα ,s w(r − r')Gs+1
i (r')dr'∫

G1 = GN
i = e−βU(r)

)|(|
4

1)( 2 σδ
πσ

−= rrw

Chain density distribution

Mean field

Chain Architecture
(freely-jointed chains)

c(r) = crep (r) − uatt (r)
PRISM 
Theory

RPM
Approx

Chandler, McCoy, Singer (1986); 
McCoy et al. (1990s)

• developed for polymers
• chains are flexible
• 2nd order density expansion



Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

• Diagonal-like.
• One non-zero per row/col

in long dimension.
• Like Prolongation/restriction

Operators?

• 3rd block: CMS Field 
• 4th block: Prim Densities 
• Diagonal matrices.
• No spatial coupling.

• Polymer Bead Equations.
• Block Bi-diagonal.
• Akin to explicit time stepping.
• Easily invertible in parallel.

0

0 0
0 0

2n

• There is only ONE interesting block in this whole matrix.
• F describes CMS field dependence on primitive densities.
• 2.5 radius integral at each grid node (mesh independent).
•Not sparse, nor dense.  Constant coefficient.

σ



Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

• F has strong overlap:  
Distribute separate from rest of problem.

A11  A12      

A21      A22      

• Last layer of structure: 2-by-2 partitioning.
• A11 solve easily applied in parallel.
•Apply GMRES to S = A22 – A21*inv(A11)*A12
•GMRES sees 6.6x reduction in problem size.
• Reduction in size greater for longer chains. 
• Still need a preconditioner for S.



Preconditioner for S

FA22 = D11

D21 D21

FA22 ≈ A22 =
D11

0 D21

• D11, D22 = O(1),  D21 = O(1e-10)
• Ignore D21 for preconditioning.
• P(S) requires 

• 2 diagonal scalings, 
• matvec with F.

• All distributed operations.



Parallel Scaling - CMS-DFT



Scaling with chain length



Tramonto Solver API
int setNodalRowMap (int numOwnedNodes, int *GIDs)

Define global to local index row mappings.
int setNodalColMap (int numBoxNodes, int *GIDs)

Define global to local index column mappings, the rectangular box containing all ghost nodes and owned nodes.
virtual int setCoarsenedNodesList (int numCoarsenedNodes, int *GIDs)

Define the nodes on this processor that will be mesh-coarsened, must be nodes set as part of setNodalRowMap().
virtual int finalizeBlockStructure ()

Method that must be called once, when all row and column maps are set.
virtual int initializeProblemValues ()

Method that must be called each time prior to starting matrix, lhs and rhs value insertion (usually once per nonlinear iteration).
virtual int insertRhsValue (int ownedPhysicsID, int ownedNode, double value)

Insert rhs value based on ownedNode and ownedPhysicsID.
virtual int insertMatrixValue (int ownedPhysicsID, int ownedNode, int boxPhysicsID, int boxNode, double value)

Insert single matrix coefficient into system.
virtual int insertMatrixValues (int ownedPhysicsID, int ownedNode, int boxPhysicsID, int *boxNodeList, double *values, int 

numEntries)
Insert matrix coefficients for a given row, where columns are all from the same physics type at different nodes.

virtual int insertMatrixValues (int ownedPhysicsID, int ownedNode, int *boxPhysicsIDList, int boxNode, double *values, int 
numEntries)
Insert matrix coefficients for a given row, where columns are from different physics types at the same node.

virtual int finalizeProblemValues ()
Method that must be called each time matrix value insertion is complete (usually once per nonlinear iteration). 

virtual int setupSolver ()
Setup up the solver for solving the current linear problem.

virtual int solve ()
Solve the current linear problem. 

• API uses terms/structures of Tramonto.
• Independent of any particular solver.
• Specializations of BasicLinProbMgr selectively
reimplement methods.
• New methods added as solvers evolve.



