A Newton-Krylov solver for fully implicit 3D extended MHD

L. Chacón

Los Alamos National Laboratory
P.O. Box 1663, Los Alamos, NM 87545

In collaboration with B. Philip (LANL), J. Shadid, R. Pawlowski, J. Banks (SNL)

2007 OASCR PI MEETING
MAY 22-24, 2007
LIVERMORE, CA, USA
Outline

- Motivation: XMHD and the tyranny of scales
- Parabolization of XMHD: key for SCALABILITY
- Resistive MHD
- Hall MHD
- Migration to unstructured FE: status report (with SNL)
- Spatial adaptivity: Implicit + AMR (with B. Philip, LANL LDRD)
“The tyranny of scales”
(SBES report, 2006)

Typical Time Scales in a next step experiment
with $B = 10$ T, $R = 2$ m, $n_e = 10^{14}$ cm$^{-3}$, $T = 10$ keV

(a) Time scales in fusion plasmas (FSP report)

(b) Length scales in a typical fusion plasma (Tang, Phys. Plasmas, 9 (5), 2002)

"The tyranny of scales will not be simply defeated by building bigger and faster computers" (SBES report, p. 30)
Algorithmic challenges in XMHD

- XMHD has mixed character, with strongly hyperbolic and parabolic components.
- Numerically, XMHD is a nonlinear algebraic system of very stiff equations:
 - Elliptic stiffness (diffusion): \(\kappa(J) \sim \frac{\Delta t D}{\Delta x^2} \gg 1 \)
 - Hyperbolic stiffness (linear and dispersive waves): \(\kappa(J) \sim \Delta t \omega_{\text{fast}} \sim \frac{\Delta t}{\Delta t_{\text{CFL}}} \gg 1 \)
- Brute-force algorithms will not be able to cover the span between disparate time/length scales, regardless of computer power (SBES report).
- Key algorithmic requirement: SCALABILITY \([CPU \sim O(N/n_p)]\):
 - Minimize number of degrees of freedom \(N\): spatial adaptivity.
 - Follow slowest time scales (application dependent): implicit time stepping.
- Scalable implicit methods require MULTILEVEL approaches:

\[
CPU \sim O\left(\frac{N \log(N)}{n \beta}
ight), \quad \beta \lesssim 1
\]
XMHD and multilevel approaches

- A fundamental component of iterative ML methods is the SMOOTHER.
- XMHD is strongly hyperbolic ⇒ smoothing is a serious challenge (diagonally submissive for $\Delta t > \Delta t_{CFL}$).
 - Previous attempts to use multilevel methods (two-level NKS, MG-NKS) on XMHD have failed to demonstrate a scalable XMHD solver.

Our solution: parabolize XMHD! (multilevel-friendly)
Parabolization and Schur complement: an example

PARABOLIZATION EXAMPLE:

\[\partial_t u = \partial_x v, \quad \partial_t v = \partial_x u. \]

\[u^{n+1} = u^n + \Delta t \partial_x v^{n+1}, \quad v^{n+1} = v^n + \Delta t \partial_x u^{n+1}. \]

\[(I - \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n \]

- PARABOLIZATION via SCHUR COMPLEMENT:

\[
\begin{bmatrix}
D_1 & U \\
L & D_2
\end{bmatrix} =
\begin{bmatrix}
I & UD_2^{-1} \\
0 & I
\end{bmatrix}
\begin{bmatrix}
D_1 - UD_2^{-1}L & 0 \\
0 & D_2
\end{bmatrix}
\begin{bmatrix}
I & 0 \\
D_2^{-1}L & I
\end{bmatrix}.
\]

Stiff off-diagonal blocks \(L, U \) now sit in diagonal via Schur complement \(D_1 - UD_2^{-1}L \).

The system has been “PARABOLIZED.”

\[D_1 - UD_2^{-1}L = (I - \Delta t^2 \partial_{xx}) \]
Our approach to a successful fully implicit algorithm for XMHD

- Even if a smoother exists, MG is remarkably temperamental.
- Combination of Krylov methods and MG is optimal:
 - MG provides scalability (as a preconditioner)
 - Krylov provides robustness

We seek to develop a successful algorithm for XMHD based on Newton-Krylov-MG

- Proof the concept in resistive MHD, and then move to XMHD.
Jacobian-Free Newton-Krylov Methods

- **Objective:** solve nonlinear system $\tilde{G}(\bar{x}^{n+1}) = 0$ efficiently (scalably).

