
Workshop on

Software Development Tools for
Petascale Computing

http://www.csm.ornl.gov/workshops/Petascale07/

1-2 August 2007
Washington, DC

Organizing Committee: Fred Johnson, DOE Office of Science
Thuc Hoang, National Nuclear Security Administration
Bronis de Supinski, Lawrence Livermore National Laboratory
Bart Miller, University of Wisconsin, Madison
Jeffrey Vetter, Oak Ridge National Laboratory and Georgia Tech
Mary Zosel, Lawrence Livermore National Laboratory

Working Group Chairs: Susan Coghlan, Argonne National Laboratory
Al Geist, Oak Ridge National Laboratory
Jeffrey Hollingsworth, University of Maryland
Curtis Janssen, Sandia National Laboratories
Bernd Mohr, Forschungszentrum Jülich
Rod Oldehoeft, Krell Institute
Craig Rasmussen, Los Alamos National Laboratory
Daniel Reed, Renaissance Computing Institute

Editor: Jeffrey Vetter, Oak Ridge National Laboratory and Georgia Tech

SDTPC Workshop Report Page ii

0B0BEXECUTIVE SUMMARY
Petascale computing systems will soon be available to the DOE science community. Recent studies in

the productivity of HPC platforms point to better software environments as a key enabler to science on
these systems. To prepare for the deployment and productive use of these petascale platforms, the DOE
science and general HPC community must have the software development tools, such as performance
analyzers and debuggers that meet application requirements for scalability, functionality, reliability, and
ease of use. In this report, we identify and prioritize the research opportunities in the area of software
development tools for high performance computing. To facilitate this effort, DOE hosted a group of 55
leading international experts in this area at the Software Development Tools for PetaScale Computing
(SDTPC) Workshop, which was held in Washington, D.C. on August 1 and 2, 2007.

Software development tools serve as an important interface between the application teams and the
target HPC architectures. Broadly speaking, these roles can be decomposed into three categories:
performance tools, correctness tools, and development environments. Accordingly, this SDTPC report has
four technical thrusts: performance tools, correctness tools, development environment infrastructures, and
scalable tool infrastructures. The last thrust primarily targets tool developers per se, rather than end users.
Finally, this report identifies non-technical strategic challenges that impact most tool development. The
organizing committee emphasizes that many critical areas are outside the scope of this charter; these
important areas include system software, compilers, and I/O.

Overall, the DOE platform roadmap shows that platforms are growing more complex and scaling to
hundreds of thousands of processors. The increase in architectural complexity is rooted in multimode
parallelism and heterogeneity. Taken together, these trends create a critical need for tools that can help
application teams bridge these complexity and scalability challenges.

Meanwhile, applications are becoming much more multifaceted as teams include a variety of languages,
libraries, programming models, data structures, and algorithms in a single application. In fact, application
teams are listing scalable tools for debugging, memory correctness, thread correctness, and multimode
performance analysis as key factors in their productivity.

In performance tools, emerging heterogeneous, hierarchical architectures will render static, manual
approaches to diagnosing performance problems insufficient. Rather, online measurement and adaptivity
in performance monitoring are becoming important techniques to dynamically optimize choices of
application performance instrumentation and analysis at large system scale and complexity. Furthermore,
the architectures and system software must make the necessary performance and reliability information
available to these tools so that they can perform root-cause analysis with greater accuracy.

In correctness tools, as in performance tools, the availability of scalable tools is particularly critical.
Application teams specifically requested lightweight tools to diagnose memory, threading, and message
passing errors that are easy to use and scale from their desktop system to their petaflop platform.

Both performance and correctness tools rely on scalable infrastructures to provide tool communication,
data management, binary manipulation of application executables, execution management for batch
schedulers and operating systems, and a variety of other capabilities. Tool infrastructures must be
efficient, modular, fault tolerant, and flexible. In addition, these infrastructures can speed the development
of and reduce the cost of performance and correctness tools by providing standard, portable mechanisms
for common capabilities.

SDTPC Workshop Report Page iii

In a similar manner, application teams need infrastructures for development environments, where this
area includes tools for managing application builds and configurations, mixed language support, dynamic
linking, program configurations, remote access, compiler infrastructures for application-specific analysis
and transformations, and integrated development environments.

Finally, an array of crosscutting, non-technical issues that can accelerate or inhibit the success of
software development tools must be addressed. These challenges extend far beyond solving technical
issues into areas that require strategic coordination among industry, government, and academia. Such
issues include a well-defined mechanism for sustaining and hardening successful research tools;
engagement with application teams, particularly for tool training; access to system testbeds and details
about the system architecture and software; modular design and implementation of tool components that
could be leveraged across many tools; and, support for international collaboration.

SDTPC Workshop Report Page iv

1B1BTABLE OF CONTENTS

0B0BEXECUTIVE SUMMARY ... II

1B1BTABLE OF CONTENTS ...IV

TABLE OF TABLES... V

1 INTRODUCTION ... 1
1.1 WORKSHOP... 1
1.2 REPORT OUTLINE ... 2

2 DOE PLATFORM ROADMAP... 2

3 APPLICATION REQUIREMENTS FOR SOFTWARE DEVELOPMENT TOOLS 4

4 TECHNICAL THRUST – PERFORMANCE TOOLS.. 6
4.1 PERFORMANCE TOOL STATUS.. 7
4.2 PETASCALE REQUIREMENTS... 8
4.3 FINDINGS .. 9
4.4 RECOMMENDATIONS .. 10

5 TECHNICAL THRUST – CORRECTNESS TOOLS ... 11
5.1 TOPICS .. 11
5.2 SCOPE ... 11
5.3 DEBUGGING TOOLS .. 12
5.4 MEMORY USAGE TOOLS... 12
5.5 TOOLS SPECIFICALLY FOR PARALLELISM CORRECTNESS CHECKING.. 12
5.6 STATIC ANALYSIS AND FORMAL VERIFICATION.. 13
5.7 MISCELLANEOUS ISSUES .. 13
5.8 CORRECTNESS TOOL WORKING GROUP FINDINGS .. 14

6 TECHNICAL THRUST – SCALABLE INFRASTRUCTURES.. 14
6.1 TOPICS .. 15
6.2 CURRENT STATUS .. 16
6.3 INFRASTRUCTURE FINDINGS .. 16
6.4 RECOMMENDATIONS .. 17

7 TECHNICAL THRUST – DEVELOPMENT ENVIRONMENT INFRASTRUCTURES 18
7.1 TOPICS .. 18
7.2 SCOPE ... 18
7.3 TOOLS AND ISSUES NOT CONSIDERED, AND CONSIDERED .. 19
7.4 APPLICATION BUILD TOOLS ... 19
7.5 MIXED LANGUAGE ENVIRONMENTS .. 19
7.6 COMPILER INFRASTRUCTURE ... 20
7.7 PROGRAM TRANSFORMATIONS .. 20
7.8 SOFTWARE DEVELOPMENT FOR REMOTE SYSTEMS... 20
7.9 INTEGRATED DEVELOPMENT ENVIRONMENTS (IDES)... 21

SDTPC Workshop Report Page v

7.10 FINDINGS OF THE DEVELOPMENT ENVIRONMENT INFRASTRUCTURES WORKING GROUP....... 21
8 STRATEGIC NON-TECHNICAL CHALLENGES.. 21

2B2BAPPENDIX 1 – SDTPC WORKSHOP AGENDA... 24
8.1 WEDNESDAY, AUGUST 1 .. 24
8.2 THURSDAY, AUGUST 2 ... 24

3B3BAPPENDIX 2 – SDTPC WORKSHOP ATTENDEES.. 25

3B3BAPPENDIX 3 – OTHER SDTPC CONTRIBUTORS ... 26

TABLE OF TABLES
TABLE 1: PRESENT AND FUTURE DOE PLATFORMS.---2
TABLE 2: PERFORMANCE TOOL ASSESSMENT --8
TABLE 3: PERFORMANCE TOOL CHALLENGES. --- 10
TABLE 4: CORRECTNESS TOOL CHALLENGES.-- 13
TABLE 5: TOOL INFRASTRUCTURE CHALLENGES. -- 17
TABLE 6: DEVELOPMENT ENVIRONMENT INFRASTRUCTURE CHALLENGES. --- 21
TABLE 7: SDTPC WORKSHOP ATTENDEES.--- 25

SDTPC Workshop Report Page 1

1 INTRODUCTION
Petascale computing systems will soon be available to the DOE science community. To prepare for the

deployment and productive use of these platforms, the DOE science community must have the software
development tools, such as performance analyzers and debuggers, surpass application requirements for
scalability, functionality, reliability, and ease of use. In this whitepaper, we identify and prioritize the
research opportunities in the area of software development tools for high performance computing.

Recent studies in the productivity of HPC platforms point to better software environments as a key
enabler to science on these platforms. Not surprisingly, application scientists consistently indicate that
they need software development tools that can function not only at small scales for initial development
but also at the size of the largest runs (e.g., software that scales from the desktop to the petaflop). Clearly,
understanding performance and correctness problems of applications requires running, analyzing, and
drawing insight into these issues at the largest scale.

Although the architecture of petascale systems is yet to be determined, the largest existing systems can
help guide our expectations for those machines. The largest of these systems, the IBM BlueGene/L
machine at Lawrence Livermore National Laboratory (LLNL), has 131,072 processors while the second
largest system, the Cray XT4/XT3 system at Oak Ridge National Laboratory (ORNL) has 23,016. In fact,
the five largest existing systems have over twenty thousand processors each. Further, current technology
trends indicate that processor counts will continue to increase as we move towards petascale systems and
beyond.

