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Overview

• Motivating applications
• Inverse medium for reaction-advection-diffusion 

equations
• Multigrid for inverse problems

o parabolic, elliptic

• End-to-end octree algorithms and data structures
• Fast heat potentials



Cardiac inverse problem



Computational work for the forward electrophysiology 
problem

• System of reaction-diffusion PDEs
• Spatial resolution ~ 6*256^3 ~ 100 million 
• Temporal resolution ~ 1000 time steps
• Inversion parameters

o ~50-100K

• The associated costs suggest an inexact reduced 
space approach 
o Several other problems in this category



A similar, “simpler” problem

• Wind from mesoscale models (MM5)
• Sparse sensor readings of concentration

Akcelic, Biros, 
Draganescu, Ghattas,
Hill, Waanders ‘05



Formulation

• Given wind w,  observations y*, estimate  u :

• Then forward problem can be used to predict transport 
contaminant



Need for multilevel solvers for high-resolution 
inverse medium problems

• Problems with single level solver
o Algorithmic scalability 
o Globalization (for nonlinear problems)
o CG scales well if Hessian is compact perturbation of identity

Multigrid to reduce constant

o Inverse problems
Need solver robustness wrt regularization parameter



Consider 1D “inverse medium” heat equation



Optimality conditions

KKT matrix

KKT optimality
conditions



Optimality conditions – operator form



Spectrum of reduced Hessian in the unit box
with Dirichlet BCs



Reduced Hessian spectrum

Use CG as a solver?



Using CG for the reduced Hessian

• Fixed β : CG   mesh-independent
• Fixed mesh : CG   β-dependent
• β depends on frequency information that we need to recover

o Truncation noise → β ≥ h2

regularization



Multigrid



Challenges in designing fast solvers for reduced 
Hessians

• Typically dense 
• Typically only “MatVec” available
• Positivity comes in many flavors

o I + Compact
o Compact
o Differential

• Multigrid available for first and third
o Little available in the middle category
o Inverse problems      when rhs ∉ range(Hessian) 

Smoothers                  (coarse/fine grids work partitioning)
Transfer operators     (do not contaminate spectrum)
Globalization             (non-convex problems)



Related work on multigrid

• Multigrid - elliptic PDEs 
o Brandt, Braess, Bramble, Hackbusch

• Multigrid – second kind Fredholm
o Hackbusch, Hemker & Schippers

• Multigrid for optimization 
o Ascher & Haber & Oldenburg, Borzi, Borzi & Kunisch, Borzi & Griesse, 

Chavent, Dreyer & Maar & Schultz,   Draganescu, Hanke & Vogel, 
Lewis & Nash, Kaltenbacher, King, Kunoth, Ta’asan, Tau & Xu, Vogel, 
Toint

• Large-scale parallel multigrid/cascade
o Akcelic, Biros & Ghattas, Akcelic et al.



CG performance

• Laplacian

• Reduced Hessian
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Smoothers for optimization-related operators

• Hackbush smoother(s) for 2nd-kind Fredholm
o Not  good in practice, especially for inverse problems 

• Kaltenbacher-King smoothers
o Easier to implement but not scalable as regularization → 0

• Borzi-Griesse pointwise space-time multigrid
o Collective, but expensive for general regularization

• Time domain-decomposition
o Lions, Hienkenschloss, Maday



Design of Smoothers

• Orthogonal decomposition (King) of the finite dimensional  space

o relatively low frequency
o relatively high frequency

• Smoothing iterations on the relatively high-frequency subspace 

σk = O
µ
1

k4

¶
νk = sin(kπx).



Orthogonal decomposition

• Orthogonal decomposition of space



Solving smoothing equation

• Smoother
o Two step stationary iterative scheme by Frankel
o Constant smoothing factors independent of mesh size and regularization 

parameter can be derived

• Orthogonal decomposition
o Discrete sine transforms
o O(NlogN) operations



Approximate Hessian



2 step stationary scheme + Galerkin operator

• Experiment : Number of V(2,2) cycles for zero regularization parameter 
for ν = 1, 0.01.

• Mesh-independent and β-independent but expensive because of 
Galerkin operator.



Smoother + Discretization at coarser grids

Smoother acts on Coarse grid operator acts on

Smoother removes 
high frequency errors

Coarse-grid correction does not
remove all low frequency errors



Non-Galerkin approximation

• Number of PCG iterations with V(2,2) cycles as preconditioner are 
mesh-independent and β-independent



Non-constant coefficient case

• a(x,t) and b(x,t) are smooth and bounded

• sines are no longer the eigenvectors



Variable coefficients

0 1x



3D



Electrophysiology



Octree data-structures

• Construction in parallel
o Top – down approach

o Load balancing is an issue

• Balancing in parallel
o ripple propagation

o Iterative communication and parallel searches
o Poor scalability

• Finite elements and handling hanging nodes
o Projection schemes (BTAB)

o Need multiple passes to do a matvec 
o More memory requirement to store hanging node information



Novel approach

• Construction in parallel
o Bottom-up approach

• Balancing in parallel
o By a-priori communication

o no iterative communication and  parallel searches 

• Finite elements and handling hanging nodes
o Pre-compute element type

o Single pass to do one matvec
o Compress both octree information and connectivity information 

which makes it cache efficient



Performance

• Matvec
o For uniform distribution matvec takes almost the same time as 

regular grid
o For Gaussian distribution it takes only twice the time as regular grid

Time to mesh and perform matvec on a single processor 



Performance
• Construction and balancing

o Parallel time complexity :
o Storage complexity       :



3D forward solver



Summary

• Computationally demanding forward problems
o Billions of states, millions of opt parameters

• Need for fast Hessian solvers 
• Special structure of Hessian for inverse problems
• Multigrid

o Proposed new smoother

• New octree data-structures
• Ongoing data structures

o Scalable 3D implementation of the inversion algorithm



• url
o www.seas.upenn.edu/~biros/papers/

• Octrees
o OctreeBalance21.pdf

o octreeFem.pdf

• Inversion
o h1dinv.pdf

• Integral equation solvers
o heat1d.pdf
o heat2d.pdf
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