- Converge nonlinear couplings using Newton-Raphson method:

 $$\frac{\partial \tilde{G}}{\partial \bar{x}}|_k \delta \bar{x}_k = -\tilde{G}(\bar{x}_k)$$

- Jacobian-free implementation:

 $$\left(\frac{\partial \tilde{G}}{\partial \bar{x}} \right)_k \delta \bar{y} = J_k \delta \bar{y} = \lim_{\epsilon \to 0} \frac{\tilde{G}(\bar{x}_k + \epsilon \delta \bar{y}) - \tilde{G}(\bar{x}_k)}{\epsilon}$$

- Right preconditioning: solve equivalent Jacobian system for $\delta y = P_k \delta \bar{x}$:

 $$J_k P_k^{-1} P_k \delta \bar{x} = -\tilde{G}_k$$

Approximations in preconditioner do not affect accuracy of converged solution; they only affect efficiency!

Los Alamos National Laboratory

Luis Chacón, chacon@lanl.gov
Implicit *resistive* MHD solver
Resistive MHD model equations

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0, \]

\[\frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} = 0, \]

\[\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} - \rho \nu \nabla \vec{v} + \overleftarrow{I} \left(p + \frac{B^2}{2} \right) \right] = 0, \]

\[\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T + (\gamma - 1) T \nabla \cdot \vec{v} = 0, \]

- Plasma is assumed polytropic \(p \propto n^\gamma \).
- Resistive Ohm’s law:
 \[\vec{E} = -\vec{v} \times \vec{B} + \eta \nabla \times \vec{B} \]
Resistive MHD Jacobian block structure

- The linearized resistive MHD model has the following couplings:

\[
\begin{align*}
\delta \rho &= L_\rho(\delta \rho, \delta \vec{v}) \\
\delta T &= L_T(\delta T, \delta \vec{v}) \\
\delta \vec{B} &= L_B(\delta \vec{B}, \delta \vec{v}) \\
\delta \vec{v} &= L_v(\delta \vec{v}, \delta \vec{B}, \delta \rho, \delta T)
\end{align*}
\]

- Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

\[
J \delta \vec{x} = \begin{bmatrix}
D_\rho & 0 & 0 & U_{v\rho} \\
0 & D_T & 0 & U_{vT} \\
0 & 0 & D_B & U_{vB} \\
L_{\rho v} & L_{Tv} & L_{Bv} & D_v
\end{bmatrix} \begin{pmatrix}
\delta \rho \\
\delta T \\
\delta \vec{B} \\
\delta \vec{v}
\end{pmatrix}
\]

- Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using MG techniques. Off diagonal blocks \(L \) and \(U \) contain all hyperbolic couplings.
PARABOLIZATION: Schur complement formulation

• We consider the block structure:

\[
J\delta\vec{x} = \begin{bmatrix} M & U \\ L & D_v \end{bmatrix} \begin{bmatrix} \delta\vec{y} \\ \delta\vec{v} \end{bmatrix} ; \quad \delta\vec{y} = \begin{bmatrix} \delta\rho \\ \delta T \\ \delta\vec{B} \end{bmatrix} ; \quad M = \begin{bmatrix} D_\rho & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & D_B \end{bmatrix}
\]

• \(M\) is “easy” to invert (advection-diffusion, MG-friendly).

\[
\text{Schur complement analysis of 2x2 block } J \text{ yields:}
\]

\[
\begin{bmatrix} M & U \\ L & D_v \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -LM^{-1} & I \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & P_{Schur}^{-1} \end{bmatrix} \begin{bmatrix} I & -M^{-1}U \\ 0 & I \end{bmatrix},
\]

\[
P_{Schur} = D_v - LM^{-1}U.
\]

• EXACT Jacobian inverse only requires \(M^{-1}\) and \(P_{Schur}^{-1}\).

• Schur complement formulation is fundamentally unchanged in Hall MHD!

