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Collaborators

= Laurie Frink:
+ Primary developer of Tramonto.
+ Expertise: computational modeling of inhomogeneous fluids.
= Andy Salinger:
¢ Other primary Tramonto developer.
+ Expertise: discretization methods and parallel application design.

= My Role:
+ Solver algorithms.
+ Parallel implementation.
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DFT Acronym

Quantum mechanical DFTs (QM-DFTs):
¢ aka electronic DFTs.
+ Related but not discussed today.

Fluid DFTs (F-DFTs):
+ aka classical DFTs.
+ \We focus on this.

Discrete Fourier Transforms (DFTs for F-DFTSs):
+ Possible to use Fourier Transforms to work in frequency space.
¢ FastTram: A version of Fourier Transform version of Tramonto (Mark Sears).
+ Restricted applicability: BCs, preconditioning.
Real-space approach: Use spatial variables.
+ We focus on this.
¢ From this point on: DFT means real-space F-DFTs.
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DFT for fluid structure
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Applications at different scales

Electronic structure...(1nm)3
Fluid Structure...(10 nm)3

Colloids, polymers, proteins...

(10-1000nm )3

Some apps...

» Self Assembly

« Corrosion

» Surface forces

» Adsorption in porous media
 lon channel proteins

* Lipid bilayer membranes
 Protein solvation
 Protein-protein interactions
 Protein structure
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DFT for fluids

The free energy functional ... (a) The theory is exact, but the
precise nature of the equations often cannot be derived.
(b) Approximate functionals have been developed often
as perturbations to a hard sphere reference system.

Coulomb Associations -
interactions (H-bonding). [Applied field]

QLA(N)] = Fy + Fog+ Fagy + F, + Fagoe + | p(NIV (1) =4

Ideal Hard Dispersion

gas sphere attractions Legendre

Transform from
Canonical to
Grand canonical
ensemble

We seek the the stationary states of the free energy functional with the
understanding that the thermodynamically relevant state should be found

at the global free energy minimum.
2.9

510 ( r) u,T ng"ﬁdia |
ona
Laboratories




Properties of F-DFT systems

DFT - Integral equations of finite range
(matrix density is system size dependent)
PDE - matrix density independent of system size.

DFT- Inter-physics coupling dominates

PDE - Inter-nodal coupling dominates T

A1N

DFT - Stencils based on physical constants

PDE - Stencils based on nearest neighbors

DFT - May have large numbers of DOF per node
HS (3D) 10+
Polymer (20 beads) 42+
Most DOFs are “constraints” on densities.
PDE - Usually a few DOFs per node
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General Segregation Strategy

= QObservations:
+ Internodal coupling is weak.
¢ Some DOFs have simple “one-way” dependence.

» |dea:
+ Organize DOFs physics-first.
+ Reorder blocks of DOFs to expose one-way dependences.

* Apply 2-by-2 block partitioning such that one-way dependencies
are in A, block.

¢ Use Schur complement on A, block.
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General Strategy

11 17 1 41 1k 1 1
/ A11 L A11 Au tr Al? \ / L1 \ / bi \
71 i3 71 17 7 7
F TS F R NNTIY LR P I I PO I IR
7+1, 7+1,7 1,7+ 7+1, i+ — 7+
A21 s A21 AQQ ' AQQ Lo ‘52
k1l ki k.j+1 kk k k
\ AQ]_ rons AQ]_ AQQ ' AQQ / \ IQ / \ b? /

= |dentify and order DOFs in A; block so that Ail_l easy to apply.
= Implicitly (or explicitly in some instances) form Schur complement

ystem sz = (Azz o A21A11_1A12)X2 = bz o AZlAll_lbl

= Solve Schur system via preconditioned GMRES.
= Solve finally for x .
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Hard Sphere Problems
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Hard spheres: Important observation

Frink and Salinger, J. Comp. Phys., 2000
There are two ways to form the matrix problem...

(1) implicit representation of auxillary variables, n) leads to a
“second order” matrix problem.

5(rr)
J
(== I Y

— (Mo (r-r"o"(r'=r")dr"

éh(a")éh(V)

[A1[Ap] =[D]

(2) explicit representation of auxillary variables, n) leads to a
“first order” matrix problem.

