Fast Algorithms for Inverse problems for systems constrained by reaction-diffusion equations

$$J(y, v, u) = \min_{y, v, u} \frac{1}{2} \int_{T} \int_{\partial \Omega} (y - y^{*})^{2} d\Omega dT + \frac{\beta}{2} \int_{\Omega} u^{2} d\Omega,$$

Subject to
$$\frac{\partial y}{\partial t} = D\Delta y + y(y - u)(1 - y) - v,$$
$$\frac{\partial v}{\partial t} = by - \gamma v,$$
$$\nabla y(\Gamma, t) \cdot n = 0, \quad y(\Omega, 0) = 0, \quad v(\Omega, 0) = 0.$$

George Biros University of Pennsylvania

Acknowledgments

- S. Adavani, H. Sundar, S. Rahul (students)
- C. Davatzikos, D. Shen, H. Litt (imaging group)
- Department of Energy o DE-FG02-04ER25646
- National Science Foundation
 o CCF/ITR 0427695
- PSC, Argonne (PETSc group)

Overview

- Motivating applications
- Inverse medium for reaction-advection-diffusion
 equations
- Multigrid for inverse problems o parabolic, elliptic
- End-to-end octree algorithms and data structures
- Fast heat potentials

Cardiac inverse problem

Given endo- and epicardial potentials compute excitability

$$J(y,v,u) = \min_{y,v,u} \frac{1}{2} \int_T \int_{\partial\Omega} (y-y^*)^2 \,\mathrm{d}\Omega \,\mathrm{d}T + \frac{\beta}{2} \int_\Omega u^2 \,\mathrm{d}\Omega,$$

Subject to

$$\frac{\partial y}{\partial t} = D\Delta y + y(y-u)(1-y) - v,$$
$$\frac{\partial v}{\partial t} = by - \gamma v,$$
$$y(\Gamma, t) \cdot n = 0, \quad y(\Omega, 0) = 0, \quad v(\Omega, 0) = 0.$$

Computational work for the forward electrophysiology problem

- System of reaction-diffusion PDEs
- Spatial resolution ~ 6*256^3 ~ 100 million
- Temporal resolution ~ 1000 time steps
- Inversion parameters
 o ~50-100K
- The associated costs suggest an inexact reduced space approach
 - o Several other problems in this category

- Wind from mesoscale models (MM5)
- Sparse sensor readings of concentration

Akcelic, Biros, Draganescu, Ghattas, Hill, Waanders '05

Formulation

• Given wind w, observations y^* , estimate u:

$$\min_{y,u} \sum_{j} \int_{\Omega} \int_{T} (y - y^{*})^{2} \delta(x - x_{j}) \, dx \, dt + \frac{\beta}{2} \int_{\Omega} u^{2} \, dx$$
subject to $y_{t} - \Delta y + w \cdot \nabla y = 0$ in $\Omega \times (0, T)$
 $y = u$ in $\Omega \times \{t = 0\}$
 $\nu \nabla y \cdot n = 0$ on $\Gamma_{N} \times (0, T)$
 $y = 0$ on $\Gamma_{D} \times (0, T)$

• Then forward problem can be used to predict transport contaminant

Need for multilevel solvers for high-resolution inverse medium problems

- Problems with single level solver
 - o Algorithmic scalability
 - o Globalization (for nonlinear problems)
 - o CG scales well if Hessian is compact perturbation of identity Multigrid to reduce constant
 - o Inverse problems

Need solver robustness wrt regularization parameter

Consider 1D "inverse medium" heat equation

1D parabolic PDE $\Omega = (0,1), T = (0,1)$ minimize $\frac{1}{2} \int_T \int_{\Omega} (y - y^*)^2 d\Omega dt + \frac{\beta}{2} \int_{\Omega} u^2 d\Omega$ subject to $\frac{\partial y}{\partial t} - \nu \Delta y + u(x) \mathbf{1}(t) = 0$ $y(x,0) = 0, x \in \Omega, y(0,t) = y(1,t) = 0.$

Optimality conditions

Forward $\begin{aligned} \frac{\partial y}{\partial t} - \nu \Delta y + u(x)\mathbf{1}(t) &= 0 \\ y(x,0) &= 0, \ x \in \Omega, \quad y(0,t) = y(1,t) = 0 \\ & \text{Adjoint} \\ -\frac{\partial p}{\partial t} - \nu \Delta p + y = y^* \\ p(x,T) &= 0, \ x \in \Omega, \quad p(0,t) = p(1,t) = 0 \\ & \text{Control} \\ \beta u + \int_T p \, dt = 0 \end{aligned}$

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} & -\frac{\partial}{\partial t} - \boldsymbol{\Delta} \\ \mathbf{0} & \beta \mathbf{I} & \int_{0}^{T} dt \\ \frac{\partial}{\partial t} - \boldsymbol{\Delta} & \mathbf{1}(t) & \mathbf{0} \end{bmatrix}$$