Consequently, research for software development tools for petascale systems must address a number of
dimensions. First, it must include elements that directly address extremely large task and thread counts.
Such a strategy is likely to use mechanisms that reduce the number of tasks or threads that must be
monitored. Second, less clear but equally daunting, is the fact that several planned systems will be
composed of heterogeneous computing devices. Performance and correctness tools for these systems are
very immature. Third, requires a scalable and modular infrastructure that allows rapid creation of new
tools that respond to the unique needs that may arise as petascale systems evolve. Further, successful tools
research must enable productive use of systems that are by definition unique. Thus, it must provide the
full range of traditional software development tools, from debuggers and other code correctness tools
such as memory analyzers, performance analysis tools and tools that support the requirements of building
applications that rely on a diverse and rapidly changing set of support libraries.

1.1 Workshop
The remainder of this paper details the findings generated at the Software Development Tools for

PetaScale Computing (SDTPC) Workshop held in Washington, D.C. on August 1 and 2, 2007. During the
workshop, attendees participated in two separate sessions of two concurrent working groups. On the first
day, the Performance Tools and Correctness Tools working groups met. On the second day, the Scalable
Infrastructures and Development Environment Infrastructures assembled. The organizing committee
emphasized that many critical areas were outside the scope of this charter; these important areas include
system software, compilers, and I/O.

The chairs of each working group were chartered with delivering a prioritized list of challenges for their
specific topics as rated by the attendees. Although the scheme for rating priorities varied across working
groups, in general, they ranked each specific challenge on two dimensions: likelihood and impact.
Likelihood is the probability that the technology will not be available in the given timeframe. That is,
given current trends, do you expect the target technology to be ready for petascale computing? Impact is

SDTPC Workshop Report Page 2

the severity of damage this item will inflict on the goals of petascale computing if the challenge is not
addressed. Said differently, how important will the lack of a solution for this challenge be for applications
targeting petascale systems. Taken together, these two dimensions were used to rate each technical item,
and generate a specific rank.

1.2 Report Outline
We begin in the following section with a short summary of expected petascale hardware directions. We

then review the requirements of software development tools for petascale systems as presented by
application scientists in Section 3. The next sections examine four technical thrusts: performance tools;
debugging and correctness tools; scalable infrastructures; and code development environment
infrastructures. For each technical thrust, we review the current state of the art and the requirements for
petascale systems, after which, we detail the challenges and our recommendations for addressing these
requirements. Finally, we summarize the overall recommendations that emerged from the workshop in
Section 8.

2 DOE PLATFORM ROADMAP
DOE is pursuing an aggressive path to capability computing with its leadership class systems. Table 1

lists current and some planned leadership class systems. These systems are notable in their size, from tens
of thousands to hundreds of thousand of processors, running a variety of operating systems, runtimes,
schedulers, and processor architectures.

Table 1: Present and Future DOE Platforms1.
System Date Site Peak

TFLOPS
Processor Cores per

Chip
Cores

Cray Red Storm 2004 SNL 124 AMD Opteron 2 ~25,000
IBM BlueGene/L 2005 LLNL 360 PowerPC 440 2 ~131,000
IBM Purple 2005 LLNL 93 Power5 2 ~10,000
IBM BlueGene/L 2005 ANL 6 PowerPC 440 2 ~2,000
Cray XT3/4 2007 ORNL 119 AMD Opteron 2 ~23,000
Cray XT4 2007 NERSC ~100 AMD Opteron 2 ~20,000
IBM BlueGene/P 2007 ANL ~100 PowerPC 450 4 ~32,000
Cray XT4+ 2007 ORNL ~250 AMD Opteron 4 ~24,000
Cray XT4+ 2008 NERSC ~300 AMD Opteron 4 ~40,000
IBM BlueGene/P 2008 ANL 250-500 PowerPC 450 4 >100,000
Cray Baker 2008 ORNL ~1,000 AMD Opteron 4 ~96,000
IBM RoadRunner 2008 LANL ~1,700 AMD Opteron

IBM Cell
4
9

~200,000

Sequoia Dawn RFP 2008 LLNL ~500 TBD TBD TBD

From this existing roadmap, looking just two years hence, we can make several observations. While the

complexity and scale of these systems are major challenges, the trends in these new systems make the
challenges even more complex. Some of these trends include the following.

1 This table provides illustrative information about the existing and future DOE platforms. Future
platforms are subject to budget approval, system and component availability, and other changes.

SDTPC Workshop Report Page 3

1. Increased scale: As the number of cores per chip increase, the number of total cores per system
will increase. This increase in scale of hardware will challenge every aspect of software design,
including the application, the programming environment, the libraries, the operating systems, the
job schedulers, and the storage systems. At the large scale planned for future systems, the failure
rate for system components used by the tools as well as the applications they are used on is going
to increase significantly. Thus, innovative fault tolerance mechanisms, both in the applications
and the software development tools will be particularly needed.

2. Multi-mode parallelism: With single and dual core processors, users could almost ignore the
combination of shared-memory and message passing in the same system. As processors grow to
four cores and more, the programming models, tools, system software, and applications are going
to have to incorporate support and specific optimizations for these cores explicitly.

3. Reduced memory per core: A side effect of the multi-core trend is that there is a proportional
reduction in the amount of RAM per core (holding platform memory size constant) that will be
available to the application. This reduced memory size could add significant complexity to
software design and performance optimization.

4. Heterogeneity: Several new designs are starting to incorporate multiple processor devices in the
same system. For instance, the IBM Roadrunner, currently under development for LANL, will
combine a traditional AMD node design with several Cell processors per node. The complexity of
the Cell processor, with its radical departure from the conventional design of general-purpose
processors, presents significant programming challenges to the application community. In other
examples, the Cray Cascade system for DARPA will introduce a variety of processor types, from
scalar to multi-core to vector, in the same system.

Taken together, the combination of the existing challenge of scale with these emerging challenges, such

as heterogeneity, will require increased activity in the area of development tools if the DOE science
community plans to benefit from the petascale platforms.

SDTPC Workshop Report Page 4

3 APPLICATION REQUIREMENTS FOR SOFTWARE DEVELOPMENT TOOLS
A rational process for planning future directions for software development tools for petascale

computing must reflect both the anticipated directions for petascale architectures and the requirements of
applications that will run on them. For this reason, the SDTPC Workshop included presentations from
three application team leads: Brian Pudliner from Lawrence Livermore National Laboratory; Robert J.
Harrison from Oak Ridge National Laboratory; and John T. Daly from Los Alamos National Laboratory.
These user talks provided direct requirements in three of the four technical thrusts addressed by the
workshop’s working groups -- requirements were implied for scalable infrastructures but the users were
concerned with functionality and not the underlying mechanism to provide it at scale. In this section we
summarize and synthesize the user requirements.

The user requirements are heavily shaped by the length of the life cycle of the applications. All three
talks discussed applications that have both long development cycles and long periods during which the
application is in "production." An important aspect of this life cycle is that "code is always in
development -- even 'production' code." Thus, the users require assurances of stable support for a
programming model, including the development tools that enable its use. Further, "new" applications are
almost never entirely new -- they almost always take some existing code base to provide key underlying
physics or mathematics functionality from an existing application. As a result, users are not open to tools
that only target "new" applications or require significant changes to the established workflow of the
application team.

The tool support required can vary with the life cycle stage. Initial code developers need full featured
debuggers and performance analysis tools and are willing to work with tools with relatively high
overheads, such as some memory correctness tools. Similar functionality is also needed for code being
maintained. In addition, support for version tracking, code coverage and regression testing (both
correctness and performance) are useful at this stage. Supporting code ready to run at large scales requires
yet different tools. Lightweight debugging functionality is essential at these scales, as are low overhead
mechanisms for performance profiling and analysis. Codes in production use stress aspects of working
with scripts or other mechanisms to interact with applications and large scale systems. In particular, many
scientific applications increasingly rely on Python to provide a framework for steering application runs.
Another key aspect of this life cycle stage that will become increasingly important with petascale systems
is that GUI-based tools must provide a mechanism for fast and secure remote operation. Finally, tools to
support fault tolerance, with a focus on data integrity, are expected to become even more important during
this life cycle stage as the number of cores will increase dramatically in petascale architectures.

Other aspects of the code development process also can shape tool requirements. Developers use tools
to make their code correct and performant. However, different developers use tools differently, whether
due to personal preferences, time constraints, or level of expertise. Requirements for tool architecture,
interoperation, and training should take into account usage aspects if tools are to be accepted and applied
effectively in general development practice. For instance, tool refactoring to decompose specific
functionality into individual components could allow for targeted use of a tool component with a smaller
learning curve. On the other hand, a tool framework that integrates functionality might better support
automation of multi-step operations. In either case, it is important to emphasize training to raise the level
of tool competency and expected return on tool investment.

SDTPC Workshop Report Page 5

One common aspect of the code development paradigm for scientific applications merits specific
mention. Applications often rely on many third party libraries. For a variety of reasons, the source of the
libraries is generally integrated into the application build infrastructure. However, this integration cannot
be complete in order to allow updates of that source and support for using third party libraries in this way
is inadequate. As a result, it can represent a significant cost to developers. Further, they anticipate this
cost will increase in systems that require cross-compilation, as are commonly proposed for petascale
architectures. Simply put, this cost must be reduced, particularly in light of programs like SciDAC that
are creating significant support software in the form of libraries for a variety of common needs including
solvers and meshing packages.