{An AlZ:[An(y)(r)]_|:bl:|
Ay Apl Ap(r) i b,
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Hard Sphere Formulations

Second : N £
Order > Expensive O(N?) fill
formulation
First order
Formulation > Expensive solve
With nodal - matrix size
Qiering - matrix conditioning

_ Structure is natural for
ngmgteign a Schur complement
With physics based approach. (e.g.

easily inverted blocks)
Fast fill / Fast solve

S=Ay,— A21A1_11A12 Hs?]ﬁndir?al_

Laboratories
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Results - comparison of formulations

Stats \Form EXP IMP1 IMP2 IMP2 has
Phase Cost \ cost of
EXP(p): GMRES: A
IMP1(p,n): GMRES: A
' hY
" hY
: \
N
~NANASANASY
e *note no preconditioner was used for these studies.
IMP2(p,n): Schur/GMRES A,,
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Detalls of Hard Sphere Schur Complement

S= Azz — A21A1_11A12
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Told/ Tnew

#Procs | <# Lin iters> || Time/N;ter Ty proc/T
Old Old | New (New)

1 8 495.1 | 14.7 1

2 10 148.7 | 8.5 1.7
4 11 47.4 4.2 3.5
8 12 16.1 2.1 6.9
16 13 6.3 1.1 13.3
32 15 2.1 0.6 24.8
64 18 1.1 0.3 43.1




Results - parallel scaling (3D)

8" | [oensiy
i 1, 1 ] 195
] 175

155
1.35
1.15
0.93
0.75
0.55
0.35
015

Nanopore in a membrane: (One slice in a 3D domain)

To-!d/Tnew

#Procs | Niter || <7 Lin iters> || Time/Nye, Taproc/T
Old New Old New (New)
4 11 - - 117.4 1
8 11 - - 61.0 1.9
16 11 T 544*(6) | 29.8 3.9
32 11 73 154.5 16.7 7.0
64 11 80 55.4 3.3 14.1
128 11 89 19.9 4.7 24.8




e Results

T]_BP?‘OC/T TOLD/T
Old | New Ratio
- 0.25 -
“ 0.48 e
i) 1 i
‘ : 3.3 1.8 9.3
64 11 80 76 608.9 91.4 9.3 3.6 6.7
128 11 89 76 219.2 51.9 25.9 | 6.3 4.2
Az Niter || <# Lin iters> | Solve Time/Niter || T/TA,—g.2 Torp/T
Old New Old New Old | New Ratio
a/5 7 45 44 17.16 4.14 il 1 4.14
a/T 8 51 49 150.51 18.87 8.8 4.55 8.0
c/10 9 . 51 . 121.11 — 29.25 e
TABLE 6.2

Results for a 3D Hard sphere test problem. The second column now contains the number of
nonlinear tterations needed to solve the problem. For a description of all other columns see the
table I caption. All date in the upper part of the table were generated with o mesh spacing of
Az = o/5, and with a bulk density of po® = 0.75. All data in the lower part of the table were
generated on 128 processors with a bulk density of po® = 0.6.
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Second class of Problems:
Self-assembly of lipid bilayers

8-2-8 Chalin
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A 2nd Case...CMS-DFT / polymers

* developed for polymers

e chains are flexible Chandler, McCoy, Singer (1986);
» 27 order density expansion McCoy etal. (1990s)
_ A3 GG O
pa(r) = N RNG Chain density distribution
a s=1

B B o AN L ean field
U, (r) =Ve.(r) ;.[Cay(r I’)[py(r) py]dl’ C(r)M:Crep(r)_uatt(r)

_ AU ( PRISM RPM
G,(r)=e " | w(r-r)Gg,(r')dr Theory  Approx
G!(r)= g Mo J w(r— G, (rdr Chain Architecture

. (freely-jointed chains)
G, =G, =e™"

1
W(I) =
(r) Aot

o(lr|-o)
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Preconditioner for S
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Parallel Scaling - CMS-DFT

0203050607091.01.21.31.4

#Procs || Niter | <# Lin iters> || Time/Nje, T1proc/T Truna/Tsa22
FullA | SAR?2 FullA SA22 (SA22)
1 9 - 88 1
2 9 - 45 2.0
4 9 25 290*(8) 26.2 3.4
8 9 28 77 12 7.3
16 10 33 23 6.7 13.1
32 8 40 7.1 3.8 23.2
64 9 46 2.8 2.2 40.0
128 9 Hy 1.4 1.8 49.0




