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High-Performance Solvers for Potential Theory
1

 Arlz

o(x) = / Clx—y)ply)dy . x€Q  Glz) =

Q

Want multiresolution solvers for gridded data. Applications: AMR-PIC for
Vlasov-Poisson, cosmology (particles for collisionless matter, finite-volume
method for gas); incompressible flow.

lterative methods for Ay = p : ~10 flops / grid point between
communications steps leads to poor parallel scaling (100s of processors).

domain boundary conditions:
domain-doubling + FFT. Not ___
adaptive, increases the
amount of work by 8x in 3D. P —P

Hockney’s method for infinite- : | |
|
|
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Analysis-Based Poisson Solvers

Ap=p , plx) = /G[a} —ylplyldy . x )

()

Real analytic, with
—> ¢l®)  rapidly convergent
Taylor expansion

Idea: disjoint regions in space are decoupled, modulo analytic functions.
Domain decomposition should lead to efficient parallel solvers.

e Multigrid: localizes computation, but not communication.
e Schwarz domain decomposition: still iterative.

e Fast multipole method: localizes computation and communication
noniteratively, but cost per point goes up significantly with the number of
dimensions.
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Method of Local Corrections (Anderson, 1986)

To compute p(x) = /G(X —y)p(y)dy , x € 2
Q
(1) Solve local problems on overlapping local patches:

o) = [ Gox—ypidy xe @ (Joh -0, of o)~
Q! l
(2) Solve a single coarse grid problem to represent the nonlocal coupling:
H,l _/ANH I\ :f: l H H
R =(A%¢"); ifeH € RY =% R o = GH « RH
=\ otherwise :

(3) Compute composite solution as combination of local fields and
interpolated corrected global field:

dx)= 3 ¢'(=)+1(¢" — 3 ¢')(=)

LxcQl LxcQl
A ’j(” Office of
- Science
IBERKELEY Lac sl U.S. DEPARTMENT OF ENERGY




Field Spreading Using Mehrstellen Operators (Mayo
1982, Anderson 1986)

Let ¢ = G * p, supp(p) C (2 . Then the error in the field values
on the grid satisfies

AH(¢ L qu) — Rcomp
where
R;7™ = (AM @), if dist(¢H, supp(p)) > CH
= 0 otherwise

i.e. Rco™P js the truncation error of A applied to a harmonic
function outside the correction radius.
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Mehrstellen Discretizations
19 point: Affd = A¢p+ & Ap + O(H*) VS

27 point: AfL¢ = A¢ + L Ap+H4L4( )+ O(HO VB¢

= Rc°™P s a rapidly decreasing function of the distance from the charge.

Cutoff distance can be easily tuned to make field spreading arbitrarily

accurate. 0.01 ;
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Spatial Discretization of Local Solutions

James-Lackner Algorithm for Computing G*p (1977)

_________________________________ g=Gxq P2 =g
¢ =0 o
<44 ..
o1 o )i L . 0D
Apr=p | 4 I Apa = p
- b
Solve for @1 Compute g, then g Solve for @2

q:g—ionaﬁl

If p is piecewise-constant, there is a loss of smoothness leading to a loss of
accuracy in the overall MLC algorithm. For this reason, we separate out the
monopole components and treat them exactly.
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Spatial Discretization of Local Solutions

Fast Multipole Method for the Boundary Potential

In 3D, the direct calculation of the surface-surface potential is too
expensive(O(N*/3)). We reduce this to O(N?/3)using a simplified
multipole expansion. The resulting method is 3X faster than the
Hockney domain-doubling method.
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Parallel Implementation
Parallel Computation

(1) Local problems are independent, and trivially parallel:
p=>p"supp(p') CQy ¢l =Gxp on QL QN D Qf
[

(2) The global solve is a bottleneck, but can itself be parallelized, either by
FFT, or applying MLC recursively. It is a much smaller calculation, so
there are typically more than enough resources.