The increasing prevalence of coupled multi-disciplinary codes has combined with the long life cycle of
scientific applications and the use of third party libraries to make codes larger and more complex. As a
result, tools must handle larger executables. Tool developers are already seeing demand for tools to
handle codes of several hundred mega-bytes to giga-bytes of executables. In addition, the rise of
component based programming is resulting in applications that have hundreds if not thousands of shared
libraries.

The dominant programming model of DOE Science applications is currently MPI although Harrison
noted that computational chemistry codes make heavy use of one-sided communication mechanisms other
than that available in MPI-2. This leads to a clear requirement for tools that facilitate the use of MPI, both
in performance and correctness, as well as the ability to accommodate alternative communication
mechanisms. In addition, application programmers anticipate needing to use multi-level parallelism for
expected petascale architectures. These models would include the existing MPI or one-sided
parallelization as one level. Harrison mentioned coarse grain task level parallelism (similar to the
component model in the Community Climate System Model), as another possible level. More
importantly, most application teams expect that efficient exploitation of fine grain parallelism through
shared memory threading will be essential on future architectures, petascale and beyond.

The expected addition of thread level
parallelism drives many user requirements.
Users strongly desire portable tools that
provide automatic analysis of the correctness
of threaded applications (e.g., freedom from
race conditions). The robustness of the
support for threads in traditional debuggers
and performance analysis tools also concerns
them.

In general, users do not perceive existing
debuggers as scaling beyond about 1024 MPI
tasks when applied to real applications.
Further work to improve their scaling is
needed. However, application developers
particularly want lightweight debugging tools
that scale to the full size of the platform and
provide information that assists in narrowing the problem. Particularly of interest are tools that identify
commonalities between MPI tasks or that limit issues to specific aspects of the application or even
identify when the issue is due to some underlying hardware problem. These tools can allow effective use
of traditional debuggers on subsets of the large job. In addition, users often find print statements are an

Figure 1: Visualizing Memory Usage over Time.

SDTPC Workshop Report Page 6

effective debugging mechanism although it is easy to see how it can break down at very large task counts.
Thus, some mechanism to support this paradigm at large scale is desirable. Tools that monitor application
progress and determine if a job is hung or otherwise failing could save significant wasted resources.
Pudliner noted that a scalable Python debugger would be nice but was not a priority since the existing
tools are adequate in this respect. Likewise, tools must work with applications that use common OS
features, such as dynamic libraries.

All of the users noted needs for support for many aspects of memory usage. Since we anticipate reduced
main memory per core in petascale architectures, developers need tools that help them understand the
scaling behavior of memory allocations and usage. Tools to detect correct memory semantics employed
remain important. However, new tools that monitor how often memory regions are touched would
support optimizations that simply recompute quantities rather than using significant memory to store
them. Even tools that monitor how much memory is being used in a parallel job over time would be
useful, as shown in Figure 1. To be applied on petascale application runs, all of these tools must have
little overhead, a criteria that many existing memory correctness tools fail to meet.

 Several performance issues are anticipated to become of increasing importance. Perhaps at the top of
the list is load balancing. Tools are needed to detect load balance problems and to assist application
dynamic load balancing algorithms. Other significant performance concerns include mapping application
communication topologies to scalable network architectures such as tori.

Pudliner concluded his talk with a list of priorities that he anticipates for software development tools for
petascale computing, roughly in priority order:

1. A means of debugging at scale;
2. Memory debugging;
3. Performance analysis tools: serial; parallel (at scale); and thread;
4. Memory characterization tool;
5. Thread correctness tool if necessary;
6. A means of characterizing/optimizing for topology if necessary;

He stated that the top four were close in priority. The sixth was further off in that it depends on
petascale architecture directions. However, the major platform directions discussed in the previous section
all employ networks that reward communication locality so it is likely to be an important issue. Both
Harrison and Daly indicated general concurrence with the points that Pudliner raised.

4 TECHNICAL THRUST – PERFORMANCE TOOLS
Chairs: Bernd Mohr (Forschungszentrum Jülich)

Daniel Reed (Renaissance Computing Institute)

The performance tools working group was charged to explore the following topics related to software
support and infrastructure for performance analysis, related to future petascale systems:

1. Analysis, modeling, and optimization;
2. Interactive and automatic approaches;
3. Data management and instrumentation;

SDTPC Workshop Report Page 7

4. Hardware and operating system support;
5. Visualization and presentation.

This group, like the other working groups, was asked to assess the current state of the art in each of
these areas, identify the needs and requirements for performance tools at petascale and present a set of
focused findings and recommendations. The latter were to be ordered based on priority and challenge type
(technical, finding, policy or training) and the impact (high, medium or low) and risk associated with the
challenge (high, medium or low).

The group began the discussion with the sobering realization that the software tool developer
community is small, though tightly knit, with members of academia, industry, national laboratories and
government. Relatively few academic groups conduct research on scalable performance analysis and, in
consequence, the pool of new researchers, particularly those who can obtain a national security clearance
and work directly with classified codes, is very small. However, this has led to deep collaborations not
only across the academic, laboratory and industry communities but also between groups in the U.S. and in
Europe. Collectively, the workshop attendees have long and deep working relationships and shared
experiences that quickly focused the discussion on old and new challenges.

The group also acknowledged that it has been debating these challenges and making community policy
recommendations for over twenty years. This conundrum is a consequence of the rapidly changing nature
of high-performance computing and performance tool dependence on a long chain of hardware and
software attributes. Powerful, effective performance tools depend on hardware, operating system, runtime
library and compiler infrastructure. Because all of these elements are themselves in flux, particularly early
in a product lifecycle, robust performance tools are rarely available when they may most be needed – for
early use on new systems. Finally, performance tools are often a loss leader for vendors, dictated by
contract specifications but rarely the proximate cause for system purchase. All of these technical,
economic and political attributes exacerbate performance tool research, development and deployment.

4.1 Performance Tool Status
There is general agreement that the basic elements of performance tuning (i.e., instrumentation,

measurement and analysis) are well understood and effective when applied judiciously. During the past
twenty years, the performance tool substrate has been well defined and basic infrastructure support has
improved. High-resolution, global clocks (for event ordering), hardware performance counters, and basic
performance measurement libraries are now standard on (almost) all platforms.

There are standard software instrumentation techniques for FORTRAN and C, although C++
instrumentation with templates is more problematic. Analysis of message passing applications based on
MPI is well supported, as is instrumentation of user code regions and functions, but there is less effective
support for OpenMP and thread-level parallelism. This missing support is rising in importance as
multicore processors, particularly heterogeneous multicore, become more common.

The standard measurement techniques, based on statistical sampling, profiling and event tracing are
well known and are supported by a diverse tool base. However, few of these tools are truly scalable to
systems with tens or hundreds of thousands of processors. As this suggests, analysis techniques are the
weakest of the three elements of the performance tool chain, as most measurement techniques produce too
much data, and the analysis tools are rarely able to identify root performance bottlenecks and suggest
effective remediation. Simply put, deep analysis is largely a user function, rather than a tool capability.

We need a new generation of performance tools that automate a larger fraction of data analysis,
emphasizing key code segments and execution threads. The visualization techniques of the 1980s, which

SDTPC Workshop Report Page 8

showed each thread of control or message interaction, will not scale to 500K parallelism. We lack both
the screen real-estate and pattern recognition skills to recognize rare events in a sea of data.

This highlights the fact that performance tool research and development, like that for debugging tools,
spans both technical (measurement and analysis) and usability issues. Effective performance tools must
not only capture and present relevant performance data with low overhead, they must do so in ways that
application developers find intuitive and useful within the standard software development and support life
cycle. Given the rapid flux in machine architectures and the long lifetime of scientific and weapons codes,
this is a daunting human-computer interaction (HCI) challenge.

Similarly, current analysis tools support only homogeneous systems (i.e., those with little differentiation
among processors). The rise of multicore processors, particularly heterogeneous multicore processors, and
systems with specialized co-processors (GPUs, FPGAs, Cell and others), poses new challenges, and no
extant tools are effective in analyzing any but the most trivial codes.

The working group also believes current tools focus excessively on time as a metric, ignoring the rising
importance of memory analysis, particularly as new and emerging systems have ever deeper memory
hierarchies. While time-to-solution is the most important metric in HPC, it can be difficult to diagnose
and correct performance problems without other metrics, such as locality and reuse of data. In this sense,
memory can also be construed to include I/O systems, a limitation for checkpointing and recovery on
failure-prone petascale systems.

Finally, although the group devoted little time to discussing performance modeling as an enabling tool
for performance optimization, the group did believe modeling is important, both for system
characterization and for performance prediction. With this backdrop, Table 2 summarizes the working
group’s assessment of current performance tool capabilities and techniques.

As the table suggests, we have
effective tools and techniques for
smaller, extant systems, but new
approaches (both research and
development) will be needed for
emerging heterogeneous
petascale systems. Substantially
greater research will be needed
for automated and semi-
automated code optimization if
we are to reduce the already large
cognitive burdens based by scientific application developers. We discuss this topic in greater detail below.

4.2 Petascale Requirements
Petascale systems bring new challenges and not simply from the larger number of processor cores.