Coulomb Effects

Coulomb Effects: Poisson operator (only true spatial coupling 
operator).
No interaction with G or Gi: Can place in A11.
Answer:

If direct solver feasible (1-2D on few processors): Put in A11.
If ML (3D, many processors): Put in A22.

General experience with API:
Abstractions support unintended situations: e.g., coarsening.
Provides flexibility going forward.



Polymer A11 Block:
Some implementation details

To Apply A11 inverse:
Form rectangular matrices Bi in lower triangle.
Apply matvecs using Bi, followed by diagonal scaling using A11

ii.

11
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21 22
11 11

11 31 32
11 11

41 42 43 44
11 11 11 11

11
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0

()ii

A
A A

A
A A
A A A A

A diag

⎡ ⎤
⎢ ⎥
⎢ ⎥=
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Glimpse of Data Mapping  using Epetra

2 PEs, full matrix maps:
On PE 0: DomainMap = RangeMap = {0, 2, 4, 6}
On PE 1: DomainMap = RangeMap = {1, 3, 5, 7}

When forming submatrices:
Store each block Bi as individual Epetra_CrsMatrix.
For each submatrix: 

• Use the global ID space of full matrix.
• Use domain/range maps of full matrix.

Easy to form many individual submatrices since global 
index space the same.

11

22

31 32 33

41 42 44

51 52 53 54 55

61 62 63 64 66

71 72 73 74 75 76 77

81 82 83 84 85 86 88

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0
0 0 0

0
0

a
a

a a a
a a a
a a a a a
a a a a a
a a a a a a a
a a a a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A11 
2-node mesh
4 DOFs/node

B4

B3

B2



A11 Stats for Polymer A11 block 

38 DOFs in A11 : 37 Epetra_CrsMatrix objects.
ApplyInverse call requires 38 parallel vector updates 
interleaved with 37 matvecs.
This is for 18-length polymer chain.
100-length chain: 199 Epetra_CrsMatrices.



Partitioning of F Block: One Case study

Tramonto 2DLipidFMat

Hypergraph partitioning produces partitions with 
lower communication volume than graph 
partitioning.
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Performance
Tramonto (2DLipidFMat) MatVec 

MFLOPS (8 Procs)
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Graph
Hypergraph

Hypergraph partitioning yields 
more MFLOPS in linear solve 
than graph partitioning.



Quantifying the computing challenge

HS: 1 comp.
HS+Poisson: 3 comp.
LJ Att: 1comp.
5-mer bonded hard chain

“Modeling” Calculations
O(1-100) solutions

“Design” Calculations
O(1000) solutions

“Embedded” Calculations
O(10000+) solutionst ∝ (N / proc)~1.3

32-512 procs / Tbird platform



Summary

Emphasis on algorithms has impacted applications 
work in a significant way.

Many complex 3D systems can be studied now.

Much more work to be done
• Parallel Partitioning
• DFTs with greater complexity
• Optimization of preconditioners
• Solution complexity and physical phases
• Design applications
• Coupled (multiscale) methods
• Other better approaches



Summary, cont.
New family of scalable solvers for complex fluid systems in Tramonto.
Properties:

No tuning parameters.
Robust to processor count increase.
5-20 times memory use reduction over previous approaches.
O(10)-O(100) reduced implicit problem size.
Nearly linear scalability in: processor count, mesh density, 
polymer chain length.
Candidate for petascale class computing.

Enables:
Fundamentally new calculations for important bio problems.  Quotes from Physical 
Review Letters referees on computations using these solvers:

• “This is (to my knowledge) the first time [Fluid] DFT has been used to analyze the 
important problem of pore structure in biological membranes.”

• “This appears to me to be a highly significant advance in theoretical biophyics, even by 
the high standards of Physical Review Letters. I suspect that this Sandia group is the only 
one in the world to have developed classical DFT methods sufficiently sophisticated to 
deal with such a remarkably complex problem in colloidal physics…”

• “…I would then recommend at least a footnote that gives some introductory hint as to 
how they have managed to cope numerically with such 
complex structures; presumably a 3d finite element method with 
all manner of tricks?