KKT matrix

KKT optimality

conditions

Optimality conditions – operator form

Discretized optimality system:

$$egin{bmatrix} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Reduced Hessian system:

$$(C^T J^{-T} O^T O J^{-1} C + \beta R) u = -C^T J^{-T} O^T y^*$$

or

Hu = g

where

- J: forward operator
- J^T : adjoint operator
 - R: regularization operator
 - **O**: observation operator
 - $oldsymbol{C}$: extension of Ω into $\Omega imes (0,T)$

Spectrum of reduced Hessian in the unit box with Dirichlet BCs

- Green's function $G(x,y;t) := \sum_{k=1}^{\infty} e^{-\lambda_k t} 2\sin(k\pi x)\sin(k\pi y)$
- Reduced Hessian operator $Hu := \beta u(x) + \int_T \mathbf{1}(t) \int_T \int_\Omega \int_T \int_\Omega G(x, y; T - t - \tau) G(y, z; \tau - \sigma) \mathbf{1}(\sigma) u(z) \, d\Omega \, d\sigma \, d\Omega \, d\tau \, dt$
- Laplacian $\lambda_k = \nu k^2 \pi^2$
- Reduced Hessian $h_k = \beta + \frac{3 + e^{-2\lambda_k T} - 4e^{-\lambda_k T} + 2\lambda_k T}{2\lambda_k^3} = \beta + \mathcal{O}(\frac{1}{\lambda_k^2})$

Reduced Hessian spectrum

Using CG for the reduced Hessian

regularization

N_s	β (σ	iters		
512	6e-08 (19)	1e-10 (99)	69	725
1024	6e-08 (19)	1e-10 (99)	70	781
2048	6e-08 (19)	1e-10 (99)	68	763
4096	6e-08 (19)	1e-10 (99)	71	713

- Fixed β : CG mesh-independent
- Fixed mesh : CG β -dependent
- β depends on frequency information that we need to recover
 o Truncation noise → β ≥ h²

Multigrid

Solve Hu = g, and let u_f^0 initial guess S smoothing, R restriction, P prolongation

> Presmooth Fine $u_f = S(H_f, u_f^0, g_f)$ Compute Residual $r_f = g_f - Hu_f$ Restrict $r_c = \mathbf{R}r_f$ Exact coarse $H_c e_c = r_c$ Correct $u_f = u_f + \mathbf{P}e_c$ Postsmooth Fine $u_f = S(H_f, u_f, g_f)$

Challenges in designing fast solvers for reduced Hessians

- Typically dense
- Typically only "MatVec" available
- Positivity comes in many flavors
 - o I + Compact
 - o Compact
 - o Differential
- Multigrid available for first and third
 - o Little available in the middle category
 - o Inverse problems when rhs \notin range(Hessian)

Smoothers Transfer operators Globalization (coarse/fine grids work partitioning)(do not contaminate spectrum)(non-convex problems)

Related work on multigrid

- Multigrid elliptic PDEs o *Brandt, Braess, Bramble, Hackbusch*
- Multigrid second kind Fredholm
 o *Hackbusch, Hemker & Schippers*
- Multigrid for optimization
 - o Ascher & Haber & Oldenburg, Borzi, Borzi & Kunisch, Borzi & Griesse, Chavent, Dreyer & Maar & Schultz, Draganescu, Hanke & Vogel, Lewis & Nash, Kaltenbacher, King, Kunoth, Ta'asan, Tau & Xu, Vogel, Toint
- Large-scale parallel multigrid/cascade o *Akcelic, Biros & Ghattas, Akcelic* et al.

• Laplacian

Reduced Hessian

Smoothers for optimization-related operators

- Hackbush smoother(s) for 2nd-kind Fredholm
 o Not good in practice, especially for inverse problems
- Kaltenbacher-King smoothers
 o Easier to implement but not scalable as regularization → 0
- *Borzi-Griesse* pointwise space-time multigrid o Collective, but expensive for general regularization
- Time domain-decomposition o *Lions, Hienkenschloss, Maday*

Design of Smoothers

Orthogonal decomposition (King) of the finite dimensional space

$$V_h = V_{2h} \oplus W_{2h}$$

- o relatively low frequency $\longrightarrow V_{2h}$ o relatively high frequency $\longrightarrow W_{2h}$
- Smoothing iterations on the relatively high-frequency subspace

Orthogonal decomposition

• Orthogonal decomposition of space

$$u = u_s + u_o$$
 where $u_s \in V_{2h}, u_o \in W_{2h}$

$$(I - P_h + P_h)H^h(I - P_h + P_h)(u) = g$$

Smoothing equation

$$(I - P_h)H^h u_o = (I - P_h)g$$

Coarse-grid equation

$$P_h H^h u_s = P_h g$$

Solving smoothing equation $(I - P_h)H^h u_o = (I - P_h)g$

- Smoother
 - o Two step stationary iterative scheme by Frankel
 - o Constant smoothing factors independent of mesh size and regularization parameter can be derived
- Orthogonal decomposition
 - o Discrete sine transforms
 - o O(NlogN) operations