Increasingly complex applications with code coupling, multiple programming models and distributed data
sources will exacerbate already complex performance analysis and optimization problems. When coupled
with dynamic adaptivity and hardware heterogeneity, new tool approaches will be required.

Specifically, the working group believed performance analysis tools must include greater automation
for detecting anomalies, correlating and clustering performance data and behavior and for reducing data
to avoid excessive execution perturbation and user confusion. This will also require new support for
programming model abstractions and the ability to elide detail and complexity and to reveal them only

Table 2: Performance Tool Assessment
Capability Assessment

Measurement/analysis WIP
Modeling WIP
Optimization LI
Interactive/manual WIP
Automatic WIP/Challenge
Data management WIP
Instrumentation WIP
Hardware and OS support WIP
Visualization/presentation WIP

 Legend: WIP (work in progress), LI (little insight), IH (in hand)

SDTPC Workshop Report Page 9

when required. The rise of programming model heterogeneity (i.e., both implicit and explicit parallelism),
together with hardware diversity and deep parallelism hierarchies, will necessitate new tool approaches.

Petascale systems (hardware, system software, libraries and applications) must be resilient to the
inevitable faults expected with million way parallelism and large numbers of commodity components.
This suggests that performability (i.e., hybrid assessment of performance and reliability) will be one of
the major new frontiers for petascale performance analysis tool research and development. In turn, this
will demand new multi-level instrumentation and metrics and scalable presentation metaphors and models
that can highlight both performance and reliability problems for computing elements, memory systems
and I/O systems.

One immediate consequence of performability analysis and optimization is the fusion of offline and
online techniques. In particular, runtime optimization must maximize performance in the face of hardware
and software failures, allowing applications to continue execution, albeit perhaps by shifting elements of
the computation to other resources, ensuring accuracy given transient failures (e.g., memory or processor
bit errors) and balancing on-chip and off-chip parallelism for multicore processors. The working group
also believed that additional training and education will be required to create a new generation of
application scientists and performance tool developers. As noted earlier, performance optimization
complexity is rising rapidly, yet the pool of performance tool researchers and developers has not grown
substantially.

Finally, there was strong agreement among the working group members that petascale performance
analysis is not simply a scaling of terascale problems. New approaches will be required, dictated by code
heterogeneity, hardware and software reliability and system scale. This is in striking contrast to terascale
experiences, where approaches used with 10-100 way parallelism were scaled to 1000 way parallelism,
albeit not without difficulty.

4.3 Findings
As noted above, petascale systems will be of higher complexity and greater heterogeneity than terascale

systems. Consequently, petascale performance analysis is qualitatively more complex than that on
terascale systems. Today, we rely primarily on manual, labor intensive methods using static and offline
approaches. We instrument applications, capture performance data during application execution and then
analyze the data after the execution completes. In the petascale regime, the current performance tool
practice will be increasingly challenged as the amount of performance information increases. Petascale
tools must be complemented with online, adaptive methods that measure and optimize application
behavior automatically during execution, rather than solely relying on post-mortem user assessment and
adjustment.

Online, adaptive optimization will require greater integration of tool components. It will also place
greater stress on system software and runtime libraries for performance tool support, the subject of the
infrastructure working group. Intuitively, we need a new set of tool building blocks than can serve as the
basis of a diverse suite of experimental performance tools via component reuse. This is the software
analog of the flattened hardware hierarchy, where old abstractions are being replaced by end-to-end
hardware optimization – so-called holistic design. Finally, we need better mechanisms for hardening,
documentation, support and user training. The “valley of death” between research prototypes and robust,
easily usable tools must be bridged if we are to identify those ideas that are both intellectually interesting
and practically useful. This may require new and more flexible funding approaches, together with longer-
term support and transition mechanisms.

SDTPC Workshop Report Page 10

Table 3: Performance Tool Challenges.
Challenge Type Risk Impact

User engagement and training Training High High
Additional information sources (e.g. I/O, memory) Technical High Medium
Long-term maintenance and support Funding and policy High High
Funds for technology transfer and deployment Funding and policy Medium Medium
Application-driven development of tools Medium Medium
Substantial advances in automation of diagnosis, optimization and
anomaly detection

Technical High High

Developing live techniques to extend post-mortem Technical Medium Medium
Integrated, persistent monitoring components Technical Medium Medium
Support for multi-component and multi-disciplinary applications Technical High Medium
Detection of load imbalance Technical High High
Support for heterogeneous and hierarchical hardware Technical High High
Support for new and hybrid programming models Technical, funding,

policy and training
Medium Medium

Add performance analysis to CS curriculum Training and policy Low Low

4.4 Recommendations
Based on the working group’s status assessment and findings, the group classified a set of performance

tool challenges based on the risk of failure and the potential impact (benefit) of success. Table 2
summarizes these challenges and recommendations. Each of these is broadly connected to the findings
discussed above.

Of these, the most important, based on perceived risk and benefit, are as follows.
• User engagement and training. Long experience in developing performance tools has

demonstrated the need for tighter integration between tool and application development teams,
from the standpoints both of understanding requirements and of providing adequate training. We
discuss details of this cross cutting challenge in Section 8.

• Long-term maintenance and support. Productization was also identified as particular concern by
the performance tool working group. It again actually applies across the areas considered at the
workshop and is discussed in more detail in Section 8.

• Automated diagnosis and remediation. As noted earlier, the scale and complexity of petascale
systems will necessitate new approaches to performance optimization, shifting from offline,
manual analysis to greater automation. This is a major technical challenge that will require new
research funding and technical insights. Failure to address this challenge will increase the
probability that emerging petascale systems are used inefficiently.

• Load imbalance detection. The petascale manifestation of Amdahl’s law, load imbalance
becomes increasingly critical when a single thread can delay hundreds of thousands of others.
Current tools focus largely on metrics, rather than causes. New approaches are needed for
analysis and presentation.

• Heterogeneous, hierarchical architecture support. Finally, the multicore revolution will bring
100-way parallelism on each chip, albeit with diverse cores and capabilities. For almost all
systems, this architectural direction will necessitate the use of multilevel parallelism, in general,
and threading in particular. Thus, performance tools will need to target multilevel paradigms,
including hybrid OpenMP/MPI programs. The Los Alamos Roadrunner system, with Opteron
SMPs and Cell accelerators is a forerunner of heterogeneous architectures. Performance tools
must capture and relate performance and reliability problems to source code in ways that make
multilevel performance optimization possible and practical.

SDTPC Workshop Report Page 11

5 TECHNICAL THRUST – CORRECTNESS TOOLS
Chairs: Susan Coughlan (Argonne National Laboratory)

Curtis Janssen (Sandia National Laboratories)

5.1 Topics
The primary goal of correctness tools is to provide confidence in application code correctness and to

potentially suggest recommendations on repairs to users. The correctness tools working group was
charged with exploring the following topics:

1. Instrumentation;
2. Data collection;
3. Data management;
4. Attribution;
5. Automatic correctness recommendations;
6. Visualization;
7. Data mining;
8. Hardware and operating systems support for correctness.

Ensuring that programs run to completion and produce a correct result remains a challenging and
expensive problem in all areas of software development. This is no less true for parallel applications that
are intended to scale to petascale-class architectures and beyond, which present unique challenges for
these goals. Developing applications that run as multiple processes on multiple machines, typically with
data communication patterns that tightly couple the processes together, is exceedingly difficult. Petascale
machines will layer on top of this the challenge of dealing with additional parallelism models such as
threading, or heterogeneous computing resources. It is even likely that many applications will need to
reduce interprocess synchronization to run efficiently at such scales by relying on global address space
methods and active messages, as is already done in several quantum chemistry applications, for example.
Furthermore, by making so much computing power available, petascale machines will change the nature
of applications, allowing more detailed coupled multi-scale, multi-physics computations. While
developers look for bugs by attempting to reproduce errors with small inputs at small scales, this is not
always possible, and it will be necessary to give developers the capability to debug and to analyze
programs running at full scale. These multiple dimensions of complexity require that providers of
petascale-class machine carefully review the available correctness tools, find their deficiencies in a
petascale environment, and chart a direction to resolve these deficiencies. This report will review classes
of tools that are required by developers to ensure code correctness and give an initial estimate of the
priority of each gap and difficulty in closing the gaps.

5.2 Scope
We will restrict our attention to tools that developers will use to ensure that programs run to completion

and give the expected result. We will not discuss validation tools, tools for ensuring that a program's
results agree with experiment. Validation is an important area and could not be given adequate attention
within the scope of the Correctness Tools Working Group. Also, performance regression in a program can
indicate a bug, even if the correct answer is obtained. Since another working group was dedicated to
performance tools, we do not discuss performance regression testing here.

SDTPC Workshop Report Page 12

Tools that are included are the traditional debuggers that allow programmers to set breakpoints, to run,
to step though, and to examine and to modify data in a running program. At large scales, lightweight
versions of these tools that provide critical debugging capabilities, while providing more scalability than
traditional debuggers, are needed. Other debugging tools include tools that check for incorrect memory
references and for efficient memory usage. Also, because of the additional complexity caused by
parallelism, tools are needed to enable users to detect incorrect use of parallel programming techniques.
Such tools include thread correctness checkers and Message Passing Interface (MPI) usage checkers. A
complicating factor is that as machines became larger, and the average time between hardware errors
decreases, it will be more and more important for developers to be able to distinguish between application
software errors, library errors, middleware errors, and hardware errors. Finally, detecting potential at-
scale errors before running at scale could save a great deal of effort. Tools examining trends for a series of
small-scale runs, static analysis tools, and formal verification tools could play a role in this regard.