The “tricks” are the solvers.
Parallel Segregated Schur Complement Methods for Fluid Density Functional
Theories, M. Heroux, L. Frink, A. Salinger to appear in SIAM SISC.
Tramonto first public release this year.

Cell membranes

Colloidal/Amphiphilic systems 
(www.science.duq.edu)

Biological Macromolecules
(www.hmi.de/people/kroy/rota.html)



http://software.sandia.gov/tramonto



3D Studies of Antimicrobial Peptide Assemblies
in lipid bilayers with CMS-DFT…



1D: polymer/nanoparticles
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2D: porous media

Competing phases / multiple solutions
3D: AMP assemblies in CG
Lipid bilayer membranes



Pseudo Arc-length Continuation Solves 
for Solution and Parameter 

Simultaneously



Extra slides



The trivial part - the ideal gas

Fid = ρ(r)[ln ρ(r) −1]dr∫
The free energy of an ideal gas fluid can be written exactly as:

δΩ
δρ(z) μ,T

= ln ρ(z) + V (z) / kT − μ = 0

μ = − ln ρ0

ln ρ(z) / ρ0 = −V (z) / kT

ln p(z) / p0 = −gh / RT

For an ideal gas in a gravitational field we find:

Barometric pressure



The simplest non-trivial system - the 
hard sphere fluid.

In the bulk, a very good equation of state is known for the hard sphere
Fluid - it is the Carnahan-Starling equation, and is exact.

Local density approximations based on the Carnahan-Starling 
equation result in slowly varying and incorrect density profiles for 
hard spheres near hard surface.  They overestimate the energy 
penalty associated with packing at the solid interface

p / kT =
1+ η + η2 + η3

(1−η)3
η =

πσ 3

6
ρ



The hard sphere fluid…

Fhs = Φ(n(γ ) )dr∫

n(γ ) (r) = ω (γ ) (r − r' )ρ(r' )dr'∫

In practice, accurate DFTs take a nonlocal approach to defining the 
volume exclusion contributions to the free energy functional.

• These nonlocal density approaches can be very accurate in 
predicting the structure of interfacial fluids.

• Free energy density: a function of weighted average of all densities 
in nearby region of fluid.



The Euler-Lagrange equations…

δΩ
δρ(r) μ,T

= 0

We seek the the stationary states of the free energy functional with the
understanding that the thermodynamically relevant state should be found
At the global free energy minimum.

0 = ln ρ(r) +
∂Φ

∂n(γ ) (r' )
γ∑∫ δn(γ ) (r' )

δρ(r)
dr'+[V (r) − μ]

0 = ln ρ(r) +
∂Φ

∂n(γ ) (r' )
γ∑∫ ω (γ ) (r − r' )dr'+[V (r) − μ]

ρ
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Free Energy

Ω[ρ(r)] = Fid + Fhs + ρ(r)[V(r) −μ]∫

n(γ ) (r) = ω (γ ) (r − r' )ρ(r' )dr'∫Given that:

Our residual is:



A closer look at the blocks…

A22(r,r' ) =
δ(r,r' )

ρ(r)

A11
(γε ) (r,r' ) = δ(γε ) (r,r' ) A12

(γ ) (r,r' ) = ω (γ ) (r,r' )

A21
ε (r,r' ) =

∂
∂n(ε )

∂Φ
∂n(γ )γ∑ (r' )ω (γ ) (r − r' ) diagonal

unity constant

We are solving two residual equations simultaneously: 

R2 = 0 = ln ρ(r) +
∂Φ

∂n(γ ) (r' )
γ∑∫ ω (γ ) (r − r' )dr'+[V (r) − μ]

R1 = n(γ ) (r) − ω (γ ) (r − r' )ρ(r' )dr'∫

This linearized system leads to the following block 
Jacobian entries:

A11 A12

A21 A22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Δn(γ ) (r)
Δρ(r)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

b1

b2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 



Materials modeling tools
Sub-nanoscale

Mesoscale

Nanoscale

Macroscale

Q-DFT

Orstein-Zernike LST

Helfrich/Elasticity Models

Ginzberg-Landau

Deterministic
Approaches

Q-MC

QM-MM

Brownian-Dynamics

Lattice-Boltzman

DSMC

Lattice-Based MTs

Monte Carlo
Molecular Dynamics

Statistical 
Sampling
Approaches

Continuum
Mechanics
(PDEs)

Optimization
Continuation
Bifurcation

Self-Consistent Field Theory
Fluid-DFTs



DFT for fluids…

V (r) → ρ(r)
Density
profile

External
field

• General and flexible approach with broad application space
• Reasonably accurate in many cases - well developed for reference fluids.
• May be applied at many length scales

o Nanoscale: atomic / molecular /polymer systems
o Mesoscale: coarse-grained models (Colloids, Proteins, Cells)
o Mesoscale: lattice models (porous media)

Q-DFT: Electronic Structure

e-

e-e-

e- e-
e-

e-

e-



From a computing perspective…
Free energy functionals are approximate … many flavors.

Difficult to find a canonical problem for methods development.

Numerical methods for F-DFTs lags behind more widely used 
computational methods (PDEs / MD / Electronic Structure).

Systems with 2 dimensions of symmetry have been most widely studied.

polymer
σ

nanoparticle

2R

Experiment:
PS nanoparticles go to the surface
(Krishnan et al., Langmuir, 2005)

DFT/MD:
E. S. McGarrity and M. E. Mackay (MSU),

A.L. Frischknecht (Sandia)

Nanocomposite thin films



Algorithms work

Develop solver strategies specific to F-DFTs for parallel (and serial) 
computational platforms.  

Some general strategies
Some problem specific implementations

Couple solver methods with engineering analysis tools
Arc-length continuation
Multi-state tracking
Optimization

Goal : Develop general and robust algorithms for F-DFTs in 
complex geometries (including 3D) for broad classes of 
fluids (atomistic to polymers).



Ω[ρ(r)] = Fid + Fhs + FvdW + Fc + Fassoc + ρ(r)[V (r) − μ]∫
Ideal
gas

Hard
sphere

Dispersion
attractions

Associations
(H-bonding)

Coulomb
interactions

Legendre
Transform from
Canonical to 
Grand canonical
ensemble

[Applied field]

One class of DFTs: perturbations to a hard sphere reference fluid…

δΩ
δρi(r) μ,T

= 0

δ
δρ

f [ρ]* g[n[ρ]]dr∫( )=
∂f
∂ρ

g[n[ρ]] + f [ρ]∂g
∂n∫ δn

δρ
dr

g[n] = Φ
f [ρ] =1

1



Residuals and Jacobians
δΩ

δρi(r)
=

∂Φ
∂nγ

(r')
δnγ (r')
δρi(r)γ∑∫ dr'

nγ[{ρi(r)}]= dr'ρi(r')wi
(γ )(r − r';Ri)∫i∑

wi
(γ )(| r − r'|) = Cγδ(| r − r'|−Ri)

wi
(γ )(| r − r'|) = Cγθ(| r − r'|−Ri)

Integral Eqns
Of Finite Range!

δΩ
δρi(r)

= ...+ ∂Φ
∂nγ

(r')wi
(γ )(r − r')

γ∑∫ dr'+...Residual

Aij (r,r') =
δ 2Ω

δρi(r)δρ j (r')
= ...+ ∂ 2Φ

∂nγ∂nε

(r' ')wi
(γ )(r − r' ')w j

(ε )(r'−r' ')
γ∑ε∑∫ dr' '+...