Los Alamos National Laboratory

Luis Chacón, chacon@lanl.gov
Physics-based preconditioner (I)

- The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

 Predictor : \(\delta \vec{y}^* = -M^{-1}G_y \)

 Velocity update : \(\delta \vec{v} = P_{Schur}^{-1}[-G_v - L\delta \vec{y}^*], \quad P_{Schur} = D_v - LM^{-1}U \)

 Corrector : \(\delta \vec{y} = \delta \vec{y}^* - M^{-1}U\delta \vec{v} \)

- MG treatment of \(P_{Schur} \) is impractical due to \(M^{-1} \). Need suitable simplifications (SEMI-IMPLICIT)!

- We consider the small-flow-limit case: \(M^{-1} \approx \Delta t \)

- This approximation is equivalent to splitting flow in original equations.
Physics-based preconditioner (II)

- Small flow approximation: $M^{-1} \approx \Delta t$ in steps 2 & 3 of Schur algorithm:

\[\delta \vec{y}^* = -M^{-1} G_y \]
\[\delta \vec{v} \approx P_{SI}^{-1} \left[-G_v - L \delta \vec{y}^*\right] ; \quad P_{SI} = D_v - \Delta t L U \]
\[\delta \vec{y} \approx \delta \vec{y}^* - \Delta t U \delta \vec{v} \]

where:

\[
P_{SI} = \rho^n \left[\frac{\vec{I}}{\Delta t} + \theta (\vec{v}_0 \cdot \nabla \vec{I} + \vec{I} \cdot \nabla \vec{v}_0 - \nu^n \nabla^2 \vec{I}) \right] + \Delta t \theta^2 W(\vec{B}_0, p_0)
\]
\[
W(\vec{B}_0, p_0) = \vec{B}_0 \times \nabla \times \nabla \times [\vec{I} \times \vec{B}_0] - j_0 \times \nabla \times [\vec{I} \times \vec{B}_0] - \nabla [\vec{I} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \vec{I}]
\]

- P_{SI} is block diagonally dominant by construction!
- We employ multigrid methods (MG) to approximately invert P_{SI} and M: 1 V(4,4) cycle
Efficiency: Δt scaling (2D tearing mode)

32 \times 32

<table>
<thead>
<tr>
<th>Δt</th>
<th>Newton/Δt</th>
<th>GMRES/Δt</th>
<th>CPU (s)</th>
<th>CPU_{exp}/CPU</th>
<th>$\Delta t/\Delta t_{CFL}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5.9</td>
<td>20.9</td>
<td>115</td>
<td>3.1</td>
<td>354</td>
</tr>
<tr>
<td>3</td>
<td>5.9</td>
<td>25.6</td>
<td>139</td>
<td>3.8</td>
<td>531</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>30.5</td>
<td>163</td>
<td>4.3</td>
<td>708</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>34.7</td>
<td>184</td>
<td>5.8</td>
<td>1062</td>
</tr>
</tbody>
</table>

128 \times 128

<table>
<thead>
<tr>
<th>Δt</th>
<th>Newton/Δt</th>
<th>GMRES/Δt</th>
<th>CPU (s)</th>
<th>CPU_{exp}/CPU</th>
<th>$\Delta t/\Delta t_{CFL}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>4.9</td>
<td>8.4</td>
<td>764</td>
<td>8.0</td>
<td>380</td>
</tr>
<tr>
<td>0.75</td>
<td>5.7</td>
<td>10.2</td>
<td>908</td>
<td>10.0</td>
<td>570</td>
</tr>
<tr>
<td>1.0</td>
<td>5.0</td>
<td>11.5</td>
<td>1000</td>
<td>12.7</td>
<td>760</td>
</tr>
<tr>
<td>1.5</td>
<td>5.6</td>
<td>14.7</td>
<td>1246</td>
<td>14.6</td>
<td>1140</td>
</tr>
</tbody>
</table>
Efficiency: grid scaling

\[\Delta t \approx 1100 \Delta t_{CFL}, \ 10 \ \text{time steps} \]

<table>
<thead>
<tr>
<th>Grid</th>
<th>(\Delta t)</th>
<th>Newton/(\Delta t)</th>
<th>GMRES/(\Delta t)</th>
<th>CPU</th>
<th>(\overline{CPU})</th>
</tr>
</thead>
<tbody>
<tr>
<td>32x32</td>
<td>6</td>
<td>6.0</td>
<td>34.7</td>
<td>184</td>
<td>5.3</td>
</tr>
<tr>
<td>64x64</td>
<td>3</td>
<td>5.8</td>
<td>22.9</td>
<td>468</td>
<td>20.4</td>
</tr>
<tr>
<td>128x128</td>
<td>1.5</td>
<td>5.6</td>
<td>14.8</td>
<td>1246</td>
<td>84.2</td>
</tr>
</tbody>
</table>

Why does GMRES/\(\Delta t \) decrease with resolution?