5.3 Debugging Tools
Traditional debuggers allow programmers to manipulate an application by actions that include setting

breakpoints, stepping though source lines, and examining and changing data in a running program.
Currently, a job running on four thousand processors is the largest supported use of a traditional
debugger, and it is expected that the practical upper bound for the number of processors is in the range of
one to eight thousand in the best case scenario. On most current systems the practical upper limit is on the
order of several hundred processes. Beyond that developers will need a combination of lightweight
debugger techniques, becoming progressively lighter and more autonomous in analyzing the application
to isolate the problem.

Because of the complexity of petascale applications and the large number of code and hardware groups
that are either directly or indirectly involved in an application, it is highly desirable to isolate the cause of
bugs as precisely and definitively as possible. Such root cause analysis must also consider possible
hardware sources for the error, incorporating information from the machine's Reliability Availability and
Serviceability (RAS) system about the health of the hardware.

5.4 Memory Usage Tools
Memory usage tools fall into two broad categories: tools for monitoring memory utilization, including

memory leaks and overall memory consumption. and tools to find programming errors in the way
memory is accessed. The second category of memory tool includes lightweight tools that identify simple
array overruns, as well as heavyweight tools that instrument the running application to monitor all loads
and stores while tracking which memory locations contain valid data. All of these tools can locate
programming errors before the error manifests itself as an incorrect answer or job interrupt. The
heavyweight memory tools are the most informative, as they are the only tools that can detect incorrect
memory accesses into incorrectly or correctly allocated memory at the very instruction that caused the
problem. Portable tools for monitoring memory utilization are missing and this is a specific issue with
developers. Other memory tools are currently believed not to have particular issues, except for the open-
source business model and scalable infrastructure issues that were discussed above.

5.5 Tools Specifically for Parallelism Correctness Checking
Users need several tools in order to detect incorrect use of parallel programming techniques. Such tools

include thread correctness checkers and MPI usage checkers. Thread correctness checkers are very similar
to memory tools. However, instead of being concerned with the validity of memory references, they
verify properties including that no potential race condition exists. No threading tool that runs on all

SDTPC Workshop Report Page 13

processors of interest to DOE currently exists. Further, no existing threading correctness checker supports
the hybrid threading/MPI paradigm, even at small scales, that will be relevant for petascale systems due to
slowdown incurred when using existing tools.

Tools for checking MPI parallelism exist, however the full potential of this category of tools has yet be
realized. For example, trends recorded by tools from a series of runs at small scale could be used to
predict potential undesirable behaviors that would arise at large scale.

5.6 Static Analysis and Formal Verification
The best time to find a bug is before the application is executed. Static analysis tools to check program

style and find certain programmer errors have been available for some time. In fact, compilers continue to
have more and more static analysis capability built into them. However, from a petascale tools
perspective, additional checks could be done that are outside the scope of ordinary static analysis tools.
An example of such checks include locating integer operations that could overflow at scale and checking
parallel programming constructs for correctness.

It is also possible to detect flaws in algorithms before the programming stage by using formal
verification techniques. Such techniques would permit parallel programming constructs to be rigorously
verified for guaranteed correctness, eliminating the need for a trial and error approach to implementing
and debugging a faulty algorithm.

Table 4: Correctness Tool Challenges.
Challenges Priority Difficulty

Scalability of traditional debuggers being able to do the same things on more nodes is too limited 8 Med/High
Memory leak/high water mark tool to instrument libraries is needed 7 Medium
Existing thread correctness checkers are neither multi-platform nor designed for multilevel parallelism 6 High
Need lightweight tools to perform root cause analysis 4 Med/High
Interface between traditional debugger to light-weight debugging tools (tool collaboration interface) is needed
provide to a smooth transition from super light-weight to super heavy tools

4 Med/High

Not enough extreme scale lightweight debugging tools 4 Med/High
Missing lightweight tools to debug core files at large scale 4 Medium
Missing the ability for RAS systems that applications and system software can use to learn about hardware
causes for program faults and to allow the fault to be handled

3 Medium

Open source support model needs to be elucidated, as well as the role of vendors 3 Medium
Compiler infrastructure needed to build the static analysis tools is missing 3 Med/High
New ways to represent the output of debuggers, pre-analyzed for users, are needed 3 Med/High
Operating system support (overriding issue for pretty much everything) remains an issue for many tools 3 Med/High
User education efforts insufficient for many tools 2 Med/Low
Hardware/system software coverage test suites are not exhaustive 2 Medium
Common open infrastructure (with performance expectations that are documented) is missing 2 Med/High
Many static analysis tools are still needed, particularly for Fortran 2 Medium
Ease of use often missing for many tools 2 Med/High
Tools that use formal verification methods to identify deadlocks, livelocks, race conditions, and other errors in
parallel software are missing

2 Med/High

Need MPI usage trend tools that run at small scale could be (but are not) used to predict issues that could
occur at large scale

1 Med/High

Build related failures are not identified, including software that are not built consistently (different flags,
different compilers)

1 Medium

Extensibility of the debuggers for more user-driven analysis capability is needed 1 Med/High
Impossible to develop tools for scale without access 1 Medium
No standardized test harness for regression testing exists 1 Medium
Design by contract, assertions, parallel assertions are at best poorly supported 1 Med/High

5.7 Miscellaneous Issues
Other issues, some of which are not represented in the gaps below, are worth discussing. First, no

standardized test harness for regression testing is widely used. In addition, over time, the performance of

SDTPC Workshop Report Page 14

a system can degrade and hardware components (such as memory) can start to fail. Pre-emptive
performance and correctness regression testing on a system should be done at regular intervals to ensure
that jobs accomplish useful science rather than debug system problems. An exhaustive regression test
suite as well as research to determine when and what to test to minimize testing time and to maximize the
system's protection, is needed. Second, consistency in software builds becomes an issue in complex
applications involving many libraries. Using different compiler flags for different parts of the application
can result in errors, or limit the functionality of tools. Finally, there is no formal support for design by
contract in languages typically used by the parallel computing community, and scalable support for
assertion checking (and the subsequent error reporting) is nonexistent. Assertion checking involving
explicit parallelism (say, ensuring that a variable has the same value on all nodes) is also lacking.

5.8 Correctness Tool Working Group Findings
Table 4 lists a number of gaps in correctness tools for petascale computing that the correctness tools

working group identified. However, a tool or requirement not being listed as a gap does not mean that the
tool is not essential. Failure to support existing, successful capabilities, or not addressing the gaps
affecting all correctness tools could result in additional gaps.

Working group participants were asked to prioritize the gaps by distributing a maximum of seventy
points among all the gaps, with more points being allocated to higher priority gaps (the higher the
priority, the greater the impact of addressing the gap). Everyone was also asked to rate the difficulty of
closing the gap as low, medium, or high. Table 4 gives the averaged priorities. The difficulties were
averaged over just those responses that rated the difficulty of each particular gap.

The ratings exhibited considerable variability. For nearly all gaps, the standard deviation of the
priorities was greater than the average priority. The only exception was for the thread-correctness tool
gap, which had a smaller standard deviation and, hence, for which there was a greater degree of
consensus. The highest priority needs are 1) improvement of the scalability of traditional debuggers, 2)
memory usage tools, and 3) thread-correctness tools. The total average number of priority points assigned
to these three were twenty-one out of seventy. Just below that was a cluster of four gaps that totaled to
sixteen points. These gaps all related to lightweight debugging capabilities. Beyond that, a number of
gaps were identified for a total of twenty-four in all.

6 TECHNICAL THRUST – SCALABLE INFRASTRUCTURES
Chairs: Al Geist (Oak Ridge National Laboratory)

Jeffrey Hollingsworth (University of Maryland)

The area of scalable infrastructures is defined as software and hardware that are used primarily by tool

builders in creating tools. However, many types of infrastructure may also be useful by applications teams
in building internal tools and even for directly instrumenting their programs. For example, the PAPI
performance counter library would be considered tool infrastructure since it is used to build other tools.
However, many applications groups also directly use PAPI.

The goal of tool infrastructure is the development of useful bits of software that make it easier to create
new tools. By packaging commonly needed features, tool innovation can be encouraged by allowing a

SDTPC Workshop Report Page 15

tool developer to concentrate on the new aspects of their tool rather than re-creating commonly needed
infrastructure.

6.1 Topics
Tool infrastructure complexity can range from a relatively simple library with a few hundred lines of

code to complex systems with dozens of functions and hundreds of thousands of lines of code.
Developing the infrastructure described here can sometimes be done by tool developers working alone.
However, frequently tool infrastructure is at the edge of tools and other disciplines, such as architectures,
operating systems, compilers, and execution environments. We try to note where there are interactions
required from other areas. In this report, we group tool infrastructure into six thematic areas:

1) Tool Communication includes the areas of communicating information within a tool when tool
components are located on different nodes in a parallel system. It also includes the need of tools
to get information from external sources such as the hardware, operating system, compiler,
scheduler, and runtime system (libraries and scheduler). Another important aspect of tool
communication is the ability of tools to exchange information between tools. An important aspect
of communication is reuse. Reuse can include both tool components (code) and information about
applications (data).