Scaling with chain length

0203050607091.01.21.31.4

Truna/Tsase

Nieg Niter | <# Lin iters> | Time/Nje, T/Tn..,=10
FullA | SA22 FullA SA22 (SA22)
40 70 7.1 3.7 1
43 69 21.7 8.9 2.4
62 70 58.7 15.1 4.1
93 68 257.4 30.9 8.4




dft_BasicLinProbMgr

Tramonto Solver API

dft_HardSphereLinProbMgr dft_PolyLinProbMgr
int setNodalRowMap (int numOwnedNodes, int *GIDs)
Define global to local index row mappings.
int setNodalColMap (int numBoxNodes, int *GIDs)

Define global to local index column mappings, the rectangular box containing all ghost nodes and owned nodes.
virtual it

Define the nodes on this processy that will be mesh-coarsened, must be nodes set as part of setNodalRowMap().
virtual int finalizeBlockStructure ()

Method that must be called once, whena

virtual int initializeProblemValues ()
Method that must be called each time prior to starting matrix, Ih
virtual int insertRhsValue (int ownedPhysicsID, in
Insert rhs value based on ownedNode and ownedPhysi
virtual int insertMatrixValue (int ownedPhysicsID, int ownedNo
Insert single matrix coefficient into system.
virtual int insertMatrixValues (int ownedPhysicsID, int ownedNq

numEntries)
Insert matrix coefficients for a given row, where columns are all from the same physics type at different nodes.

virtual int insertMatrixValues (int ownedPhysicsID, int ownedNode, int *boxPhysicsIDL.ist, int boxNode, double *values, int
numEntries)

Insert matrix coefficients for a given row, where columns are from different physics types at the same node.
virtual int finalizeProblemValues ()

Method that must be called each time matrix value insertion is complete (usually once per nonlinear iteration).
virtual int setupSolver ()

Setup up the solver for solving the current linear problem.

virtual int solve () Sandia
Solve the current linear problem. National



Coulomb Effects

11 17 1,7+1 1k 1 1
/ Aqy A11 Au t Aq3 \ / I3 \ / by \
A '1 i} Aﬁ Ai{ 1 T — Aﬁ E —T$j = __1_5{
7+1, 7+1.7 71,7+ 7+1, 7+ — 7+
Ay e Agy Adg o Agg Lo by
k1 kj k,j+1 kk k k
\ Agy o Agy Aoy o A3 / \ Ty / \ b3 )

Coulomb Effects: Poisson operator (only true spatial coupling
operator).
No interaction with G or G': Can place in A;.
Answer:
+ If direct solver feasible (1-2D on few processors): Put in A, ;.
+ If ML (3D, many processors): Put in A,,.
General experience with API.
+ Abstractions support unintended situations: e.g., coarsening.
+ Provides flexibility going forward. Sondia
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Polymer A,; Block:
Some implementation details

Aﬂll 0 0

Allii = diag()

= To Apply A, inverse:
+ Form rectangular matrices B! in lower triangle. )
+ Apply matvecs using Bi, followed by diagonal scaling using A,; .



" Ay

Glimpse of Data Mapping using Epetra

2-node mesh
4 DOFs/node

= 2 PEs, full matrix maps:
¢+ On PE 0: DomainMap = RangeMap = {0, 2, 4, 6}
¢+ On PE 1: DomainMap = RangeMap = {1, 3,5, 7}
= When forming submatrices:
+ Store each block B' as individual Epetra_CrsMatrix.

¢ For each submatrix:
o Use the global ID space of full matrix.
» Use domain/range maps of full matrix.

* Easy to form many individual submatrices since global
index space the same.

Sandia



A,, Stats for Polymer A,, block

38 DOFs in A, : 37 Epetra_CrsMatrix objects.

Applylnverse call requires 38 parallel vector updates
Interleaved with 37 matvecs.

This is for 18-length polymer chain.
100-length chain: 199 Epetra_CrsMatrices.
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Partitioning of F Block: One Case study

= Hypergraph partitioning produces partitions with
lower communication volume than graph
partitioning.

I 1NN ) i
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Performance

Tramonto (2DLipidFMat) MatVec

Hypergraph partitioning yields
more MFLOPS in linear solve
than graph partitioning.