R =A"¢lifiH € Q' RH " Rhl  yH _ qH , pH

— 0 otherwise l

(3) The local interactions / local corrections step is used to compute
boundary conditions on patches, which are propagated to the interior by
another Dirichlet solve.
_ l H l
olx)= > ¢(x)+1(o" — > ¢)(x)
LxcQl LxcQl
Parallel Communications Comparable to one multigrid V-cycle: fine-to-
coarse between (1) and (2), and coarse-to-fine between (2) and (3), plus an
exchange of local fine-fine ghost point data.
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Test Problem

* Localized oscillatory charge distribution.

- Two levels of refinement, fixed-size 323 patches.

- FFT-based bottom solver, parallelized over 2D
slabs.

osc (1) ((r —r?)sin(2mnr))?, ifr <1;
r) = :
" 0, if r > 1. .

p(a) = 2 (pose(| 2=l 4 pose(lz—caly | pose(lz—_caly)

Size three-level example
N fine middle coarse
204 50923779 6440 067 2 146 689

4096 | 405017091 21567171 16974593
8192 | 3230671875 99228483 135005 697

-ﬁ}l n ' ¥ Offl-ce of
N .g/» 4 Science
U.S. DEPARTMENT OF ENERGY



Results - Accuracy

m h HFZ'leoo P HG?in.eH'Z 4 HGQIIH'Z P A/
7 1/2048 2,132 x 107° 1.632 x 1077 1.738 x 1077 7.31
7 1/4096  4.735 x 107% 217 2379 x107% 278 4712 x107% 1.88  14.63
7 1/8192  1.130 x 107% 207 5720 x 107 2.06 8419 x 107° 248  29.26
m h l€auloo p 1€} inel 2 p eaull2 p A/h
15 1/2048 2437 x 10~ 2.009 x 107" 2.357 x 10=° 3.41
15 1/4096  4.906 x 107 231  2.642 x 107® 293  3.061 x 107* 2.95  6.83
15 1/8192  1.157 x 1075 2.08  6.648 x 1072 1.99 9.737 x 10=° 1.65 13.65
m h [ P € inell2 P [lequ]l2 p___ Ah
30 1/2048  5.022 x 107 3.798 x 10~° 3.848 x 10~" 1.71
30 1/4096 5274 x107¢ 3.25 3.795 x 10=® 3.32  6.296 x 1078 2.61  3.41
30 1/8192 1542 x107% 1.77  7.593 x 107 232 1270 x107® 231  6.83

Three-level convergence results. The wavelength \ = R/(2m) = 1/(40m)is a
measure of the smallest length scale in the problem.

m h [leau!loc p [[€Finell2 p [ €qull> p A/l
7 1/2048 4280 x 1077 8.449 x 1077 2.608 x 107° 7.31
7 1/4096 2794 x 107° 0.62  7.009 x 1077 027 2.500 x 107 0.06  14.63
7 1/8192 1971 x107° 050 6.713x 1077 0.06  2.521 x 1076 —0.01  29.26

Three-level convergence results, without treating the monopole component separately.
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Aggregate Performance A~

Size Times for each stage (seconds) Total / Grind
/

P N | InitF ImitM Crse BndM FmM BndF FinF | (sec) 1sec/pt)
16 2048 | 4499 1252 351 033 066 264 489 69.57\ 21.86

128 4096 | 4551 6.76 10.19 0.15 030 412 475]|71.83 22.770
1024 8192 [ 46.01 395 1304 0.15 0.17 403 478 |72.28 2291

P = number of processors, N = effective grid resolution at the finest level. Grind =\Q)C/!ecs. / point
Timings performed on seaborg.nersc.gov.
- Scaled speedup (weak scaling): 95% efficiency up to 1024
processors.
- Aggregate performance: 72 seconds to compute solution on 3 x
109 grid points (1024 processors). Comparable to cost / grid point
of uniform grid FFT computation, but applied to a locally-refined
grid.