2) Data Management includes all aspects of gathering, reducting, and storing information about
applications. It includes not only directly measured information (e.g., trace of operations, or
sampling of counters), but also metadata about the execution environment in which the data was
gathered (e.g., machine configuration, library versions). Data reduction techniques include any
ways in which the collected performance data can be aggregated, distilled, or otherwise
condensed to reduce the volume of data resulting from long running programs executing on
leadership class machines. Since leadership class machines are national assets with a
geographically distributed user base, an important aspect of data management is ensuring tools
work well when there are large latencies between users and the machines.

3) Scheduler Issues involve the relationship of tools to the batch scheduler on the system. Tools
must closely coordinate with the scheduler on issues such as: tool deployment (launching the tool
onto nodes of the system) and tool composability (the coordination of multiple tools that may
wish to run at the same time on the same application). Tools also need to be able to make requests
of the scheduler for additional resources (e.g., extra nodes or memory) for either the tools
themselves or for tool functionally such as fault tolerance. In addition, tools need information
from the scheduler about the network topology and other attributes of the assigned nodes.

4) Operating System Issues for tools include the availability of process control interfaces (e.g.,
/proc or ptrace), access to thread information including thread creation and dispatch, and low
overhead access to hardware counters. In addition, the underlying operating system must include
sufficient support for the scale of the machine (e.g., maximum number of open file descriptors).

5) Binary Manipulation is the ability to gather data from compiled programs and to insert code into
binaries to create new modified binaries. Related issues include compiler hooks to provide
information about transformations and optimizations. Other challenges include binary analysis of
optimized and stripped programs, and the need to generate new binaries with instrumentation. In
addition, other information such as a stack un-winder is required to allow the creation of runtime
tools.

SDTPC Workshop Report Page 16

6) Miscellaneous Issues include the ability of tools to survive (or at least not crash the application)
when a machine fault occurs, and scalable support for tracing such as parallel file I/O support.
Additional issues include the need for tools to work with applications that are partially written in
scripting languages.

6.2 Current Status
Before looking at the future tool needs, we briefly review the status of tool infrastructure in the six

areas outlined above.
In the area of tool communication, many tools develop their own styles of communications. The major

two common infrastructure components are PAPI for hardware counters, and MRNet for inter-tool
communications and data reduction. At the lower level, OS specific counter libraries such as perfmon2
(Linux) and hpm (AIX) are available, but not on all platforms. Data management tools consist of the
research projects PerfDB, PerfDMF, and PerfTrack. There are SciDAC efforts in the SDM and PERI
projects to develop interoperation between these data management frameworks.

Operating system and scheduler interfaces are available in various forms. While there is diversity in
implementation, functionality is generally available on machines using traditional operating systems (e.g.
Linux and AIX). However, a major limitation for tool builders currently is the limited OS support for tool
functionality on node micro-kernels such as the Catamount and BlueGene kernels. Process control,
sampling, and memory information are all inadequate on these micro-kernel systems today. Scheduler
support for co-allocation of nodes for tools remains limited. Support for getting network topology
information has been limited at best. Some thread information is available for MPI via the threadDB
interface, or for openMP via the performance interface detailed in an OpenMP ARB white paper.

A variety of research has been done in the area of binary manipulation. For online binary editing, tools
such as Dyninst have provided multi-platform support. In the area of static binary re-writers, a collection
of platform specific tools such as Atom, Pin, and Valgrind are (or have been) available. Many tool groups
have built their own binary analysis tools to meet their needs, but sharing analyses between tools has been
limited to date. Compiler hooks to support analysis and instrumentation have been included in gcc and the
ROSE source-to-source translator. However, to date well documented interfaces to this type of
information are not available from compiler vendors. To support open tracing of programs, the Open
Trace Format (OTF) standard has been developed. To date, several tools can read and write this format,
but additional adoption and standardization of information in the traces is still needed.

6.3 Infrastructure Findings
Today, tool infrastructure reuse is uncommon. The emphasis on research prototypes rather than

production tools has limited reuse. The lack of reuse has limited tool innovation since the effort required
to explore a new tool idea is unduly large when vast amounts of code must be written to explore an idea.

Due to the growing complexity of petascale systems, applications and systems will be more
dynamically adaptable. Runtime support for fault tolerance, adaptive load balancing, and varied compute
models will all require additional tool support, and the need for tools to measure and respond to changes
during program execution.

Tools need communication abstractions beyond TCP/IP sockets. With the increased use of micro-
kernels and high-speed networks, having communications between tool components rely on TCP/IP
networks is no longer adequate (or even possible in some cases). To promote reuse and integration, these
tool communication abstractions must be standardized

SDTPC Workshop Report Page 17

The cost of supporting tools for multiple platforms and operating systems is straining tool developers,
both commercial and academic. The diversity of platforms and operating systems has made this worse.
Additional operating systems such as Cray’s Compute Node Linux and Linux on Power systems has only
made the situation more complex by adding additional OS choices to existing hardware platforms.

Going to petascale will increase the need for anomaly detection and (dynamic) data reduction.
Anomalous performance of nodes (due to either hardware or system software) will become the norm at
the large node counts expected. Likewise, the volumes of data that can be generated from these larger
numbers of cores will require new techniques in dynamic (during program execution) reduction and
processing.

Table 5: Tool infrastructure challenges.
Challenge Risk if nothing done Impact if challenge

solved
Tool Communication
 Within a single tool Medium/High High
 Interfaces to the OS/machine data Medium Medium
 Lack of reuse High High
 Tool interop/data exchange High Medium
Data Management
 Measurement data and meta data from runs Medium Medium
 Data reduction & presentation tools – graph tools High High*
 Availability of Additional Hardware Data – memory, etc. Medium High
 Distance between user and machine – latency and data volume Medium Medium
Scheduler Issues
 Tool Deployment – launch High High
 Co-scheduled jobs or “spare” nodes in a job request for tools or fault

tolerance
High High/Medium

 Topology map info, control of placement of “spare” nodes Medium Medium
 Tool composability – all fighting for same hooks High High
OS Issues
 OS scaling issues for tools – enough sockets High High
 Process control High Medium
 Threading issues Medium Medium
 Low overhead access to performance data Medium High
Binary Manipulation
 Binary re-writing High High
 Compiler hooks High Medium
 Binary analysis Medium Medium
 Stack un-winder Low High
Miscellaneaous Issues
 Tools survive machine faults High High/Medium
 Tools for scripting languages Medium/Low Low
 Perf. data I/O support: parallel file system, avoiding I/O via reduction Medium High
 Sampling support for signals/interrupts Medium High
 Clock synchronization High Medium
 Scripting languages for tools Medium Medium/Low

6.4 Recommendations
Funding for petascale tools infrastructure is important to the success of an overall scalable tools effort

in order to:
• Supply the scalable, dynamic, capabilities needed by next generation tools;
• Reduce redundancy of having each tools group develop their own infrastructure capabilities;
• Promote integration of developed tools by standardizing infrastructure APIs;
• Reduce cost of life-cycle tools support by having the infrastructure handle much of the diversity

of platforms and operating systems.

SDTPC Workshop Report Page 18

A second major recommendation is to fund the full tool life cycle from design, hardening, support, and
long term maintenance. While, this can’t be done for every tool idea, it needs to be done for those tools
and infrastructure capabilities that are the most popular and useful.

Table 5 shows the workshop assessments of various challenges to the tools infrastructure at petascale. It
is divided into the categories given in the Topics sub-section. For each item the risk to the success of
future tools if nothing is done is scored as high, medium, or low. With a similar scale the impact if the
challenge would be solved was assessed by the workshop attendees. The highest scoring item with a
unanimous vote was data reduction and presentation capabilities supplied by the infrastructure. Several
other items scored high in both in risk and impact. These include: lack of tool reuse, coordinated tool
launch, tool composability, scalability of OS features needed by tools, and binary rewriting.

7 TECHNICAL THRUST – DEVELOPMENT ENVIRONMENT

INFRASTRUCTURES
Chairs: Rod Oldehoeft (Krell Institute)

Craig Rasmussen (Los Alamos National Laboratory)

7.1 Topics
This group has been assigned the task of identifying the requirements and gaps in the development

environment necessary to meet the petascale challenge. The working group considered the following
topics:

1. Integrated development environments;
2. Build environments (e.g., make, libtool);
3. Compiler support for development environments;
4. Mixed language support;
5. Refactoring;
6. Automatic interface generation and validation.

7.2 Scope
Programming models (and the languages and libraries implementing these models) are a very important

component of the development environment. Like developer tools, the programming models will need to
adapt to the growing levels of on-chip parallelism and the increasing depth of memory hierarchies. It is
important that programming models be considered in meeting the challenges of petascale computing, in
particular in those areas related to the placement, movement, and access to memory. However,
programming models are outside the scope of this working group and we restrict our attention to tools
that aid the developer in designing, creating, modifying, building, and running applications.

Tools specifically related to program correctness, debugging, and performance are in the purview of
other working groups and are not considered here. However, development architectures supporting the
integration of the full range of tools affecting application development are within the scope of this
working group and are considered. In addition, it should be noted that compiler infrastructures, while they
may lie outside the scope of other working groups, are an important component in tools considered by
these groups, in particular those tools related to program correctness and performance.