MFLOPS

MFLOPS (8 Procs)

1800
1600
1400
1200
1000 ELinear
B Graph
800 M Hypergraph

600

400 -

200 A

Beowulf Liberty
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Quantifying the computing challenge

10"

F32-512 procs / Third platform

r “Modeling” Calculations
oo 2 O(1-100) solutions

-
o
w

“Design” Calculations
O(1000) solutions

Time(sec) per NL iteration

“Embedded” Calculations
O(10000+) solutions

10° 10°* 10°
Nunk(A,,)/Nproc

HS: 1 comp.
HS+Poisson: 3 comp.
LJ Att: 1lcomp.

5-mer bonded hard chain
Sandia



Summary

Emphasis on algorithms has impacted applications
work in a significant way.

Many complex 3D systems can be studied now.

Much more work to be done
e Parallel Partitioning
« DFTs with greater complexity
e Optimization of preconditioners
e Solution complexity and physical phases
« Design applications
« Coupled (multiscale) methods
e Other better approaches
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Summary, cont.

= New family of scalable solvers for complex fluid systems in Tramonto.

= Properties:
+ No tuning parameters.
Robust to processor count increase.
5-20 times memory use reduction over previous approaches.
0O(10)-0(100) reduced implicit problem size.
Nearly linear scalability in: processor count, mesh density,

* & o o

Biological Macromolecules

pOIymer Chaln Iength (www.hmi.de/people/kroy/rota.html)
¢ Candidate for petascale class computing.

= Enables:
+ Fundamentally new calculations for important bio problems. Quotes from Physical

Review Letters referees on computations using these solvers:

* “This is (to my knowledge) the first time [Fluid] DFT has been used to analyze the
Important problem of pore structure in biological membranes.”

» “This appears to me to be a highly significant advance in theoretical biophyics, even by
the high standards of Physical Review Letters. | suspect that this Sandia group is the only
one in the world to have developed classical DFT methods sufficiently sophisticated to
deal with such a remarkably complex problem in colloidal physics...”

Colloidal/Amphiphilic systems - *“___ | would then recommend at least a footnote that gives some introductory hint as to
rseience dua e how they have managed to cope numerically with such
complex structures; presumably a 3d finite element method with
all manner of tricks?

The “tricks” are the solvers.

+ Parallel Segregated Schur Complement Methods for Fluid Density Functional
Theories, M. Heroux, L. Frink, A. Salinger to appear in SIAM SISC.

+ Tramonto first public release this year.

Cell membranes
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Welcome to the Tramonto home page: Software for Nanostructured Fluids in materials and biclogy

Projectgoals ..

This project is based at Sandia National Laboratories, and Is focused on develeping melecular theory based
computational tools for predicting the structure and properties of fluids at the nanoscale near surfaces and
macromolecules. At this length scale flulds are inhomogenecus and commeon approximations for bulk fluids such
as incompressibility do not apply. The specific capabilities of Tramonto and the related FasTram software
packages are detailed in the Capability links to the left. In both cases, the molecular theories treated by tha
codes are fluld density functional theories (F-DFTs). These theories compute fluid structure near surfaces or as a
result of self-assembly In contrast to guantum density functional theores [Q-DFTs) which are widely used to
compute electronic structure of materials.

s el S A e

Fluids Density Functional Theory approaches have been used to study a wide range of physical systems. Some
examples are: fluids at interfaces, surface forces, colloidal fluids, wetting, porous media, capillary condensation,
interfacial phase transitions, nucleation phenomena, freezing, self-assembly, lipid bilayers, ion channel proteins,
solvation of surfaces and molecules. The characteristic particle size in F-DFT models ranges from atoms (e.g
Argon) to colloidal particles, proteins, or cells. Thus these F-DFT approaches provide a multiscale framework for
studying the physcis of many complex fluid systems. Some of these applications are represented in the
publication list on the left, others may be found in a very diverse literature. The Tramonto code does not capture
all of the F-DFT approaches that have been developed to date, but can be extended to new theories and models.

Motivation - a Scientific Computing perspective.

Until recently, application of F-DFTs to problems in inhomogeneous fluids was limited primarily to systems with
two dimensions of symmetry allowing for 1-dimensional computations. In that domain, fast calculations can be
performed on single processer computers using algorithms of limited sophistication (e.g. Picard iterations).

