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High-Performance Solvers for Potential Theory

Want multiresolution solvers for gridded data. Applications: AMR-PIC for
Vlasov-Poisson, cosmology (particles for collisionless matter, finite-volume
method for gas); incompressible flow.

Iterative methods for                 : ~10 flops / grid point between
communications steps leads to poor parallel scaling (100s of processors).

Hockney’s method for infinite-
domain boundary conditions:
domain-doubling + FFT. Not
adaptive, increases the
amount of work by 8x in 3D.



       Idea: disjoint regions in space are decoupled, modulo analytic functions.
Domain decomposition should lead to efficient parallel solvers.
• Multigrid: localizes computation, but not communication.
• Schwarz domain decomposition: still iterative.
• Fast multipole method: localizes computation and communication

noniteratively, but cost per point goes up significantly with the number of
dimensions.

,

Real analytic, with
rapidly convergent
Taylor expansion

Analysis-Based Poisson Solvers



Method of Local Corrections (Anderson, 1986)

To compute

(1) Solve local problems on overlapping local patches:

(3) Compute composite solution as combination of local fields and
interpolated corrected global field:

(2) Solve a single coarse grid problem to represent the nonlocal coupling:



Field Spreading Using Mehrstellen Operators (Mayo
1982, Anderson 1986)

Let                                               . Then the error in the field values
on the grid satisfies

otherwise

i.e.       is the truncation error of         applied to a harmonic
function outside the correction radius.

where



Mehrstellen Discretizations
19 point:

27 point:

                is a rapidly decreasing function of the distance from the charge.
Cutoff distance can be easily tuned to make field spreading arbitrarily
accurate.

Scatter plot of                  as a function of               distance from support of charge



Spatial Discretization of Local Solutions
James-Lackner Algorithm for Computing G*ρ (1977) 

Solve for Solve forCompute q, then g

If ρ is piecewise-constant, there is a loss of smoothness leading to a loss of
accuracy in the overall MLC algorithm. For this reason, we separate out the
monopole components and treat them exactly.



Spatial Discretization of Local Solutions
Fast Multipole Method for the Boundary Potential

In 3D, the direct calculation of the surface-surface potential is too
expensive         We reduce this to               using a simplified
multipole expansion.  The resulting method is 3X faster than the
Hockney domain-doubling method.

Use the 2D multipole expansion
on the red patch to evaluate the
field on the coarse (blue) grid.
The remaining grid points are
computed using high-order
interpolation.



Parallel Implementation
Parallel Computation

(1) Local problems are independent, and trivially parallel:

(2) The global solve is a bottleneck, but can itself be parallelized, either by
FFT, or applying MLC recursively.  It is a much smaller calculation, so
there are typically more than enough resources.

(3) The local interactions / local corrections step is used to compute
boundary conditions on patches, which are propagated to the interior by
another Dirichlet solve.

Parallel Communications Comparable to one multigrid V-cycle: fine-to-
coarse between (1) and (2), and coarse-to-fine between (2) and (3), plus an
exchange of local fine-fine ghost point data.



 Test Problem
• Localized oscillatory charge distribution.

• Two levels of refinement, fixed-size 323 patches.

• FFT-based bottom solver, parallelized over 2D
slabs.



Results - Accuracy

Three-level convergence results.  The wavelength                                                 is a
measure of the smallest length scale in the problem.

Three-level convergence results, without treating the monopole component separately.



Aggregate Performance

Timings performed on seaborg.nersc.gov.
• Scaled speedup (weak scaling): 95% efficiency up to 1024
processors.
• Aggregate performance: 72 seconds to compute solution on 3 x
109 grid points (1024 processors). Comparable to cost / grid point
of uniform grid FFT computation, but applied to a locally-refined
grid.

P = number of processors, N = effective grid resolution at the finest level. Grind = proc.-secs. / point 

FFT-based infinite-domain solution on uniform grid.



Communications Performance

Time spent in MPI communications. Total run times of 69-72 seconds.

• Overall communications costs a few percent of
total run time, even up to 1024 processors.
• Most of the non-scaling communication is in the
bottom level solver, which uses a parallel FFT.



Future Work

Algorithmic issues
• New version of multilevel algorithm that preserves association of
charge distributions with patches.
• Systematic analysis of accuracy using multipole ideas; tunable
accuracy.
• Specialized versions for computing gradient fields; extension to
diffusion equations, finite-volume discretizations.
• Complex geometries; use as preconditioner for variable-
coefficient problems.

Software issues
• Performance tuning, scalability to  ¸ 105 processors.
• Robust software components for applications, as opposed to
current breadboard implementation.





AMRPoisson Solver Weak Scaling 



AMR for Petascale Computing

• Preliminary results for hyperbolic PDE indicate scalability of
AMR to 105 processors.

• Scaling bottleneck for applying AMR to a number of fluid
problems (turbulence, self-gravity, kinetic models for charged
fluids) is Poisson.

• AMR-MLC has same communications costs, computation /
communication ratio as AMR for hyperbolic PDE. Provides
possible path forward to petascale for these problems.



Results - Accuracy

Comparison of three-level MLC calculation to uniform-grid Mehrstellen calculations
using infinite-domain algorithm.



Spatial Discretization of Local Solutions
FFT Solvers for Volume Potentials

Single-grid Dirichlet solves are done using FFTW fast sine transform.  To
preserve the strong localization of            , the use of Mehrstellen in the
local solves is essential. For example, for the 27-point operator,

where  away from the support of