SDTPC Workshop Report Page 19

There are many classes of tools used by the scientific community in the development of scientific
applications. These include: UML tools used for software design and modeling; tools that support a group
of geographically distributed developers and tools that support remote development (isolated from the
petascale computer); revision control tools; configuration and build tools and libraries and runtime
environments; tools supporting development in mixed languages; tools providing program
transformations and refactorings; and compiler infrastructure support for general tool development. These
tools and tool classes were all discussed by the working group, although some were excluded from
detailed consideration early on, as described below. In addition, we considered integrated development
environments that provide an infrastructure to integrate a broad range of development tools.

7.3 Tools and Issues Not Considered, and Considered
After our preliminary discussions developed an extensive list of tool categories and issues, we excluded

several that we felt were present in the current computing environment and did not have a direct affect on
petascale computing, or that were well on their way to being handled at this scale. These include software
design tools, systems for source code control and bug tracking, database services, and project
management issues.

Two areas of software development were recognized as important and relevant to petascale computing,
but we did not consider them owing to time constraints. These are fault tolerant methods in software
design, and software design that is informed by the hardware systems’ inter-processor and processor-
memory topologies. We recommend that these not be ignored, because both can greatly affect the
performance of petascale applications. These topics should be included in future discussions.

On the other hand, we included one class of problems that some felt were not directly related to
petascale computing, but that nevertheless currently cause significant difficulties for application
programmers. In particular, program building and configuration, including library ordering during
linking, continue to take too much effort during application development.

7.4 Application Build Tools
The current state of tools for program configuration and construction is deplorable. Applications must

be built for multiple systems, including perhaps one or more petascale machines. We found that too much
complexity results from multiple compilers, operating systems, libraries (and their versions). Common
option sets and command-line interfaces are missing. We are concerned that the lack of shared libraries
and dynamic linking capabilities on petascale systems currently in development will contribute more
difficulties. We recommend consideration of new tools (make is still broken), improved tools (e.g., for
managing linking order), and more attention to interoperability of program build tools.

7.5 Mixed Language Environments
Because of the complexity of petascale applications and the large number of code teams that are either

directly or indirectly involved in developing an application, mixed-language programming becomes
increasingly important in petascale application development. For example, as the number of physics
packages and libraries rises, the likelihood increases that different components of an application will be
written in different languages. In addition, programming paradigm changes will be required to handle the
increased levels of parallelism associated with leadership-class machines. User feedback clearly indicates
that this will include the hybrid OpenMP/MPI paradigm as well as a likely increase in usage of PGAS
languages such as UPC and Co-array Fortran.

SDTPC Workshop Report Page 20

We found that developers are using Python to script application runs and to prototype algorithmic ideas.
We recommend that language interoperability efforts continue at both the tool and language-standards
level and that increased automation be used to decrease the level of programmer effort. It is a concern that
tools that require the ability to load libraries dynamically, like Python, will not be able to be used with
some operating systems on petascale computers.

7.6 Compiler Infrastructure
Several tools are needed to enable petascale computing. Many of the tools discussed here, and in the

context of other working groups, require, or could use the benefit of, static analysis capabilities provided
by a compiler infrastructure. For example, static analysis is used to instrument codes for performance
measurements automatically, is used in source-to-source transformations to enhance performance (e.g.,
loop transformations), and is used in tools to aid programmers in ensuring that applications perform
correctly (e.g., lint tools).

We found that both developers and tools would benefit from a compiler infrastructure. In particular,
knowledge of estimated performance at the source-code level (cost estimates are routinely a part of an
optimizing compiler) should be provided. This is particularly important with regards to IO costs and
memory usage, as memory latency dominates the performance of most scientific applications.

We recommend that a flexible (easily adaptable), portable, and open-source compiler infrastructure be
supported to provide for the tooling needs of petascale computing. Vendors should also be encouraged to
open up portions of their compilers to provide users and tools with as much information as possible.

7.7 Program Transformations
Currently, scientific applications must use a variety of hardware architectures in distinct runs. Even

today it is a challenge to achieve performance across multiple architectures and this challenge will only be
exacerbated as petascale platforms are delivered. We found that source-to-source transformations have
successfully adapted existing codes automatically to new computer architectures. We recommend that
projects be supported that explore the usage of program transformation tools in achieving architecture
independence for scientific applications.

7.8 Software Development for Remote Systems
Because of the substantial costs associated with leadership class facilities, most users will likely be

located at a site that is remote from the petascale computing resource. Even if a user is at the same
institution as the computer, the user will likely be isolated from the machine itself. The file system,
compilers, libraries, tools, and other resources will always be remote from a user’s desktop and will
probably not be the environment under which a user’s application was developed.

A remote environment provides challenges for a user as files must be transferred, differences in
environments taken into consideration, and often several different levels of authentication negotiated.
Perhaps most importantly, it complicates the use of software development tools. Overall, these issues
imply that we must provide mechanisms so that application programmers can effectively work remotely.
In particular, we need high performance support for secure remote GUI operation. It would also be
beneficial if the development environment hid many of the details of remote operation so that the user
need not substantially modify their usual workflow. We recommend investment in a client-server-based
shared infrastructure for remote development, including improved communication efficiency.

SDTPC Workshop Report Page 21

7.9 Integrated Development Environments (IDEs)
Petascale applications will have much larger and more complex requirements for program control, data

management, and visualization, in addition to the normal developer activities of designing, coding,
building, debugging, and performance optimization. IDEs are designed to increase developer productivity
in all these areas by providing an integrated workbench of tools, sharing data between tools, and
automating many common tool operations. However, they also tend to have steep learning curves and
must not interfere with desire for a set of lightweight tools, as was clearly expressed in the user talks at
the start of the workshop. Further, most scientific application developers have existing workflows that
would require any petascale IDEs to support the use of their components in stand-alone mode. Thus, we
found that although IDEs are widely used outside of scientific computing, they have had little impact in
HPC. Projects sometimes put together specialized environments for a single application, which do not
generalize to future use. Single stand-alone tools are much more common. While IDEs are unlikely to
gain adoption in HPC easily, they might provide productivity gains. For this reason, we recommend
limited investment in IDEs that focuses on pilot projects to explore their possible advantages and to
establish their ability to support existing workflows as well as the revamped integrated workflow for
which they are known.

7.10 Findings of the Development Environment Infrastructures Working Group
The working group identified a number of gaps in application development tools and environments for

petascale computing and these gaps are listed in the Table 6. However, we should note that a tool or
requirement not being listed as a gap does not mean that the tool is not essential. For example, vendor-
supplied optimizing compilers are essential in developing high-performing applications. Failure to
support existing, successful capabilities, could result in additional gaps.

Working group participants were asked to prioritize the gaps by providing a rating of high, medium, or
low to indicate the priority of addressing the challenge. The ratings were normalized to a scale of one to
ten and entered in the table. Each participant was also asked to indicate the impact on the ability to reach
petascale computing goals if a gap were not closed, again on a scale of high, medium, and low. Both
priorities and impact in the table are averages of participant responses.

It should be stressed that all of the gaps listed below received a medium to high priority and impact
rating. Areas found to have a lower priority were not considered fully by the group and are not listed here.

Table 6: Development environment infrastructure challenges.
Challenges Priority Impact

Application build and configuration issues are a continuing problem. 10 High
Compiler infrastructure is needed to support a wide variety of development of tools. 9 High/Med
Tools are required to facilitate the development of applications from remote sites. 9 High/Med
Mixed language support needed for migration to new programming models. 8 High/Med
Scalable dynamic linking support is needed from vendors and static linking a continuing problem. 8 High/Med
Program transformations required for portability across hardware architectures 6 Medium
Lack of an integrated development environment for the integration of tools. 5 Medium

8 STRATEGIC NON‐TECHNICAL CHALLENGES
The working groups all agreed on a set of important non-technical challenges: policy, funding,

business, intellectual property, or training/education. We collate and highlight these crosscutting issues in
this section. In most cases, a solution to each of these issues would have significant and immediate impact

SDTPC Workshop Report Page 22

on the success of software development tools for HPC. Steps beyond technical research should be taken
to eliminate these challenges.

1. Funding and model for sustaining/hardening tools. Software development tools are a financial

burden for HPC vendors, as their features rarely if ever determine acquisition outcomes.
Similarly, academic and laboratory performance tools researchers and developers rarely possess
either the skills or the desire to transition research ideas to production code, with concomitant
support. Nonetheless, many of today’s successful research tools could benefit from sustained
funding to transition the tools to production software. However, the government rarely funds
long-term maintenance and tools support. The pathway from research prototype to a software tool
that is widely available, production quality and actively supported is not clear. In most cases, the
funding researchers receive is targeted toward specific research goals, and not necessarily to
provide tool porting, testing, documentation, standardization, or user support. A new model of
software tool support is needed if we are to address current and future needs.

2. System diversity. Architectures and software systems for HPC are quite diverse when compared
to just a decade ago. In many cases, existing tools must be ported and validated against these new
systems. This task is made much more difficult if the new systems use novel architectural
features, or non-compliant or proprietary software.

3. System testbeds and development access to target platforms. Access to system testbeds for
software development and testing continues to be a challenge for development of software tools.
In particular, software development tools must be able to run at production scale and in the same
environments as production users. In some cases, these developers must be able to modify the
system software, such as the operating system, to perform their tests.