Smoothing factor :

$$\mu_k = \left(\left(\alpha - \frac{2\alpha\sigma_k}{\lambda_{\min} + \lambda_{\max}} \right) \left(1 - \frac{2\sigma_k}{\lambda_{\min} + \lambda_{\max}} \right) + (1 - \alpha) \right),$$
$$\mu = \max\left(\mu_k \right) = 0.29 \text{ for } \frac{\lambda_{\min}}{\lambda_{\max}} = 0.25$$

Approximate Hessian

Forward $\frac{\partial y^n}{\partial t} - \nu \Delta_d y^n = u^n(x)\mathbf{1}(t) + \nu \Delta_o y^p[u^p]$ Adjoint $-\frac{\partial p^n}{\partial t} - \nu \Delta_d p^n = -y^n + \nu \Delta_o p^p [u^p]$ Control $\beta u^n - \int_{\mathcal{T}} p^p \, dt = 0$

2 step stationary scheme + Galerkin operator

• Experiment : Number of V(2,2) cycles for zero regularization parameter for v = 1, 0.01.

level	V_1	$V_{0.01}$
4	16	22
5	22	27
6	25	32
7	26	34
8	24	33

 Mesh-independent and β-independent but expensive because of Galerkin operator.

Smoother + Discretization at coarser grids

Smoother acts on

Smoother removes high frequency errors Coarse grid operator acts on

Coarse-grid correction does not remove all low frequency errors

Non-Galerkin approximation

$\nu = 1.0$					
N_s	β	${ m M}_{ m sec}^{-1}$	$ ilde{\mathrm{M}}_{sec}^{-1}$	${ m M}_{ m stc}^{-1}$	$ ilde{ m M}_{ m stc}^{-1}$
31	5e-07 (31)	10	10	10	10
63	1e-07 (44)	13	13	13	17
127	3e-08 (63)	13	14	14	16
255	7e-09 (89)	13	19	13	16
511	2e-09 (127)	15	18	15	17
1023	5e-10 (180)	15	17	15	17

• Number of PCG iterations with V(2,2) cycles as preconditioner are mesh-independent and β -independent

Non-constant coefficient case

1D parabolic PDE
$$\Omega = (0, 1), T = (0, 1)$$

$$\min \frac{1}{2} \int_T \int_{\Omega} (y - y^*)^2 + \frac{\beta}{2} \int_{\Omega} u^2$$

subject to

$$\frac{\partial y}{\partial t} - \nu \Delta y + a(x,t)y + b(x,t)u(x) = 0$$

$$y(x,0) = 0, \ x \in \Omega, \quad y(0,t) = y(1,t) = 0.$$

- a(x,t) and b(x,t) are smooth and bounded
- sines are no longer the eigenvectors

Variable coefficients $\hat{y}(x,t)$

N_s	β	$M_{\rm sec}^{-1}$	$M_{\rm stc}^{-1}$
31	2e-06	13	14
63	5e-07	14	16
127	1e-07	16	18
255	3e-08	19	20

3D

Electrophysiology

Octree data-structures

- Construction in parallel

 Top down approach
 Load balancing is an issue
- Balancing in parallel
 - o ripple propagation
 - o Iterative communication and parallel searches
 - o Poor scalability
- Finite elements and handling hanging nodes
 - o Projection schemes (B^TAB)
 - o Need multiple passes to do a matvec
 - o More memory requirement to store hanging node information

Novel approach

- Construction in parallel o Bottom-up approach
- Balancing in parallel
 - o By *a-priori* communication
 - o no iterative communication and parallel searches
- Finite elements and handling hanging nodes
 - o Pre-compute element type
 - o Single pass to do one matvec
 - o Compress both octree information and connectivity information which makes it cache efficient

Performance

- Matvec
 - o For uniform distribution matvec takes almost the same time as regular grid
 - o For Gaussian distribution it takes only twice the time as regular grid

Time to mesh and perform matvec on a single processor

Problem	Regular	Octree Mesh			
Size	Grid	Uniform Distribution		Gaussian Distribution	
	MatVec	Meshing	MatVec	Meshing	MatVec
256K	2.1483	5.26415	2.3994	6.13723	5.5050
512K	4.3557	10.3013	5.2296	12.7178	10.560
1M	8.1822	21.4262	9.9921	25.8099	20.753
2M	17.247	44.2938	19.119	53.618	43.046
4M	34.251	90.1725	39.541	109.351	82.198

Performance

- Construction and balancing
 - o Parallel time complexity :
 - o Storage complexity : $\mathcal{O}(n)$

 $\mathcal{O}(n/n_p \log(n/n_p) + n_p \log n_p)$

3D forward solver

Summary

- Computationally demanding forward problems
 o Billions of states, millions of opt parameters
- Need for fast Hessian solvers
- Special structure of Hessian for inverse problems
- Multigrid
 - o Proposed new smoother
- New octree data-structures
- Ongoing data structures
 - o Scalable 3D implementation of the inversion algorithm

• url

o www.seas.upenn.edu/~biros/papers/

Octrees

o OctreeBalance21.pdf

o octreeFem.pdf

Inversion

o hldinv.pdf

Integral equation solvers

 heat1d.pdf
 heat2d.pdf