Size Times for each stage (seconds) Total / Grind
P N points | Homo Normal FMM Inhomo (8)] (pus/pt)

4 256 16974 593 | 10.53 0.08 223  57.34|70.2 16.54
32 512 135005697 | 13.39 0.87 451 22.93 | 41.72 9.89
256 1024 1076890 625 | 13.65 3.06 10.53 19.26 | 46.52\ 11.06

FFT-based infinite-domain solution on uniform grid.
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Communications Performance

Size | Communication in stages (seconds) |/Tot? 9% of

P N | Boundary Coarse Residuals / (s) \ runtime

16 2048 0.37 0.22 0.08 0.68 | 0.97 %

128 4096 1.56 0.58 0.14 228 [ 3.17 %

1024 8192 1.40 1.77 0.68 \3.85 5.32 %
g

Time spent in MPI communications. Total run times of 69-72 seconds.

« Overall communications costs a few percent of
total run time, even up to 1024 processors.

« Most of the non-scaling communication is in the
bottom level solver, which uses a parallel FFT.
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Future Work

Algorithmic issues

- New version of multilevel algorithm that preserves association of
charge distributions with patches.

- Systematic analysis of accuracy using multipole ideas; tunable
accuracy.

- Specialized versions for computing gradient fields; extension to
diffusion equations, finite-volume discretizations.

- Complex geometries; use as preconditioner for variable-
coefficient problems.

Software issues

- Performance tuning, scalability to > 10° processors.
 Robust software components for applications, as opposed to
current breadboard implementation.
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AMRPoisson Solver Weak Scaling

15 |G Solve
— Perfect
&—€> Initialization

- Bottom Solve
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AMR for Petascale Computing

* Preliminary results for hyperbolic PDE indicate scalability of
AMR to 10° processors.

« Scaling bottleneck for applying AMR to a number of fluid
problems (turbulence, self-gravity, kinetic models for charged
fluids) is Poisson.

- AMR-MLC has same communications costs, computation /
communication ratio as AMR for hyperbolic PDE. Provides
possible path forward to petascale for these problems.
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Results - Accuracy

one-grid Mehrstellen three-level MLC
m| H  le®lo/l[¢* e p  MNH| h  l"o/ll¢*l P Ah

7| 1/256 3.52035 x 10~° 0.91 | 1/4096  1.05571 x 107 14.63
7| 1/512 410313 x 107* 640 1.83 | 1/8192 2.00449 x 107° 1.86 20.26
711/1024  1.72642 x 107% 460 3.66

one-grid Mehrstellen three-level MLC
m| H  |fl[6" e p MNH]| h |lc/ll¢" e p Ak
15| 1/256 1.01866 x 10~ 0.43 | 1/4096  8.38323 x 10~° 6.83

15| 1/512 3.28842 x 10~*  1.63 0.85|1/8192 341383 x 10~®* 1.30 13.65
15| 1/1024 144633 x 10~¢ 451 1.71

one-grid Mehrstellen three-level MLC
m| H |/l p MNH| h  |l/[6"*l p Ak
30| 1/256 4.55566 x 102 0.21 [ 1/4096  9.27098 x 107" 3.41

30| 1/512 4.16701 x 10~ 345 043 |1/8192 266318 x 10°% 1.80 6.83
30 [ 1/1024 968717 x 10~ 210 0.85

Comparison of three-level MLC calculation to uniform-grid Mehrstellen calculations
using infinite-domain algorithm.
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Spatial Discretization of Local Solutions

FFT Solvers for Volume Potentials

Single-grid Dirichlet solves are done using FFTW fast sine transform. To
preserve the strong localization of AH¢Z , the use of Mehrstellen in the
local solves is essential. For example, for the 27-point operator,

ot = ¢! + P (x) + O(h°)
where AW = () away from the support of p-

At = O(h®) + O(H®) + O(HOh?)
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