Two and three dimensional calculations for F-DFTs are much more costly due to the integral nature of the

systems of equations. To understand the computational cost, consider the differences between partial differential
equations (PDEs) and the integral equations associated with F-DFTs. The nodes in PDEs generally interact only
with nearest neighbors or next nearest neighbors often resulting in diagonally dominant sparse matrices. As the
mesh is refined the number of interactions remains constant although there are more nodes to process. In the
case of DFTs the range of the integration stencils is significantly longer based on the underlying physics included in



3D Studies of Antimicrobial Peptide Assemblies
In lipid bilayers with CMS-DFT...




Competing phases / multiple solutions

1D: polymer/nanoparticles
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3D: AMP assemblies in CG
Lipid bilayer membranes




Pseudo Arc-length Continuation Solves

for Solution and Parameter
Simultaneously

(wia pz’) + (AS)V

(wi’ pi)
—)

f(x,p) =0

V(e —x;) + Vp(p — ps) = As

1




Extra slides

Sandia
National



The trivial part - the ideal gas

The free energy of an ideal gas fluid can be written exactly as:

Fo = | p(r)[In p(r)~1]dr

), In p(2) +V (2)/ KT — u=0

p=—Inp,
Inp(z)/ p,=-V(z)/ KT

For an ideal gas in a gravitational field we find:

Inp(z)/ p,=—gh/RT |—— Barometric pressure

Sandia
National



The simplest non-trivial system - the
hard sphere fluid.

In the bulk, a very good equation of state is known for the hard sphere
Fluid - it is the Carnahan-Starling equation, and is exact.

1+ n+n°+n° 77_7w3

(1-7)’ 6
Local density approximations based on the Carnahan-Starling
equation result in slowly varying and incorrect density profiles for

hard spheres near hard surface. They overestimate the energy
penalty associated with packing at the solid interface

p/KT =

o,

Sandia
National
Laboratories



The hard sphere fluid...

In practice, accurate DFTs take a nonlocal approach to defining the
volume exclusion contributions to the free energy functional.

Fo= | ©(n)dr

nO(r)= | @ (r—r)p(r)dr

» These nonlocal density approaches can be very accurate in
predicting the structure of interfacial fluids.

 Free energy density: a function of weighted average of all densities
In nearby region of fluid.

Sandia
National
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The Euler-Lagrange equations...

We seek the the stationary states of the free energy functional with the
understanding that the thermodynamically relevant state should be found

At the global free energy minimum.
&2 _ O ;OZ—
5p( r) wT *501_

QLA =Fy+F+ | o0V (r) -4 |

\ Free Energy
-0'%].-004 — ‘0.005‘ — ‘0.006‘ — ‘0.007‘ — 6.008
p

(N
0=1np(r)+ nyﬁ) (r')ip((rr))dr#[V(r)—y]

Given that: n"(r)= J o (r—r)p(r)dr

: : D
Our residual is: 0=1Inp(r)+ j ZyW(r Jo'” (r —r)dr +[V (r) - 4
Sandia
National
Laboratories



A closer look at the blocks...

A A{An%r)}jbﬂ
LAZl Ayl Ap(r) _Lsz

We are solving two residual equations simultaneously:
R, =n(r)= | @ (r—r)p(r)dr

R,=0=Inp(r)+ ij%(r ) (r = )dr +[V (r) — 4]

This linearized system leads to the following block
Jacobian entries:

unity A% (r,r)=8"(r,r) AP (r,r)=w”(r,r) constant
f e 0 72O NN . . o(rr) .
Aurr)=— 2, — (e (r=r) Ap(rP)=="os>  diagona .

National
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Materials modeling tools

Q-DFT Deterministic
Approaches

Orstein-Zernike LST

Fluid-DFTs
Self-Consistent Field Theor

Lattice-Based MTs
Helfrich/Elasticity Models

Ginzberg-Landau

Continuum
Mechanics
(PDES)

Optimization
Continuation
Bifurcation




DFT for fluids...

V(r)— p(r)
External Density
field profile

* General and flexible approach with broad application space
* Reasonably accurate in many cases - well developed for reference fluids.
« May be applied at many length scales

o Nanoscale: atomic / molecular /polymer systems

0 Mesoscale: coarse-grained models (Colloids, Proteins, Cells)

0 Mesoscale: lattice models (porous media)

Q-DFT: Electronic Structure
e e e-
e 09 of 0©
e" @) . O :
_ Sandia
e National
Laboratories




From a computing perspective...

= Free energy functionals are approximate ... many flavors.

= Difficult to find a canonical problem for methods development.

= Numerical methods for F-DFTs lags behind more widely used
computational methods (PDEs / MD / Electronic Structure).