Luis Chacón, chacon@lanl.gov
Effect of spatial truncation error

Residual history vs. GMRES it. # with fixed time step Dt=1

Relative linear residual vs. # GMRES iteration

Luis Chacón, chacon@lanl.gov
Implicit extended MHD solver
Extended MHD model equations

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0, \]

\[\frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} = 0, \]

\[\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} - \rho \nu \nabla \vec{v} + \vec{T} \left(p + \frac{B^2}{2} \right) \right] = 0, \]

\[\frac{\partial T_e}{\partial t} + \vec{v} \cdot \nabla T_e + (\gamma - 1) T_e \nabla \cdot \vec{v} = 0, \]

- Plasma is assumed polytropic \(p \propto n^\gamma \).
- We assume cold ion limit: \(T_i \ll T_e \Rightarrow p \approx p_e \).
- Generalized Ohm’s law:

\[\vec{E} = -\vec{v} \times \vec{B} + \eta \nabla \times \vec{B} - \frac{d_i}{\rho} (\vec{j} \times \vec{B} - \nabla p_e) \]

Luis Chacón, chacon@lanl.gov
Extended MHD Jacobian block structure

- The linearized extended MHD model has the following couplings:

\[
\begin{align*}
\delta \rho &= L_\rho (\delta \rho, \delta \vec{v}) \\
\delta T &= L_T (\delta T, \delta \vec{v}) \\
\delta \vec{B} &= L_B (\delta \vec{B}, \delta \vec{v}, \delta \rho, \delta T) \\
\delta \vec{v} &= L_v (\delta \vec{v}, \delta \vec{B}, \delta \rho, \delta T)
\end{align*}
\]

- Jacobian coupling structure:

\[
J \delta \vec{x} = \begin{bmatrix}
D_\rho & 0 & 0 & U_{v\rho} \\
0 & D_T & 0 & U_{vT} \\
L_{\rho B} & L_{TB} & D_B & U_{vB} \\
L_{\rho v} & L_{Tv} & L_{Bv} & D_v
\end{bmatrix} \begin{pmatrix}
\delta \rho \\
\delta T \\
\delta \vec{B} \\
\delta \vec{v}
\end{pmatrix}
\]

- We have added off-diagonal couplings.
Extended MHD Jacobian block structure (cont.)

- The coupling structure can be substantially simplified if we note \(p \approx p_e \):

\[
\frac{1}{\rho} (\vec{j} \times \vec{B} - \nabla p_e) \approx \frac{D\vec{v}}{Dt}
\]

and therefore:

\[
\vec{E} \approx -\vec{v} \times \vec{B} + \frac{\eta(T)}{\mu_0} \nabla \times \vec{B} - d_i \frac{D\vec{v}}{Dt}
\]

- This transforms jacobian coupling structure to:

\[
J \delta \vec{x} \approx \begin{bmatrix}
D_\rho & 0 & 0 & U_{v\rho} \\
0 & D_T & 0 & U_{vT} \\
0 & 0 & D_B & U_{vB}^R + U_{vB}^H \\
L_{\rho v} & L_{Tv} & L_{Bv} & D_v
\end{bmatrix} \begin{pmatrix}
\delta \rho \\
\delta T \\
\delta \vec{B} \\
\delta \vec{v}
\end{pmatrix}
\]

We can therefore reuse ALL resistive MHD PC framework!
Extended MHD preconditioner

- Use same Schur complement approach.
- M block contains ion scales only! Approximation $M^{-1} \approx \Delta t$ is very good in extended MHD (ion scales do NOT contribute to numerical stiffness).
- Additional block U_{vB}^H results, after the Schur complement treatment, in systems of the form:

$$\partial_t \delta \vec{v} - d_i \vec{B}_0 \times (\nabla \times \nabla \times \delta \vec{v}) = \text{rhs}$$

- This system supports dispersive waves $\omega \sim k^2$!
- We have shown analytically that damped JB is a smoother for these systems!

We can use classical MG!