Jacobian



Two ways to form the matrix problem…

(1) “second order” in complexity in forming the system of equations.

[A][Δρ] = [b]

(2) Reduced fill complexity.

A11 A12

A21 A22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Δn(r)
Δρ(r)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

b1

b2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

R2 = 0 = ...+ ∂Φ
∂n

(r')∫ w(r − r')dr'+...

R1 = 0 = n(r) − w(r − r')ρ(r')dr'∫
A11 = I
A12 = −ω(r − r')

A21 =
∂ 2Φ
∂n2 ω(r − r')

A21 =
δ(r,r')
ρ(r)

Aij (r,r') =
δ2Ω

δρi(r)δρ j (r')
= ...+ ∂2Φ

∂nγ∂nε

(r' ')wi
(γ )(r − r' ')w j

(ε )(r'−r' ')
γ∑ε∑∫ dr' '+...



Two ways to order the matrix…
Example:
Hard-sphere problem

Subblock Nonzeros

A11 10,935

A12 176,932

A21 353,864

A22 729

Nodal 
Ordering

Physics Block
Ordering Block Matrix

Nonzeros



Properties of F-DFT systems
DFT - Integral equations of finite range

(matrix density is system size dependent)
PDE - matrix density independent of system size.

DFT- Inter-physics coupling dominates
PDE - Inter-nodal coupling dominates

DFT - Stencils based on physical constants
PDE - Stencils based on nearest neighbors

DFT - May have large numbers of DOF per node
HS (3D) 10+
Polymer (20 beads) 42+

PDE - Usually a few DOFs per node



Solving F-DFTs on parallel computers
1. A11

-1 easy to compute (or apply) --> can form (or apply 
implicitly) S easily in parallel

2. Dimension of S is much smaller than A: iterative methods (e.g. 
GMRES) will typically converge faster in parallel.

3. Given an equal partitioning, parallel execution will be well-
balanced and produce identical results independent of the 
number of processors.



Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

• Diagonal-like.
• One non-zero per row/col

in long dimension.
• Like Prolongation/restriction

Operators?

• 3rd block: CMS Field 
• 4th block: Prim Densities 
• Diagonal matrices.
• See? No spatial coupling!

• Polymer Bead Equations.
• Block Bi-diagonal.
• Akin to explicit time stepping.
• Easily invertible in parallel.

0

0 0
0 0

2n

• There is only ONE interesting block in this whole matrix!!
• F describes CMS field dependence on primitive densities.
• 2.5 radius integral at each grid node (mesh independent).
• Well-conditioned matrix with strong main diagonal.
• Not sparse, nor dense.  Constant coefficient.



A22      

Lipid Bi-Layer Problem

0
0 00 0

0 0
0

F0 0 0
0

0

0 0

0
0 0

0

0

0

0

0

0

19n

19n

3n

3n

A11  A12      

A21      

• Last layer of structure: 2-by-2 partitioning.
• A11 solve easily applied in parallel.
•Apply GMRES to S = A22 – A21*inv(A22)*A12
• Use block GS on approx A22 as prec for S.
•GMRES sees 6.6x reduction in problem size.
• Reduction in size greater for longer chains. 

• Density dependence on CMS field is O(e-10).
• All other matrix coefficients are O(1).
• Ignore these small terms for preconditioning.
• Introduces spatial parallelism.
• Approximate inv(A22) using block Gauss-Seidel.

0



Properties of New Solver

This general approach has many favorable properties:
If mesh nodes are uniformly distributed, work will also be.
Each substep of preconditioner is naturally parallel:

• Results invariant to processor count up to round-off.
Preconditioner requires almost no extra memory over storage of 
matrix:  Memory reduction of 4-10 X over previous approach.
GMRES subspace and storage reduced 6X-10X or more.
Speedup 20-2X (difference goes down as PE count grows).
Solver has:

• No tuning parameters.
• Near linear scaling.

Increased problem sizes (in domain size and mesh refinement).