Systems with 2 dimensions of symmetry have been most widely studied.

Nanocomposite thin films

Experiment:

PS nanoparticles go to the surface
(Krishnan et al., Langmuir, 2005)

DFT/MD:
E. S. McGarrity and M. E. Mackay (MSU),
A.L. Frischknecht (Sandia)

248F

2

[ o MD, nancpanicies

| — DFT. nanoparticles | .ﬁ
©—MD, polymaer | 1

=01

2

o
polymer

.izR

nanoparticle
Sandia
National
Laboratories
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Algorithms work

Goal : Develop general and robust algorithms for F-DFTs in
complex geometries (including 3D) for broad classes of

fluids (atomistic to polymers).

Develop solver strategies specific to F-DFTs for parallel (and serial)

computational platforms.
¢ Some general strategies
+ Some problem specific implementations

Couple solver methods with engineering analysis tools
+ Arc-length continuation
+ Multi-state tracking
¢ Optimization

Sandia
National
Laboratories



One class of DFTs: perturbations to a hard sphere reference fluid...

QLA(N)] = Fy + Fog+ Fgy + F, + Fagoe + | p(NIV (1) =4

A2 =0
5pi(r)lu,T

Legendre
Transform from
Canonical to
Grand canonical
ensemble

1

5%(] f[p]*g[n[p]]dr)=§—p p]]+mg—2dr

flpl=1
gln]=@

Sandia
National
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Residuals and Jacobians

ab ()
—( )
5p.(r) JZ p.(r)
ny[{Pi(r)}]:Zi J drp(rwd(r-r'R) Integral Eqns
wO(|r—r)=C,&(r-r|-R) Of Finite Range!
w(r—r)=C,&r-r|-R)

_[Z (r W (r—r')dr'+...

Residual
sdual 5,0
Jacobian 20 20
1 (7) _ 1 (8) l_ [} 1
A () = CTIGIR IZ&ZW’hya’hg (ryW(r = r)wO(r—r)dr+..
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Two ways to form the matrix problem...

(1) “second order” in complexity in forming the system of equations.

[Al[AP]=[b] L
——— 11..l___
Au(r,f')=§pi(g§)j(r.) =..+ Izgzy;j;g(r")wi‘”(r—r")w(f)(r'—r")dr"+... '& i 5 __.--T’
PSP Eem
(2) Reduced fill complexity. A=
R, =0=n(r)- J w(r—r')p(r)dr' All:—a)(r—r')
R, =0=..+ [ 2 (rw(r—r)drs. 2 FD
? > h A, :Wa)(r— r)
A Alszn(r)] p _onr)
21 —
Ay Ap lAp(r) D Sanda
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Two ways to order the matrix...

Example:

= Nodal | Hard-sphere problem

o Ordering

/

Physics Block

rooo Ordering Block Matrix
/donzeros
Subblock Nonzeros
All 10,935
Al2 176,932
A21 353,864
A22 729
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Properties of F-DFT systems

DFT - Integral equations of finite range
(matrix density is system size dependent)
PDE - matrix density independent of system size.

DFT- Inter-physics coupling dominates

PDE - Inter-nodal coupling dominates (/,, 1\\ DA
DFT - Stencils based on physical constants \ / . ¥

PDE - Stencils based on nearest neighbors

DFT - May have large numbers of DOF per node
HS (3D) 10+
Polymer (20 beads) 42+

PDE - Usually a few DOFs per node
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Solving F-DFTs on parallel computers

1. A ;! easyto compute (or apply) --> can form (or apply
implicitly) S easily in parallel

2. Dimension of S is much smaller than A: iterative methods (e.g.
GMRES) will typically converge faster in parallel.

3. Given an equal partitioning, parallel execution will be well-
balanced and produce identical results independent of the
number of processors.
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Properties of New Solver

» This general approach has many favorable properties:

*

*

If mesh nodes are uniformly distributed, work will also be.
Each substep of preconditioner is naturally parallel:
» Results invariant to processor count up to round-off.

Preconditioner requires almost no extra memory over storage of
matrix: Memory reduction of 4-10 X over previous approach.

GMRES subspace and storage reduced 6X-10X or more.
Speedup 20-2X (difference goes down as PE count grows).
Solver has:

* No tuning parameters.
 Near linear scaling.

Increased problem sizes (in domain size and mesh refinement).
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