Luis Chacón, chacon@lanl.gov
Preliminary efficiency results (2D tearing mode)

\[d_i = 0.05 \]

1 time step, \(\Delta t = 1.0 \), \(V(3,3) \) cycles, \(mg_{tol}=1e-2 \)

<table>
<thead>
<tr>
<th>Grid</th>
<th>Newton/(\Delta t)</th>
<th>GMRES/(\Delta t)</th>
<th>CPU (s)</th>
<th>(CPU_{exp}/CPU)</th>
<th>(\Delta t/\Delta t_{exp})</th>
</tr>
</thead>
<tbody>
<tr>
<td>32x32</td>
<td>5</td>
<td>22</td>
<td>25</td>
<td>0.44</td>
<td>110</td>
</tr>
<tr>
<td>64x64</td>
<td>5</td>
<td>12</td>
<td>66</td>
<td>1.4</td>
<td>238</td>
</tr>
<tr>
<td>128x128</td>
<td>5</td>
<td>8</td>
<td>164</td>
<td>6.2</td>
<td>640</td>
</tr>
<tr>
<td>256x256</td>
<td>4</td>
<td>7</td>
<td>674</td>
<td>30</td>
<td>3012</td>
</tr>
</tbody>
</table>

Again, GMRES/\(\Delta t \) decreases with resolution!

Los Alamos National Laboratory

Luis Chacón, chacon@lanl.gov
Effect of spatial truncation error

Residual history vs. GMRES it# with fixed time step Dt=1

NL tolerance

Luis Chacón, chacon@lanl.gov
Parallel performance with PETSc Toolkit
(unpreconditioned, 3D, weak scaling with 32^3 nodes per processor)

Speedup

processors

Luis Chacón, chacon@lanl.gov
Migration to unstructured FE

(In collaboration with J. Shadid, R. Pawlowski, J. Banks, SNL)
Currently: Initial Single Fluid Resistive MHD Unstructured FE Formulation

\[
\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \mathbf{F} + S = 0
\]

\[
\begin{bmatrix}
\rho \\
\rho \mathbf{v} \\
\Sigma_{\text{rot}} \\
\mathbf{B}
\end{bmatrix}

F =

\begin{bmatrix}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v} - \frac{1}{\rho_0} \mathbf{B} \otimes \mathbf{B} - \mathbf{T} + \frac{1}{2 \rho_0} \|\mathbf{B}\|^2 \mathbf{I} \\
\rho \mathbf{E} \mathbf{v} - \mathbf{T} \cdot \mathbf{v} + \mathbf{E} \times \mathbf{B} + \mathbf{q} \\
\mathbf{v} \otimes \mathbf{B} - \mathbf{B} \otimes \mathbf{v} - \frac{\eta}{\rho_0} (\nabla \mathbf{B} - \nabla \mathbf{B}^T)
\end{bmatrix}

S =

\begin{bmatrix}
0 \\
0 \\
Q^{\text{reed}} + Q \\
0
\end{bmatrix}

\[
E = \epsilon + \frac{1}{2} \|\mathbf{v}\|^2
\]

\[
\Sigma_{\text{tot}} = \rho \mathbf{E} + \frac{1}{2 \mu_0} \|\mathbf{B}\|^2
\]

Project Goals:

- Develop stable, accurate, physics compatible, scalable and efficient fully-implicit computational formulations for xMHD and PTR (e.g. SNL Cray XT3 12.5K nodes, 25K cores)

- Develop and evaluate scalable physics-based preconditioners, based on multi-level methods

- Produce comprehensive accuracy, convergence, stability and scalability studies employing challenging prototype problems.

- Produce first-of-a-kind large-scale computational demonstrations on selected science / technology problems

 - Science
 - Magnetic Reconnection Studies
 - Hydro-Magnetic Rayleigh-Taylor (e.g. Z-pinch [HEDP])

 - Technology (e.g. advanced materials processing)
 - Plasma arc jet CVD, Plasma CVD/ Etching

(J. N. Shadid, R. P. Pawlowski, J. W. Banks - SNL)
Currently:
- 2D & 3D Incompressible Resistive MHD
- Unstructured Stabilized Finite Elements
- 2D Vector Potential; 2D&3D Projection Method;
- Fully-implicit 1st & 2nd order (BE, TR, BDF2);
- Direct to Steady State; Continuation;
- Parallel Newton-Krylov:
 - Additive Schwarz DD w/ Variable Overlap;
 - Aggressive Coarsening Block AMG for Systems (w/ R. Tuminaro, P. Lin -SNL);