4. Access to and engagement with applications and domain experts. All too often, performance
tools are developed in the absence of detailed understanding of user and application challenges.
Conversely, users are often unaware of the technical difficulties underlying tool design and
support. Bridging this gap with a collaborative tool development and extension process, where
promising ideas are identified and tested early, then enhanced and supported across the
application development and support cycle, would ameliorate the expectations gap. Recent
experiences in both the Office of Science and NNSA affirm the distinct advantages of having
computer science experts engaged with applications and domain experts. Working together, these
two groups can best map the applications to the architectures.

5. User training. Software development tools can be very flexible and powerful in their own right.
The developers of these tools should make it a priority to train the user community on tool
capabilities and usage. Furthermore, usability should be a major requirement included in any
funding focusing on transition to production software.

6. Interactions with vendors. Successful software tools require intimate knowledge of the target
architecture and software system. Vendors must provide this knowledge to external developers in
some form, either by adhering to standards or by providing specifications, documentation,
software, and early access to systems.

7. Standardization. Aside from standardization of target system architecture and system software
components, developers of software tools could benefit from standardization within their own
community. For example, APIs, tracefile formats, and user interfaces could all benefit from
standardization. This standardization would promote tool interoperability among other benefits.

SDTPC Workshop Report Page 23

8. Modular infrastructure development. Modular tool infrastructures that allow the development
and composition of a set of tool components emerged in multiple sessions. This infrastructure
could provide components using a variety of mechanisms that include libraries, runtime systems,
software source code, user interfaces, and standard APIs.

9. International collaboration. A large number of software developers reside outside the USA. In
order to facilitate collaborations across these communities, the employers and funding agencies
must embrace and facilitate these collaborations by providing joint funding opportunities and
bridging gaps in policy.

10. Education and workforce. As is the case in other areas of HPC and computer science, there is a
specific need to educate new students and workers in order to ensure a sufficiently large and
capable workforce.

In many cases, these cross cutting issues are symptoms are consequences of larger topics. First of all,

the HPC market is relatively small when compared to the consumer and enterprise computing markets.
As a result, finding a business model for the development, porting, and support of the tools is a challenge.
Proprietary products are only feasible through a combination of licensing agreements and engineering
contracts and expose the labs to the risk of the product becoming unavailable due changes in the business
case for the company's support of petascale machines, including changes due to the transfer of ownership
of the intellectual property involved. Open-source software gives the labs the opportunity to fix bugs and
add features through internal efforts and external contracts. Communities can develop around open-source
software resulting in a spread of the cost; however, we must recognize that the community of leadership
class facilities is, by definition, small. Also, we must find ways to ensure open-source research projects
evolve into robust, easy to use, well-documented software. Whether we chose open-source software or
proprietary software, the community must be engaged in software development tools and their underlying
infrastructure.

A second issue is that we find similar underlying functionality is needed for a variety of tools, and this
functionality is often repeated. Open tool infrastructure that can, say, start tools on nodes and collect and
filter data are needed, so that more time can be spent on developing the required tool capabilities. Some
tools require an interface to hardware features, and some may need a detailed knowledge of the operating
system/application interface.

SDTPC Workshop Report Page 24

2B2BAPPENDIX 1 – SDTPC WORKSHOP AGENDA

8.1 Wednesday, August 1
Start Time Activity Speaker/Chair

7:30 Continental Breakfast
8:30 Welcome, Introductions, Goals Jeffrey Vetter, ORNL

Fred Johnson, DOE
9:00 Applications Experiences #1 Brian Pudliner, LLNL
9:30 Applications Experiences #2 Robert Harrison, ORNL

10:00 Break
10:30 Applications Experiences #3 John Daly, LANL
11:00 DOE Platform Futures Fred Johnson, DOE ASCR

Bob Meisner, DOE NNSA
11:30 Tools Futures Bart Miller, Wisconsin
12:00 Working Group charter Jeffrey Vetter, ORNL
12:15 Lunch on your own

1:15 Poster Session
2:00 Working Groups convene

(1) Performance Tools
(2) Correctness Tools

3:20 Break
3:30 Working Groups continue
5:00 Working Groups formulate findings
5:30 Adjourn

8.2 Thursday, August 2
Start Time Activity Speaker/Organizer

7:30 Continental Breakfast
8:30 Working Groups convene

(1) Scalable Infrastructures
(2) Development Environment Infrastructures

10:00 Break: 15 min
10:10 Working Groups continue
11:15 Working Groups formulate findings
12:00 Lunch on your own

1:00 WG report #1 WG Chair
1:30 WG report #2 WG Chair
2:00 WG report #3 WG Chair
2:30 WG report #4 WG Chair
3:00 Closing comments and action items Steering committee
3:30 Adjourn

SDTPC Workshop Report Page 25

3B3BAPPENDIX 2 – SDTPC WORKSHOP ATTENDEES
The following people participated in the SDTPC workshop in Washington, DC on 1-2 August 2007.

Table 7: SDTPC Workshop attendees.
First/Middle

Name
Last Name Organization Email

Dong H. Ahn Lawrence Livermore National Laboratory ahn1@llnl.gov
Sadaf R. Alam Oak Ridge National Laboratory alamsr@ornl.gov
Ron Brightwell Sandia National Laboratories rbbrigh@sandia.gov
Cary D. Butler US Army Corps of Engineers, ITL hopkint@wes.army.mil
Susan Coghlan Argonne National Lab. smc@alcf.anl.gov
David Cronk University of Tennessee cronk@cs.utk.edu
John Thomas Daly Los Alamos National Laboratory jtd@lanl.gov
Larry Paul Davis DoD High Performance Computing Modernization Program larryd@hpcmo.hpc.mil
Bronis R. de Supinski Lawrence Livermore National Laboratory bronis@llnl.gov
John V. DelSignore TotalView Technologies jdelsign@totalviewtech.com
Luiz DeRose Cray Inc. ldr@cray.com
Douglas W. Doerfler Sandia National Laboratories dwdoerf@sandia.gov
Thomas Epperly Lawrence Livermore National Laboratory epperly2@llnl.gov
David A. Fisher HPCMO dfisher@ieee.org
Robert J. Fowler RENCI/University of North Carolina rjf@renci.org
Jim Galarowicz Krell Institute - Open|SpeedShop jeg@krellinst.org
George A. Geist Oak Ridge National Laboratory sonewaldc@ornl.gov
Howard Gordon NSA flash@super.org
Richard Leigh Graham ORNL rlgraham@ornl.gov
Robert Harrison ORNL harrisonrj@ornl.gov
Thuc Hoang DOE NNSA thuc.hoang@nnsa.doe.gov
Adolfy Hoisie Los Alamos National Laboratory hoisie@lanl.gov
Jeff Hollingsworth University of Maryland hollings@cs.umd.edu
Marty Itzkowitz Sun Microsystems marty.itzkowitz@sun.com
Curtis Janssen Sandia National Laboratories cljanss@sandia.gov
Fred Johnson DOE fjohnson@sc.doe.gov
Karen L. Karavanic Portland State University karavan@cs.pdx.edu
Darren J. Kerbyson Los Alamos National Laboratory djk@lanl.gov
Allen Davis Malony University of Oregon malony@cs.uoregon.edu
Bob Meisner NNSA bob.meisner@nnsa.doe.gov
Barton Miller University of Wisconsin bart@cs.wisc.edu
Bernd Mohr Forschungszentrum Juelich b.mohr@fz-juelich.de
David R. Montoya Los Alamos National Laboratory dmont@lanl.gov
Shirley Victoria Moore University of Tennessee shirley@cs.utk.edu
Jose L. Munoz NSF jmunoz@nsf.gov
Wolfgang E. Nagel TU Dresden / Center for Information Services and High

Performance Computing
wolfgang.nagel@tu-
dresden.de

Rod Oldehoeft Krell Institute rro@krellinst.org
Avneesh Pant NCSA apant@ncsa.uiuc.edu
Abani Kumar Patra NSF apatra@nsf.gov
Douglass
Edmund

Post DoD High Performance Computing Modernization Program post@hpcmo.hpc.mil

Brian Scott Pudliner Lawrence Livermore National Laboratory pudliner1@llnl.gov
Craig E. Rasmussen Los Alamos National Laboratory crasmussen@lanl.gov
Daniel A. Reed University of North Carolina at Chapel Hill dan_reed@unc.edu
Rolf Riesen Sandia National Laboratories rolf@sandia.gov
Philip Charles Roth Oak Ridge National Laboratory rothpc@ornl.gov
Martin Schulz Lawrence Livermore National Laboratory schulzm@llnl.gov
Dolores Shaffer DARPA/Science and Technology Associates dshaffer@stassociates.com
John Shalf Lawrence Berkeley National Laboratory jshalf@lbl.gov
David Eugene Skinner LBL deskinner@lbl.gov
Lauren L. Smith High Performance Computing, NSA llsmit1@nsa.gov

SDTPC Workshop Report Page 26

Valerie Taylor Texas A&M University taylor@cs.tamu.edu
Rajeev S. Thakur Argonne National Laboratory thakur@mcs.anl.gov
Jeffrey S. Vetter ORNL vetter@computer.org
Greg Watson IBM Research grw@us.ibm.com
Mary Zosel LLNL zosel1@llnl.gov

3B3BAPPENDIX 3 – OTHER SDTPC CONTRIBUTORS
The following people contributed to this final report but were unable to participate in the workshop.

First/Middle Name Last Name Organization Email

Bob Lucas USC/ISI rflucas@isi.edu
John Mellor-Crummey Rice University johnmc@cs.rice.edu