Soon:
- Physics Based Preconditioning (w/ L. Chacon LANL)
- Compressible Resistive / Extended MHD
- Monotone Hyperbolic Solver (FE-TVD/FCT)
- Compatible Discretizations (e.g De Rham complex - w/ P. Bochev SNL)
Implicit NK-AMR

Current-Vorticity Formulation of Reduced Resistive MHD

\[
(p_t + \mathbf{u} \cdot \nabla - \eta \Delta) J + \Delta E_0 = \mathbf{B} \cdot \nabla \omega + \{\Phi, \Psi\}
\]
\[
(p_t + \mathbf{u} \cdot \nabla - \nu \Delta) \omega + S_\omega = \mathbf{B} \cdot \nabla J
\]
\[
\Delta \Phi = \omega
\]
\[
\Delta \Psi = J
\]

\[
\mathbf{u} = \hat{z} \times \nabla \Phi, \quad \mathbf{B} = \hat{z} \times \nabla \Psi
\]

\[
\{\Phi, \Psi\} = 2[\Phi_{xy}(\Psi_{xx} - \Psi_{yy}) - \Psi_{xy}(\Phi_{xx} - \Phi_{yy})]
\]

Preconditioner is an extension of
Chacón, Knoll and Finn, JCP, 178 (2002).

\[1\] Strauss and Longcope, JCP, 147, 1998

Luis Chacón, chacon@lanl.gov
Implicit Structured Adaptive Mesh Refinement (SAMRAI-PETSc-hypre)

- **Structured** adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes.

 - The mesh is organized as a hierarchy of refinement levels.
 - Each refinement level defines a region of uniform resolution.
 - Each refinement level is the union of logically rectangular patches.

AMR-grids and multilevel methods are fundamentally compatible approaches!

Luis Chacón, chacon@lanl.gov
Performance (tearing mode)

- Generalized 2D reduced MHD PC [Chacon et al., JCP (2002)] for SAMR (MG ⇒ FAC).

<table>
<thead>
<tr>
<th>Levels</th>
<th>NNI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>NLI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 × 32</td>
<td></td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.5</td>
<td></td>
<td>3.4</td>
<td>7.9</td>
<td>12.0</td>
<td>19.3</td>
<td>33.7</td>
</tr>
<tr>
<td>64 × 64</td>
<td></td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
<td>2.4</td>
<td>–</td>
<td></td>
<td>6.5</td>
<td>11.7</td>
<td>19.1</td>
<td>33.2</td>
<td>–</td>
</tr>
<tr>
<td>128 × 128</td>
<td></td>
<td>1.8</td>
<td>2.0</td>
<td>2.4</td>
<td>–</td>
<td>–</td>
<td></td>
<td>12.5</td>
<td>20.1</td>
<td>27.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>256 × 256</td>
<td></td>
<td>1.9</td>
<td>2.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td>19.9</td>
<td>27.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>512 × 512</td>
<td></td>
<td>1.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>26.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Δt = 1 (fixed), η_k = 0.1, \(\varepsilon_{rel} = \varepsilon_{abs} = 10^{-7} \), 2 SI iterations, V(3,3) cycles

- Fixed implicit time step (problem gets harder with refinement)
- Performance does not degrade with grid-refinement levels
Island Coalescence Results at t=8

Luis Chacón, chacon@lanl.gov
Tilt Instability Results at t=7

Luis Chacón, chacon@lanl.gov
Conclusions

- Developed a scalable, multilevel-based, fully implicit NK-MG solver for XMHD.

 Key algorithmic breakthrough: PARABOLIZATION + MG.

- Equivalence between parabolization and the Schur decomposition:
 - Provides a rigorous foundation for the parabolization step.
 - Provides a path to generalize approach when more complete XMHD models are considered.

- Demonstrated algorithmic viability of implicit AMR by generalizing single-grid preconditioning approaches for MHD.

- Future work:
 - Massively parallel test of 3D resistive MHD algorithm (NERSC).
 - Bring Hall MHD to production stage (high-order dissipation required).
 - Implicit AMR on 3D resistive MHD (B. Philip).
 - Multilevel-based PC on unstructured FE (SNL).

Luis Chacón, chacon@lanl.gov